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Abstract

In this paper, we present a composite nonlinear feedback (CNF) control technique for linear discrete-time multivariable systems with actuator
saturation. The CNF control law serves to improve the transient performance of the closed-loop system by adding an additional nonlinear
feedback. The linear feedback can be designed to yield a quick response at the initial stage, then the nonlinear feedback is introduced to smooth
out overshoots when the system output approaches the target reference. As such, the resulting closed-loop system typically has very fast transient
response and small overshoots. The goal of this work is to complete the theory for general discrete-time systems. The technique is applied to
a magnetic-tape-drive servo system design and yields a huge improvement in settling time compared to that of a purely linear controller.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and problem formulation

The problem of reference signal tracking has been a mature
subject in the literature. Several excellent textbooks have cov-
ered this topic in details (see, for example, [1,7]). Not only the
steady state tracking performance but also the transient track-
ing performance are required in most of the tracking control
applications, such as motion control and process control. For
the closed-loop transient performance, settling time and over-
shoot are concerned during the control design procedure. How-
ever, it is well known that, in general, quick response results
in a large overshoot. Thus, most of the design schemes make a
trade-off between these two transient performance indices. In
order to improve the transient tracking performance, Lin et al.
[14] proposed a so-called composite nonlinear feedback (CNF)
control technique in their pioneer work for a class of second
order linear systems. The CNF control is a scheme consisting
of a linear feedback law and a nonlinear feedback law without
any switching element. The linear feedback part is designed
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to yield a closed-loop system with a small damping ratio for
a quick response, while at the same time not exceeding the
actuator limits for desired command input levels. The nonlin-
ear feedback law is used to increase the damping ratio of the
closed-loop system as the system output approaches the tar-
get reference to reduce the overshoot caused by the linear part.
From the structure of the CNF control law, it is clear that the
CNF controller reduces to a linear controller when the gains
in the nonlinear feedback law vanish. Therefore, the additional
nonlinear feedback make it possible to change the feedback
gains to improve the transient performance.

It is worth noting that when dealing with set-point tracking,
the so-called reference management approach was proposed in
the framework of model predictive control [2] and uncertain
linear systems [3]. An improved error governor and a reference
governor based on the concept of maximal output admissible
sets were adopted to track reference signals inside some con-
straint set for the output in Gilbert et al. [8] and Gilbert and
Tan [9], respectively. In Graettinger and Krogh [10], the au-
thors considered the computation of reference signal constraints
for guaranteed tracking performance in supervisory control en-
vironment. These ideas were also adopted in Blanchini and
Miani [4].
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The merits of the CNF control lie in its simple structure and
using linear controller as a basic element which is of especial
interest to many researchers and practical engineers as it can
be easily implemented. After the work of Lin et al. [14], Turner
et al. [19] extended the CNF control technique to higher order
and multiple input systems under a restrictive assumption on
the system. Recently, Chen et al. [5] have developed a CNF
control to a more general class of systems with measurement
feedback, and successfully applied the CNF technique to solve
a hard disk servo problem. However, along the same line as that
of CNF control, very little has been done for linear discrete-
time systems except the work of Venkataramanan et al. [20],
which is only applicable to linear single-input and single-output
(SISO) systems with state feedback. In this paper, we present a
CNF control technique for discrete-time multivariable systems
with actuator saturation.

To be specific, we consider in this paper the following multi-
input and multi-output (MIMO) discrete-time system � with
an amplitude-constrained actuator characterized by{

x(k + 1) = Ax(k) + B sat(u(k)), x(0) = x0,

h(k) = C2x(k) + D2 sat(u(k)),
(1)

where x ∈ Rn, u ∈ Rm and h ∈ R� are, respectively, the state,
control input and controlled output of the given system �. A, B
and C2 are appropriate dimensional constant matrices, and the
saturation function is defined by

sat(u) =

⎛
⎜⎜⎝

sat(u1)

sat(u2)
...

sat(um)

⎞
⎟⎟⎠ (2)

with

sat(ui) = sign(ui) min(|ui |, ūi), (3)

where ūi is the maximum amplitude of the ith control channel.
We assume that the state variable of the plant is available for
feedback. The objective of this paper is to design a state feed-
back control law for (1) using the CNF approach such that the
resulting controlled output will track some desired step refer-
ences as fast and as smooth as possible. For tracking purpose,
the following assumptions on the given system are made:

1. (A, B) is stabilizable; and
2. (A, B, C2, D2) is right invertible (and hence m� l) and has

no invariant zeros at z = 1.

Note that these assumptions are necessary for tracking control
of discrete-time systems. We also note that there are many
excellent works published in the literature dealing with control
problems for systems with saturation nonlinearities, see, for
example, [4,13,15,16,18], to name a few. The focus of this
work, however, is very different. We aim to design a controller
that would improve the transient performance instead. In fact,
we can borrow any design from the literature and apply our
CNF technique to yield a better transient performance.

The paper is organized as follows. Section 2 deals with the
theory of the CNF control. We will address the issue on the

selection of design parameters associated with the nonlinear
feedback law in Section 3. The technique is then illustrated
in a magnetic-tape-drive design example in Section 4, which
shows that the proposed design method yields a big improve-
ment in settling time compared to that of conventional linear
state feedback design approaches. Finally, we draw some con-
cluding remarks in Section 5.

2. CNF controller design

We have the following step-by-step procedure for the design
of the CNF control law.

Step s.1: Design a linear feedback law,

uL(k) = Fx(k) + Gr , (4)

where r ∈ Rl contains a set of step references. The state
feedback gain matrix F ∈ Rm×n is chosen such that the closed-
loop system matrix A + BF is asymptotically stable and typ-
ically the resulting closed-loop system transfer matrix, i.e.,
D2 +(C2 +D2F)(zI −A−BF)−1B, has certain desired prop-
erties, e.g., having a small dominating damping ratio in each
channel. We note that the focus of this work is on the improve-
ment of transient performance of the overall closed-loop sys-
tem over linear control. Thus, it is fair to assume that there
exists a linear state feedback control law, which stabilizes the
given system. We also note that such an F can be worked out
using some well-studied methods such as the LQR, H∞ and H2
optimization approaches. Furthermore, G is an m × l constant
matrix and is given by

G := G′
0(G0G

′
0)

−1, (5)

with G0 := D2 + (C2 +D2F)(I −A−BF)−1B. Here we note
that both G0 and G are well defined because A+BF is stable,
and (A, B, C2, D2) is right invertible and has no invariant zeros
at z = 1, which implies (A + BF, B, C2 + D2F, D2) is right
invertible and has no invariant zeros at z=1 (see e.g., Theorem
3.8.1 of Chen et al. [6]).

Step s.2: Next, we compute

H := [I + F(I − A − BF)−1B]G (6)

and

xe := Ge r := (I − A − BF)−1BGr . (7)

Note that the definitions of H, Ge and xe would become trans-
parent later in our derivation. Given a positive definite matrix
W ∈ Rn×n, solve the following Lyapunov equation:

P = (A + BF)′P(A + BF) + W , (8)

for P > 0. Such a P exists since A + BF is asymptotically
stable. Then, the nonlinear feedback control law uN(k) is given
by

uN(k) = �(r, y)B ′P(A + BF)(x(k) − xe), (9)
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where

�(r, y) = diag{�1, . . . , �m} =
⎡
⎣�1 · · · 0

...
. . .

...

0 · · · �m

⎤
⎦ , (10)

and �i = �i (r, y), i = 1, 2, . . . , m, are some non-positive func-
tions, locally Lipschitz in y, which are used to change the
closed-loop system damping ratios as the outputs approach the
targets. In fact, in most of the situations, it is not necessary to
restrict � to be in a diagonal form. The choice of these nonlin-
ear functions and W will be discussed in Section 3.

Steps s.3: The linear and nonlinear feedback laws derived in
the previous steps are now combined to form a CNF controller:

u(k) = uL(k) + uN(k) = Fx(k) + Gr

+ �(r, y)B ′P(A + BF)(x(k) − xe). (11)

This completes the design of the CNF controller for the state
feedback case.

For further development, we partition B ∈ Rn×m, F ∈ Rm×n

and H ∈ Rm×l as follows:

B = [B1 · · · Bm], F =
⎡
⎣ F1

...

Fm

⎤
⎦ , H =

⎡
⎣ H1

...

Hm

⎤
⎦ . (12)

The following theorem shows that the closed-loop system com-
prising the given plant in (1) and the CNF control law of (11)
is asymptotically stable. It also determines the magnitudes of
the step functions in r that can be tracked by such a control law
without exceeding the control limit.

Theorem 2.1. Consider the given system � in (1) with y = x,
which satisfies Assumptions 1 and 2, the linear control law of
(4) and the CNF control law of (11). For any � ∈ (0, 1), we
define

X� := {v ∈ Rn | v′Pv�c� and |Fi v|�(1 − �)ūi ,

i = 1, . . . , m}, (13)

where c� > 0 is the largest positive scalar. Then, the linear
control law of (4) is capable of driving the system controlled
output h(k) to track asymptotically a set of step references, i.e.,
r, provided that the initial state x0 and r satisfy:

x̃0 := (x0 − xe) ∈ X�, |Hi r|��ūi , i = 1, . . . , m. (14)

Furthermore, for any non-positive function �(r, y), locally Lip-
schitz in y, which satisfies

2� + �B ′PB��0 or

− 2(B ′PB)−1 ���0 ⇔ �−1 � − 1
2B ′PB, (15)

if � is selected to be non-singular, the CNF law in (11) is
capable of driving the system controlled output h(k) to track
asymptotically the step command input of amplitude r, provided
that the initial state x0 and r satisfy (14).

Proof. Let us first define a new state variable x̃(k)=x(k)−xe.
It is simple to verify that the linear feedback control law of (4)

can be rewritten as

uL(k) = F x̃(k) + [I + F(I − A − BF)−1B]Gr

= F x̃(k) + Hr , (16)

and hence for all x̃(k) ∈ X� and, provided that |Hi r|��ūi ,
i = 1, . . . , m, the closed-loop system is linear and is given by

x(k + 1) = (A + BF)x̃(k) + Axe + BHr . (17)

Noting that

Axe + BHr = {A(I − A − BF)−1BG

+ B[I + F(I − A − BF)−1B]G}r
= {A(I − A − BF)−1BG

+ [I + BF(I − A − BF)−1]BG}r
= [A(I − A − BF)−1 + I

+ BF(I − A − BF)−1]BGr

= (I − A − BF)−1BGr = xe, (18)

the closed-loop system in (17) can then be simplified as

x̃(k + 1) = (A + BF)x̃(k). (19)

Similarly, the closed-loop system comprising the given plant in
(1) and the CNF control law of (11) can be expressed as

x̃(k + 1) = (A + BF)x̃(k) + Bw(k), (20)

where

w(k) = sat(F x̃(k) + Hr + uN(k)) − F x̃(k) − Hr . (21)

Clearly, for the given x0 satisfying (14), we have x̃0=(x0−xe) ∈
X�. We note that (20) is reduced to (19) if �(r, y) = 0.

Next, we define a Lyapunov function V (k) = x̃′(k)P x̃(k)

and evaluate the increment of V (k) along the trajectories of the
closed-loop system in (20), i.e.,

�V (k+1) = x̃′(k+1)P x̃(k+1)−x̃′(k)P x̃(k)

= x̃′(k)(A+BF)′P(A+BF)x̃(k)−x̃′(k)P x̃(k)

+ 2x̃′(k)(A+BF)′PBw(k)+w′(k)B ′PBw(k)

= − x̃′(k)Wx̃(k)+2x̃′(k)(A+BF)′PBw(k)

+ w′(k)B ′PBw(k). (22)

Note that for all

x̃(k) ∈ X� ⇒ |Fi x̃(k)|�(1 − �)ūi , i = 1, . . . , m. (23)

In the remainder of this proof, we consider the following differ-
ent scenarios. For simplicity, we drop the dependent variables
of the nonlinear function � in the rest of this proof.

Case 1: All input channels are unsaturated. It is obvious that
we have

w(k) = uN(k) = �B ′P(A + BF)x̃(k) (24)

and thus

�V (k + 1) = − x̃′(k)Wx̃(k) + 2x̃′(k)(A + BF)′PB�B ′

× P(A + BF)x̃(k)

+ x̃′(k)(A + BF)′PB�B ′PB�B ′

× P(A + BF)x̃(k)

= − x̃′(k)Wx̃(k) + x̃′(k)(A + BF)′

× PB(2�+�B ′PB�)B ′P(A+BF)x̃(k). (25)
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In view of (15), we have

�V (k + 1)� − x̃′(k)Wx̃(k) < 0. (26)

Case 2: All input channels are exceeding their upper limits.
In this case, we let

uNi (k) = �iB
′
iP (A + BF)x̃(k). (27)

Thus, the assumption that all input channels are exceeding their
upper limits, i.e.,

Fix̃(k) + Hir + uNi (k)� ūi , i = 1, . . . , m, (28)

implies that

uNi (k)� ūi − Fix̃(k) − Hir, i = 1, . . . , m (29)

and

wi(k) = ūi − (Fi x̃(k) + Hir). (30)

For all x̃(k) ∈ X�, which implies that (23) holds, and r satisfies
(14), we have

Fix̃(k) + Hir � ūi , i = 1, . . . , m. (31)

Hence,

0�wi(k)�uNi (k) (32)

and

�V (k + 1) = − x̃′(k)Wx̃(k) + w′(k)[2B ′P(A + BF)]x̃(k)

+ w′(k)B ′PBw(k)

= − x̃′(k)Wx̃(k) +
m∑

i=1

wi(k)[2�−1
i uNi (k)]

+ w′(k)B ′PBw(k)

� − x̃′(k)Wx̃(k) +
m∑

i=1

wi(k)[2�−1
i wi(k)]

+ w′(k)B ′PBw(k)

= − x̃′(k)Wx̃(k) + w′(k)(2�−1)w(k)

+ w′(k)B ′PBw(k)

= − x̃′(k)Wx̃(k) + w′(k)

× (2�−1 + B ′PB)w(k) < 0. (33)

Case 3: All input channels are exceeding their lower limits.
For this case, we have

Fix̃(k) + Hir + �iB
′
iP (A + BF)x̃(k)� − ūi ,

i = 1, . . . , m. (34)

Following similar arguments as in the previous case, we can
show that

�V (k + 1)� − x̃′(k)Wx̃(k) < 0. (35)

Case 4: Some control channels are saturated and some are
unsaturated. In view of Cases 1–3, the increment is just a
combination of the above three cases. For those unsaturated
channels, we have

wi(k) = uNi (k) = �iB
′
iP (A + BF)x̃(k) (36)

and

wi(k)(2�−1
i )uNi (k) = wi(k)(2�−1

i )wi(k). (37)

On the other hand, for those saturated channels, we have either

0�wi(k) = ūi (k) − (Fi x̃(k) + Hir)�uNi (k) (38)

or

uNi (k)�wi(k) = −ūi (k) − (Fi x̃(k) + Hir)�0. (39)

Thus, we have

wi(k)[2�−1
i uNi (k)]�wi(k)(2�−1

i )wi(k). (40)

It is then straightforward to verify that for this case, again, we
have

�V (k + 1)� − x̃′(k)Wx̃(k) < 0. (41)

In conclusion, we have shown that

�V (k + 1)� − x̃(k)Wx̃(k), x̃(k) ∈ X�, (42)

which implies that X� is an invariant set of the closed-loop sys-
tem in (20). Noting that W > 0, all trajectories of (20) starting
from inside X� will converge to the origin. This, in turn, indi-
cates that, for all initial state x0 and the step command input r
that satisfy (14), we have

lim
k→∞ x(k) = xe, (43)

which implies

lim
k→∞ u(k) = F lim

k→∞ x(k) + Gr + �B ′P(A + BF)

×
[

lim
k→∞ x(k) − xe

]
= Fxe + Gr . (44)

Hence,

lim
k→∞ h(k) = C2 lim

k→∞ x(k) + D2 lim
k→∞ u(k)

= C2xe + D2(Fxe + Gr)

= (C2 + D2F)xe + D2Gr

= (C2 + D2F)(I − A − BF)−1BGr + D2Gr

= [D2 + (C2 + D2F)(I − A − BF)−1B]Gr

= G0G
′
0(G0G

′
0)

−1r = r . (45)

This completes the proof of Theorem 2.1. �

3. Selection of design parameters �(r, y) and W

The key component in designing the CNF controllers is the
selection of � (hereafter we drop the dependent variables of �
for simplicity) and W. The freedom in choosing the nonlinear
function � is used to tune the control laws so as to improve
the performance of the closed-loop system as the controlled
output h approaches the set point. Since the main purpose of
adding the nonlinear part to the CNF controller is to speed up
the settling time and to reduce the overshoot, or equivalently
to contribute a significant value to the control input when the
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tracking error, r − h, is small, it is appropriate for us to select
a nonlinear gain matrix such that the nonlinear part will be in
action when the control signal is far away from its saturation
level, and thus it will not cause the control input to hit its limits.
Under such a circumstance, it is straightforward to verify that
the closed-loop system comprising the given plant in (1) and
the CNF control law (11) can be expressed as

x̃(k + 1) = (A + BF)x̃(k) + B�B ′P(A + BF)x̃(k). (46)

It is now clear that eigenvalues of the closed-loop system in
(46) can be changed by the nonlinear function �. In fact, for
such a situation, it follows from Case 1 in the proof of Theorem
2.1 that the nonlinear gain matrix � is not necessary to be in
a diagonal form. It is only required to satisfy the following
condition

−2(B ′PB)−1 ���0. (47)

Assuming that h is available and assuming that hi(0) �= ri
(for the trivial case when hi(0) = ri , there is no need to add
any nonlinear gain to the control), we propose the following
nonlinear gain matrix

�(r, h) = (B ′PB)−1/2diag{�i (ri , hi), . . . , �m(rm, hm)}
× (B ′PB)−1/2, (48)

with

�i (ri , hi) = −�i

|hi(0) − ri |�i
||hi(k) − ri |�i − |hi(0) − ri |�i |,

0��i �1, (49)

i = 1, . . . , m, which starts from 0 and gradually increases to a
final gain of −�i as hi approaches to the target reference ri . The
parameter �i is used to determine the speed of change in �i .
We note that such a nonlinear function matrix � indeed satisfies
the condition of (48). Unlike the continuous-time counterpart,
in which it is possible to use a large nonlinear gain to push the
closed-loop eigenvalues far in the left-half plane, the nonlinear
gain matrix � in the discrete-time case is always bounded to
ensure that all the closed-loop eigenvalues remain inside the
unit circle.

To examine the behavior of the closed-loop system (46) more
explicitly, we define an auxiliary system Gaux(z) characterized
by

Gaux(z) := Caux(zI − Aaux)
−1Baux

:= B ′P(zI − A − BF)−1B. (50)

Obviously, Gaux(z) is stable. We note that

CauxBaux = B ′PB > 0, (51)

which implies Gaux(z) is a square, invertible and uniform rank
system with m infinite zeros of order 1 and with n−m invariant
zeros. We will show that this auxiliary system is in fact of min-
imum phase, i.e., all its invariant zeros are stable. We note that
for such a system, it follows from the result reported in Chapter
5 of Chen et al. [6] (see also [17]) that there exist non-singular

transformations �s ∈ Rn×n, �i ∈ Rm×m and �o ∈ Rm×m such
that the transformed system has the following special form,

(�−1
s Aaux�s, �−1

s Baux�i, �−1
o Caux�s)

=
([

Aaa Lad
Eda Add

]
,

[
0
Im

]
, [0 Im]

)
, (52)

where the eigenvalues of Aaa are the invariant zeros of the
auxiliary system Gaux(z), Lad, Eda and Add are some constant
matrices. Next, we proceed to show that all the eigenvalues of
Aaa are inside the unit circle and thus Gaux(z) is of minimum
phase. We note that at the steady state when h=r , the nonlinear
function matrix � of (48) with �i = 1, i = 1, . . . , m, is reduced
to � = −(B ′PB)−1 and the closed-loop system of (46) can be
expressed as

x̃(k + 1) = (A + BF)x̃(k) − B(B ′PB)−1B ′P(A + BF)x̃(k)

= [I − B(B ′PB)−1B ′P ](A + BF)x̃(k)

= [I − Baux(CauxBaux)
−1Caux]Aauxx̃(k)

=
[
I − �s

[
0
I

]
�−1

i

(
�o[0 I ]�−1

s �s

[
0
I

]
�−1

i

)−1

× �o[0 I ]�−1
s

]
�s

[
Aaa Lad
Eda Add

]
�−1

s x̃(k)

=
(

�s

[
Aaa Lad
0 0

]
�−1

s

)
x̃(k). (53)

Clearly, the closed-loop system has n−m eigenvalues at �(Aaa)

and the rest at 0. Thus, the stability of the closed-loop system
with � = −(B ′PB)−1 implies the eigenvalues of Aaa are all
inside the unit circle. This shows that Gaux(z) is indeed of
minimum phase.

It should be noted that there is freedom in pre-selecting the
locations of these invariant zeros by choosing an appropriate
W in (8). In general, we should select the invariant zeros of
Gaux(z), which are corresponding to the closed-loop poles of
(46) for the steady state nonlinear gain matrix, with dominating
ones having a large damping ratio, which in turn generally yield
a smaller overshoot. The following procedure might be used
for such a purpose.

1. Given a set of n − m self-conjugated complex scalars,
which should include all the uncontrollable modes, if any, of
(A, B), we are to determine an appropriate W > 0 such that
the resulting auxiliary system Gaux(z) has its invariant zeros
placed exactly at the locations given in the set.

Firstly, use the singular value decomposition technique to
find a unitary matrix U ∈ Rn×n and a non-singular matrix Ti ∈
Rm×m such that

B̃aux = U ′BauxTi = U ′BT i =
[

0
Im

]
(54)

and partition accordingly

Ãaux = U ′AauxU = U ′(A + BF)U =
[
A11 A12
A21 A22

]
. (55)
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It is straightforward to verify that the stabilizability of (A, B)

implies the stabilizability of (A11, A12). In fact, their uncon-
trollable modes, if any, are identical.

Next, for determining an appropriate matrix P = P ′ > 0, we
partition it accordingly as follows

P̃ = U ′PU =
[
P11 P ′

21
P21 P22

]
. (56)

Then, Caux can be expressed as

Caux = B ′P = (T −1
i )′[0 Im]U ′U

[
P11 P ′

21
P21 P22

]
U ′

= (T −1
i )′[P21 P22]U ′

= [(T −1
i )′P22][P −1

22 P21 Im]U ′

:= To[P −1
22 P21 Im]U ′. (57)

Using the results of Chen et al. [6] (see e.g., Chapters 8
and 9), we can show that the invariant zeros of the auxiliary sys-
tem Gaux(z) are given by the eigenvalues of A11 −A12P

−1
22 P21.

Since (A11, A12) is stabilizable and the given set of complex
scalars include all its uncontrollable modes, there exists a con-
stant matrix, say F∗, such that A11.A12F∗ has its eigenvalues
placed exactly at the locations given in the set. Obviously, we
can select P22 and P21 such that

P −1
22 P21 = F∗. (58)

2. Select an appropriate P22 = P ′
22 > 0, P21 = P22F∗, and an

appropriate P11 = P ′
11 > P ′

21P
−1
22 P21 to ensure that

P = U

[
P11 P ′

21
P21 P22

]
U ′ > 0. (59)

3. Compute

W = P − (A + BF)′P(A + BF). (60)

If W is not positive definite, we go back to Step 2 to choose
another solution of P or go to the first step to re-select another
set of desired invariant zeros.

Another method for selecting W is based on a trial and er-
ror approach by limiting the choice of W to be in a diagonal
matrix and adjusting its diagonal weights through simulation.
Generally, such an approach would yield a satisfactory result
as well. We next illustrate the CNF design together with the de-
tailed selection of � and W in a design example in the following
section.

4. A design example

To illustrate the concept of the discrete-time CNF control,
we apply the technique to design a magnetic-tape-drive servo
system. The dynamics of the system are given in Franklin et al.
[7]. The goal of the control system is to enable commanding
the tape to specific positions over the read/write head while
maintaining a specified tension in the tape at all times. The

time-scaled dynamics of the drive is given by

ẋ(t) =
⎡
⎢⎣

0 0 −10 0
0 0 0 10

3.315 −3.315 −0.5882 −0.5882
3.315 −3.315 −0.5882 −0.5882

⎤
⎥⎦ x(t)

+
⎡
⎢⎣

0 0
0 0

8.533 0
0 8.533

⎤
⎥⎦ sat(u), (61)

where x = (x1 x2 �1 �2)
′ with x1 and x2 being the positions

of the tape at capstans (in mm), and �1 and �2 being angular
rates of motors/capstan assemblies (in rad/s); and u = (i1 i2)

′
with i1 and i2 being electric currents supplied to drive motors
(in A). The saturation levels of the actuators are ī1 = ī2 = 1 A.
The controlled output of the system is given by

h(t) =
(

h1(t)

h2(t)

)

=
(

x̄(t)

Te(t)

)

=
[

0.5 0.5 0 0
−2.113 2.113 0.375 0.375

]
x(t), (62)

where x̄=(x1 +x2)/2 is the position of the tape over read/write
head (in mm), and Te is the tension in the tape (in N).

The design specifications are as follows: (i) the 1% settling
time due to a 1 mm step change in position of the tape head,
x̄, should be less than 2.5 s for the time-scaled system of (61),
which is equivalent to 250 ms for the actual system; (ii) over-
shoot should be less than 20%; (iii) the tape tension, Te, should
be controlled to 2 N with the constraint that 0 < Te < 4 N; and
(iv) the input current should not exceed 1 A at each drive motor.

As suggested in [7], we follow to select a sampling T =0.05 s
to carry out our controller design. The discretized dynamical
equation is then given by

x(k + 1) =
⎡
⎢⎣

0.95992 0.04008 −0.48614 0.01386
0.04008 0.95992 −0.01386 0.48614
0.15656 −0.15656 0.93214 −0.06786
0.15656 −0.15656 −0.06786 0.93214

⎤
⎥⎦

× x(k) +
⎡
⎢⎣

−0.10492 0.00175
−0.00175 0.10492

0.41482 −0.01183
−0.01183 0.41482

⎤
⎥⎦ sat(u(k)).

(63)
The controlled output is given by

h(k) =
(

h1(k)

h2(k)

)

=
[

0.5 0.5 0 0
−2.113 2.113 0.375 0.375

]
x(k). (64)

Given a target reference and an initial condition,

r =
(

r1
r2

)
=

(
1
2

)
and x0 =

⎛
⎜⎝

−0.1
0.1
0
0

⎞
⎟⎠ , (65)

our aim is to design a CNF controller, which would control the
controlled output of the system to track the command reference
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Fig. 1. Simulation results of linear and CNF control with �1 = �2 = 8, �1 = 0.4 and �2 = 0.15: (a) controlled output; (b) control input.

as fast as possible and as smooth as possible. For easy compar-
ison, the linear state feedback gain, F, is selected precisely the
same as that given in [7], i.e.,

F =
[

0.210 −0.018 −0.744 −0.074
0.018 −0.210 −0.074 −0.744

]
,

and the resulting G and xe are given by

G =
[−0.192 0.2378

0.192 0.2378

]
, xe =

⎛
⎜⎜⎝

0.5267

1.4733

0

0

⎞
⎟⎟⎠ .
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Fig. 2. Simulation results of linear and CNF control with �1 = �2 = 6 and �1 = �2 = 1: (a) controlled output; (b) control input.

Next, choosing W = I4 and solving the Lyapunov equation (8),
we obtain

P =

⎡
⎢⎢⎣

4.6816 1.0045 −3.1240 2.1193

1.0045 4.6816 −2.1193 3.1240

−3.1240 −2.1193 6.7399 −3.9816

2.1193 3.1240 −3.9816 6.7399

⎤
⎥⎥⎦ .

It is then straightforward to verify that the auxiliary system
Gaux(z) has two invariant zeros at 0.7192 and 0.7567, respec-
tively. Thus, Gaux(z) is indeed of minimum phase. Next, fol-
lowing the suggestion given in the previous section, we select

�(r, h) = (B ′PB)−1/2
[
�1(r1, h1) 0

0 �2(r2, h2)

]
(B ′PB)−1/2,
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with

�i (ri , hi) = −�i

|hi(0) − ri |�i
||hi(k) − ri |�i − |hi(0) − ri |�i |,

i = 1, 2.

We have obtained two sets of simulation results. Fig. 1 shows
the results of the linear and CNF control with �1 = �2 = 8,
�1 = 0.4 and �2 = 0.15. The 1% settling times for the position
of the tape under the linear and CNF control are 1.55 and 0.7 s,
respectively, resulted in a 55% improvement. The overshoot of
this channel is reduced from about 5% under the linear control
to almost zero with the CNF control. For the tension of the tape,
the overshoot is reduced from 16% under the linear control to
less than 5% with the CNF control.

Although the tension of the tape is not critical for this
magnetic-tape-drive system so long as it is kept within 0 and
4 N, we present in Fig. 2 the results of the linear and CNF
control with �1 = �2 = 6, �1 = �2 = 1, to demonstrate the
powerfulness of the CNF control technique. For this case, both
the position and the tension of the tape under the CNF con-
trol have quite impressively fast settling times (0.95 and 0.2 s,
respectively) and have no overshoot at all.

5. Conclusion

We have presented a nonlinear tracking control technique
which is able to improve transient response of set-point track-
ing performance for general discrete-time systems with actu-
ator saturation. The CNF control law consists of two parts, a
linear component, which has been designed to solve the track-
ing problem under actuator saturation using any appropriate
method in the literature and a nonlinear component, which is
used to improve transient performance. The technique has been
successfully demonstrated to yield a nice tracking performance
in a real application. Also, we note that it is not difficult to
extend this method to measurement feedback cases along the
lines of [12,11].
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