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Abstract

In this paper, we present a structural decomposition for general single-input and single-output linear singular systems. Such
a decomposition has a distinct feature of capturing and displaying all the structural properties, such as the .nite and in.nite
zero structures and redundant dynamics, of the given system. It is expected to be a powerful tool in solving control problems
for singular systems, such as H2 and H∞ control, model reduction and disturbance decoupling problems, to name a few.
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1. Introduction

Singular systems, also commonly called gen-
eralized or descriptor systems in the literature,
appear in many practical situations including engi-
neering systems, economic systems, network anal-
ysis, and biological systems (see e.g. [4,8,9]). In
fact, many systems in the real life are singular in
nature. They are usually simpli.ed as or approx-
imated by nonsingular models because there is
still lacking of e;cient tools to tackle problems
related to such systems. The structural analysis
of linear singular systems, using either algebraic
or geometric approach, has attracted considerable
attention from many researchers during the last
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three decades (see e.g. [5–7,10,12,14,17,18] and the
references cited therein). Generally speaking, al-
most all the research works dealing with singular
systems are the natural extension of those results
for nonsingular counterparts, although it is much
harder in obtaining solutions associated with singular
systems.

It has been extensively demonstrated and proven for
nonsingular systems that the system structural prop-
erties, such as the .nite zero and in.nite zero struc-
tures as well as the invertibility structures, play a
very important role in solving related control problems
including H2; H∞ control and disturbance decoupling
(see [2,15]). In this paper, we present a structural de-
composition of general single-input and single-output
linear singular systems, which is capable of captur-
ing and displaying all the structural properties of the
given system. Our method can be regarded as a natu-
ral extension of the work of Sannuti and Saberi [16].
However, it will be seen shortly that the structural
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decomposition of a singular system is much more
complicated than that of a nonsingular system. Such
a decomposition technique is expected to be a power-
ful tool and play an important role in solving control
problems for singular systems, such as H2 and H∞
control, model reduction and disturbance decoupling,
to name just a few.

To be more speci.c, we consider a linear
time-invariant system � characterized by

{
Eẋ = Ax + Bu; x(0) = x0; u(0) = u0;

y = Cx;
(1)

where x∈Rn; u∈R and y∈R are, respectively,
the state, input and output of the system, and
E; A; B; C and D are constant matrices of appropri-
ate dimension. The system � is said to be singular
if rank (E)¡n. As usual, in order to avoid any
ambiguousness in solutions to the system, we as-
sume that the given singular system � is regular,
i.e., det(sE − A) �≡ 0, for all s∈C. In this pa-
per, we will present a constructive algorithm that
decomposes the state of the system x into several
distinct parts, which are directly associated with
the .nite zero dynamics and in.nite zero dynamics
of the given system. It is interesting to note that
our decomposition will automatically and explicitly
separate the redundant dynamics of the system as
well.

The outline of this paper is as follows: In Section 2,
we present the main results of our work, i.e., the struc-
tural decomposition of single-input and single-output
singular systems and its properties. For the clarity of
presentation, the detailed proofs of these results are
given in Section 3, whereas an illustrative example
is given in Section 4. Finally, Section 5 draws some
concluding remarks on the work and on the future re-
search along the line.

Throughout this paper, the following notation will
be used: I denotes an identity matrix with appropriate
dimensions; R is the set of all real numbers; C;C0;C−

and C+ represent, respectively, the set of all complex
numbers, the imaginary axis, the open left-half plane
and the open right-half plane; �(X ) is the set of eigen-
values of a real square matrix X ; and u(v) is the vth
order derivative of u, where v is an integer.

2. Structural decomposition and properties

We present in this section the main results of the
paper, i.e., the structural decomposition of the singu-
lar system (1) and its properties. We .rst have the
following theorem.

Theorem 2.1. Consider the singular system � of (1)
satisfying the regularity assumption, i.e., det(sE −
A) �≡ 0 for s∈C, and its transfer function is nontriv-
ial, i.e., H (s) = C(sE − A)−1B �≡ 0 for s∈C. There
exist

1. coordinate free non-negative integers nz; na ; nd ; ne

and v; and
2. nonsingular state, input and output transfor-

mations �s ∈Rn×n; �i ∈R and �o ∈R, and a
nonsingular constant matrix �e ∈Rn×n, which
together give a structural decomposition of �
and display explicitly its 3nite and in3nite zero
structures.

The structural decomposition of �, or the trans-
formed system, can be described by the following set
of equations:

x = �sx̃; x̃ =




xe

xz

xa

xd




; xd =




xd1

xd2

...

xdnd




;

y = �oỹ; u = �iũ; (2)

where xe ∈Rne ; xz ∈Rnz ; xa ∈Rna ; xd ∈Rnd , and

Case 1: If nd = 0,

xe = ũ (v);

xz = 0;

ẋa = Aaaxa + B0aỹ; ỹ = LCxa + LDũ (v):




(3)
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Case 2: If nd ¿ 0,

xe = ũ (v);

xz = 0;

ẋa = Aaaxa + Ladyd ;

ẋd1 = xd2;

ẋd2 = xd3;

...

ẋdnd = Mdaxa + Lddyd + ũ (v); ỹ = yd = xd1




(4)

with initial conditions x̃(0) = x̃0 = �−1
s x0 and ũ(0)=

ũ 0 = �−1
i u0.

A constructive proof of the structural decompo-
sition in Theorem 2.1 will be given later in the
next section. We note that the impulsive modes,
if any, caused by the derivatives of the system
input are all preserved under the structural decom-
position. Fig. 1 gives a block diagram interpreta-
tion of the dynamics of the structurally decomposed
system in Case 2 of Theorem 2.1. In the .gure, a
signal given by a double-edged arrow is some linear
combination of output yd, whereas a signal given
by the double-edged arrow with a solid dot is some
linear combination of all the states.

As mentioned earlier, the structural decomposi-
tion of Theorem 2.1 has distinct feature of reveal-
ing the structural properties of the given singular
system �. In what follows, we will study how the
system properties of � such as the stabilizability,
detectability, invertibility, as well as .nite zero and
in.nite zero structures, can be obtained from our
decomposition.

We .rst recall the de.nitions of stability, stabi-
lizability and detectability of linear singular systems
from the literature (see e.g. [4]).

De�nition 2.1 (Stability, stabilizability and detect-
ability) The singular system � of (1) is said to be
stable if its characteristic polynomial det(sE −A) has
all roots in C−. It is said to be stabilizable if there
exists an appropriate dimensional constant matrix F
such that the roots of det(sE − A − BF) are stable.
Similarly, it is said to be detectable if there exists an

appropriate dimensional constant matrix K such that
the roots of det(sE − A− KC) are stable.

We have the following property.

Property 2.1 (Stabilizability and detectability). The
given system � of (1) is stabilizable if and only if
the pair (Aaa ; Bcon) is stabilizable. � is detectable if
and only if the pair (Aaa ; Cobs) is detectable. Here
Bcon : =B0a and Cobs : = LC in Case 1, while Bcon :
=Lad and Cobs : =Mda in Case 2.

The de.nition of invariant zeros of singular systems
can be done similarly as that for nonsingular systems
(see e.g. [2,12]) or in the Kronecker canonical form
associated with � (see e.g. [13]).

De�nition 2.2 (Invariant zeros). A complex scalar
�∈C is said to be an invariant zero of the singular
system � of (1) if

rank{P�(�)}¡n + normrank{H (s)}; (5)

where normrank{H (s)} denotes the normal rank of
H (s)=C(sE−A)−1B, which is de.ned as its rank over
the .eld of rational functions with real coe;cients,
and P�(s) is the Rosenbrock system matrix associated
with � and is given by

P�(s) =

[
A− sE B

C 0

]
: (6)

The following property shows that the invariant
zeros of � can be obtained in the structural decom-
position in a trivial matter.

Property 2.2 (Invariant zeros). The invariant zeros of
� are the eigenvalues of Aaa.

The in.nite zero structure of � can be either de-
.ned in association with the Kronecker canonical form
of P�(s) or as Smith–McMillan zeros of the transfer
function H (s) at in.nity. The indices de.ned by these
two methods are somewhat diNerent, although they are
related to each other. This can be seen in Property 2.3.
For the sake of simplicity, we only consider the in.-
nite zeros from the point of view of Smith–McMillan
theory here. To de.ne the zero structure of H (s) at
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Fig. 1. Block diagram representation of dynamics of the structurally decomposed system.

in.nity, one can use the familiar Smith–McMillan de-
scription of the zero structure at .nite frequencies of
H (s). Namely, a rational matrix H (s) possesses an in-
.nite zero of order k when H (1=z) has a .nite zero of
precisely that order at z=0 (see [3,17]). The number of
zeros at in.nity together with their orders indeed de-
.nes an in.nite zero structure. For a single-input and
single-out system, the in.nite zero structure is equiv-
alent to the relative degree of the system.

Property 2.3 (In.nite zero structure). The in3nite
zero structure of the singular system � is given by
{nd − v}, i.e., � has an in3nite zero of order or
relative degree nd − v. However, � has an in3nite
elementary divisor of order nd in its corresponding
Kronecker canonical form.

Again, the rigorous proofs to all these properties are
given in the next section.

3. Proofs of main results

We are now ready to give proofs to the main re-
sults of our paper, i.e., the structural decomposition of
Theorem 2.1 and its properties.

3.1. Proof of Theorem 2.1

The following is a step-by-step constructive proce-
dure for the structural decomposition of �.

Step 1 (Preliminary decomposition): It follows
from Dai [4] that there exist two nonsingular matrices
P ∈Rn×n and Q∈Rn×n such that

PEQ =

[
In1 0

0 N

]
; PAQ =

[
A1 0

0 In2

]
;

PB =

[
B1

B2

]
; CQ = [C1 C2]; (7)

where A1; B1; B2; C1 and C2 are matrices with appro-
priate dimensions, and N is a nilpotent matrix with an
appropriate nilpotent index, say h, i.e., Nh−1 �= 0 and
Nh = 0. Equivalently, � can be decomposed into the
following two subsystems:

�1 :

{
ẋ1 = A1x1 + B1 u; x1(0) = x10;

y1 = C1 x1

(8)

and

�2 :

{
N ẋ2 = x2 + B2 u; x2(0) = x20;

y2 = C2 x2;
(9)

where x1 ∈Rn1 and x2 ∈Rn2 with n1 + n2 = n, and
y = y1 + y2.

Step 2 (Decomposition of �2): If B2 = 0, we have
x0 = x2; nz = n2; xe = ∅; ne = 0 and v = 0.

For this case, the following procedure does not ap-
ply. We go directly to Step 3.

For the case when B2 �= 0, it follows from
Brunovsky [1] and Luenberger [11] (see also [2]) that
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there exist a nonsingular transformation T2 and � �= 0
such that

x2 = T2

(
xv

xz

)
; xz ∈Rnz ; xv ∈Rvd ;

xv =




xv1

...

xvvd


 (10)

and

T−1
2 NT2 =

[
Jc0 Nc Lc

0 Jnz

]
;

T−1
2 B2 =

[
B2c

0

]
;

C2T2 = [C2c C2 Lc]; (11)

where (Jc0; B2c) is a completely controllable pair.
Since N has all its eigenvalues at 0 and B2c is a
column vector, (Jc0; B2c) can actually be written as

Jc0 =

[
0 Ivd−1

0 0

]
and B2c =

[
0

−1=�

]
: (12)

Also note that Jnz has all its eigenvalues at 0. As such,
it is simple to verify that �2 is decomposed into the
following two subsystems:

Jnz ẋz = xz ⇒ xz = 0 (13)

and Jc0ẋv + Nc Lcẋz = xv + B2cu, which is equivalent to
Jc0ẋv = xv + B2cu or

u = �xvvd ; ẋvvd = xvvd−1; : : : ; ẋv2 = xv1; (14)

which implies

xe := xv1 =
1
�
u(v) and ne = 1 (15)

and where v=max(0; vd − 1). The output y2 can then
be expressed as

y2 = C2cxv + C2cxz = C2 Lcxv: (16)

Step 3 (Decomposition of the 3nite and in3nite
zero structures): Observing the results in (8), (9),

(13)–(16), we can obtain the following regular
system:

ẋ1 = A1x1 + �B1xvvd ;

xv1 = xe =
1
�
u(v);

ẋv2 =
1
�
u(v);

...

ẋvvd = xvvd−1;

xz = 0;

y = C1x1 + C2cxv:




(17)

Next, let us partition

C2c = [cv1 cv2 · · · cvvd ]: (18)

Thus, the nonsingular system (17) can be rewritten as{
L̇x = LA Lx + LB Lu;

y = LC Lx = LD Lu;
(19)

where

Lx =




x1

xv2

...

xvvd−1

xvvd




;

LA =




A1 0 · · · 0 0 �B1

0 0 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · 1 0 0

0 0 · · · 0 1 0




;

LB =




0

1

...

0

0




(20)
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and

Lu =
1
�
u(v); LC = [C1 cv2 · · · cvvd−1 cvvd ];

LD = cv1: (21)

Note that H (s) is nontrivial. We have the following
two distinct cases.

(1) LD=0 and it is corresponding to Case 2 of The-
orem 2.1. It follows from the result of Sannuti and
Saberi [16] that there exist nonsingular transforma-
tions L�s and �o such that when we apply the following
changes of coordinates:

Lx = L�s Qx = L�s

(
xa

xd

)
; y = �oỹ (22)

to the system in (19), and in view of (15), we have

Q̇x =

[
Aaa LadCd

BdMda Add

]
Qx +

[
0

Bd

]
�−1u(v) (23)

and

ỹ = [0 Cd] Qx; (24)

where Add ; Bd and Cd have the form as given in (29).
Let

u = �iũ = �ũ ⇒ �−1u(v) = ũ (v): (25)

(2) LD �= 0 and it is corresponding to Case 1 of
Theorem 2.1. In this case, it is simple to obtain xd =∅;
nd = 0; xa = Lx; na = n1 + v and

ẋa = ( LA− LB LD−1 LC)xa + LB LD−1y = Aaaxa + B0ay (26)

and

y = LCxa + LD�−1u(v) = LCxa + LDũ (v); (27)

if we let u = �iũ = �ũ.
This completes the algorithm for the structural

decomposition of �.

Actually, we can rewrite the structural decomposi-
tion of � in a compact matrix form, which will be
handy in proving the properties of the structural de-
composition. For simplicity, we will only focus on
Case 2 of Theorem 2.1, i.e., nd ¿ 0. The compact form

for Case 2 of Theorem 2.1 is given by

Ẽ = �−1
e E�s

=




0 Eez 0 0

0 Jnz 0 0

0 Eaz Ina 0

0 Edz 0 Ind




;

Ã = �−1
e A�s

=




0 Aez Nea Ned

0 Inz 0 0

0 Aaz Aaa LadCd

Bd Adz BdMda Add




;

B̃ = �−1
e B�i =




Be

0

0

0




;

C̃ = �−1
o C�s = [0 Cz 0 Cd];




(28)

where Jnz is in a Jordan canonical form with all its
diagonal elements being equal to 0, and Nea ; Ned and
are sub-matrices with appropriate dimensions, and
Be �= 0. Furthermore, matrices Add ; Bd ; Cd are in the
following forms:

Add =

[
0 Ind−1

? 0

]
; Bd =

[
0

1

]
;

Cd = [1 0 · · · 0]: (29)

3.2. Proof of Property 2.1

It follows from Dai [4] that the singular system �
of (1) is stabilizable if and only if

rank [sE − A B] = n (30)

for all s∈C0 ∪ C+. Let us again focus on Case 2 of
Theorem 2.1. In the structural decomposition form

rank [sE − A B]

= rank[sẼ − Ã B̃]
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= rank




0 sEez − Aez −Nea −Ned Be

0 sJnz − Inz 0 0 0

0 sEaz − Aaz sIna − Aaa −LadCd 0

−Bd sEdz − Adz −BdMda sInd − Add 0




=rank




0 0 0 0 Be

0 sJnz − Inz 0 0 0

0 0 sIna − Aaa −LadCd 0

−Bd 0 0 sInd − Add 0




:

(31)

Noting that Be �= 0 and the special structures of
Jnz ; Add ; Cd and Bd, it is straightforward to show that �
is stabilizable if and only if (Aaa ; Lad) is stabilizable.
Results for Cases 1 of Theorem 2.1 can be shown in
a similar way.

Similarly, the proof for the detectability can be done
in a dual fashion. This completes the proof of Property
2.1.

3.3. Proof of Property 2.2

Again, we prove this property for Case 2 of Theo-
rem 2.1. Observing that for �∈C, we have
rank{P�(�)}

=rank{P L�(�)}

=rank




0 Aez − �Eez Nea Ned Be

0 Inz − �Jnz 0 0 0

0 Aaz − �Eaz Aaa − �Ina LadCd 0

Bd Adz − �Edz BdMda Add − �Ind 0

0 Cz 0 Cd 0




=rank




0 0 0 0 Be

0 Inz − �Jnz 0 0 0

0 0 Aaa − �Ina 0 0

Bd 0 0 Add − �Ind 0

0 0 0 Cd 0




=ne + nz + nd + 1 + rank{Aaa − �Ina}: (32)

Obviously, the rank of P� drops if and only if
�∈ �(Aaa). Hence, the invariant zeros of �̃ are given
by the eigenvalues of Aaa. In fact, the eigenstructure
of Aaa de.nes the .nite zero structure of �. This com-
pletes the proof of Property 2.2.

3.4. Proof of Property 2.3

It is well known that the in.nite zero structure or
relative degree of � is nothing more than the number
of integrators that are inherent in between the system
input u and the system output y. As all transformations
involved in our structural decomposition are nonsin-
gular, the number of inherent integrators remains un-
changed under such transformations. It follows from
the constructive proof of Theorem 2.1 (see also Fig.
1) that there are nd integrators in between ũ (v) and ỹ,
where v = max(0; vd − 1). Thus, the number of inher-
ent integrators in between u and y is nd − v. Hence,
the result of Property 2.3 follows.

4. An illustrative example

In this section, an example is presented to illustrate
the structural decomposition procedure and its prop-
erties. We consider a singular system of (1) with

E =




1 0 0 0 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

0 0 1 1 0




;

A =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




; B =




1

0

1

0

0




(33)

and

C = [2 0 − 2 1 − 1]; D = 0: (34)

Following the procedure given in the previous section,
we obtain na = 2; nd = 1; nz = 1; ne = 1 and v = 2, and
all the necessary transformations,

�e =




1 0 −0:3333 −0:7071 0

0 0 0:6667 0 1

1 0 0 0 0

0 1 0 0 0

0 0 −0:6667 −0:7071 0




;
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�s =




0 0 −0:3333 −0:7071 0

1 0 0 0 0

0 0 −0:6667 −0:7071 0

0 1 0 0 0

0 0 0:6667 0 1




(35)

and �o = −1; �i = 1. The transformed system is then
given by

xe = Ru; xz = 0; (36)

ẋa =

[−1 0

0 0

]
xa +

[ −3

1:4142

]
yd ; (37)

ẋd1 = [0:6667 0]xa + 2yd + Ru;

ỹ = yd = xd1: (38)

It is simple to see now from the above decomposition
that there are two invariant zeros are s1 = −1 and
s2 =0, and the in.nite zero structure or relative degree
of � from Ru to y is equal to 1. Thus, � has a relative
degree of −1 from u to y. These results can be easily
veri.ed from the transfer function of �,

H (s) = C(sE − A)−1B =
s(s + 1)
s − 1

: (39)

Finally, we note that it can be shown that there is
an in.nite elementary divisor of order nd = 1 in the
Kronecker canonical form associated with �.

5. Conclusions

We have presented in this paper a structural de-
composition technique for general single-input and
single-output linear singular systems, which has a dis-
tinct feature of explicitly capturing and displaying the
structural properties, such as the .nite and in.nite zero
structures, of the given system. As its counterpart in
nonsingular systems, the technique is expected to play
an important role in solving many control problems
related to singular systems. This will actually be the
subject of our future research. Our immediately future
research will also be focusing on the development of
a similar technique for multi-input and multi-output
singular systems.
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