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Abstract

This paper studies the technique of the composite nonlinear feedback (CNF) control for a class of cascade nonlinear systems with input
saturation. The objective of this paper is to improve the transient performance of the closed-loop system by designing a CNF control law
such that the output of the system tracks a step input rapidly with small overshoot and at the same time maintains the stability of the whole
cascade system. The CNF control law consists of a linear feedback control law and a nonlinear feedback control law. The linear feedback
law is designed to yield a closed-loop system with a small damping ratio for a quick response, while the nonlinear feedback law is used to
increase the damping ratio of the closed-loop system when the system output approaches the target reference to reduce the overshoot. The
result has been successfully demonstrated by numerical and application examples including a flight control system for a fighter aircraft.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Transient performance is one of the important issues in
the tracking control problems such as target tracking [5] and
output regulation [7]. In general, quick response and small
overshoot are desirable in most of the target tracking control
problems. However, it is well known that quick response re-
sults in a large overshoot. Thus, most of the design schemes
have to make a trade-off between these two transient perfor-
mance indices. In this paper, we consider a tracking problem
(or an equivalent output regulation) for partially linear com-
posite systems with input saturation. Particular attention is
paid to improve the transient performance of the closed-loop
system by using a so-called composite nonlinear feedback
(CNF) control technique. To improve the tracking perfor-
mance, Lin et al. [12] proposed the CNF control technique
in their pioneering work for a class of second order linear
systems. Turner et al. [18] later extended the results of [12]
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to higher-order and multiple-input systems under a restric-
tive assumption on the system. However, both [12] and [18]
considered only the state feedback case. Recently, Chen et
al. [3] have developed a CNF control to a more general class
of systems with measurement feedback, and successfully ap-
plied the technique to solve a hard disk drive servo problem.
The CNF control consists of a linear feedback law and a
nonlinear feedback law without any switching element. The
linear feedback part is designed to yield a closed-loop sys-
tem with a small damping ratio for a quick response, while
at the same time not exceeding the actuator limits for de-
sired command input levels. The nonlinear feedback law is
used to increase the damping ratio of the closed-loop sys-
tem as the system output approaches the target reference to
reduce the overshoot caused by the linear part.

The partially linear composite system consists of two
parts, a linear portion and a nonlinear portion with the out-
put of the linear part connecting to the input of the nonlinear
part and with the input of the given system saturated. Many
nonlinear systems can be transformed into partially linear
composite systems via a state-space diffeomorphism and/or
a preliminary feedback transformations (see e.g., [8]). In

http://www.elsevier.com/locate/sysconle
mailto:elelw@nus.edu.sg
mailto:bmchen@nus.edu.sg
mailto:engp1508@nus.edu.sg


W. Lan et al. / Systems & Control Letters 55 (2006) 132–138 133

recent two decades, the semi-global and global stabilization
problems for partially linear composite systems have been
extensively studied by many researchers [1,9,10,13–16], to
name just a few. In particular, it was shown in [15] that a
nonlinear system which is zero input globally asymptoti-
cally stable (GAS) will preserve its GAS property if its input
decreases to zero with a very fast exponential rate. It is not
difficult to make the output of the linear part, which is the
input of the nonlinear part, to converge to zero with some ex-
ponential rate. However, the peaking phenomenon in linear
systems may destroy the stability of the nonlinear systems
before the output rapidly decays to zero [15]. This paper
aims to design a CNF control law for partially linear com-
posite systems with input saturation based on the linear part
of the composite system such that the closed-loop system has
desired performances, e.g., quick response and small over-
shoot, and the tracking error decays to zero with sufficiently
large exponential rate to guarantee the stability of the whole
system. The result will be illustrated by two examples, one
is a numerical example of a target tracking problem and the
other is a step tracking problem for a fighter aircraft.

It is worth noting that although the structure of our CNF
control looks similar to the anti-windup control design, the
philosophies of these two design methods are totally differ-
ent. The anti-windup design aims to alleviate or eliminate
‘windup’, in which the original compensator (the linear part)
is left alone as long as it does not encounter input saturation.
Only when the input signal is saturated, the adding nonlinear
modifications take effect to suppress undesirable oscillations
and quicken transient responses (see e.g., [17]). The CNF
control, on the other hand, aims to improve the closed-loop
transient performance to get quick response and small over-
shoot, the nonlinear function is designed to be small when
the output is far away from the reference input and become
larger and larger when the output approaches the reference
input. Thus, in general, when the nonlinear part become ef-
fective, the linear control input is unsaturated. We would like
to further note that the anti-windup technique has primarily
developed for linear systems. We are not aware of any result
related to the anti-windup technique that is applicable to the
nonlinear systems considered in this paper.

The remaining part of the manuscript is organized as fol-
lows. Section 2 describes our control problem and presents
some relevant preliminary results. The CNF control law de-
sign for the partially linear composite systems is given in
Section 3. Section 4 illustrates the proposed design tech-
nique with numerical and application examples where the
performances of the closed-loop system are compared be-
tween the CNF control and the corresponding linear control.
Finally, Section 5 draws some concluding remarks.

2. Problem description and preliminaries

Consider a partially linear composite systems with input
saturation characterized by

�̇ = f (�, y), �(0) = �0, (1)

ẋ = Ax + B sat(u), x(0) = x0, (2)

y = Cx, (3)

where (�, x) ∈ Rm×Rn is the state, u ∈ R the control input,
and y ∈ R the output of the system, f is a smooth (i.e., C∞)
function, A, B and C are appropriate dimensional constant
matrices, and sat : R → R represents the actuator saturation
defined as

sat(u) = sgn(u) min{umax, |u|} (4)

with umax being the saturation level of the input. We aim to
design a CNF control law for (1)–(3) such that the resulting
closed-loop system is stable and the output of the closed-
loop system will track a step reference input r rapidly with-
out experiencing large overshoot. This problem is an exten-
sion of the recent work of [3,12] on composite nonlinear
feedback control for linear systems by connecting a non-
linear zero dynamics (1) to the linear system (2). The CNF
control law consists of a linear feedback control and a non-
linear feedback control. The linear feedback law is designed
to stabilize the system with a small closed-loop damping
ratio for quick tracking. The nonlinear feedback law is to
increase the closed-loop damping ratio as the system out-
put approaches the reference input to reduce the overshoot
while it keeps the closed-loop stability.

Without loss of generality, we assume f (0, r) = 0. In
fact, if f (�∗, r) = 0 with �∗ �= 0, the state transformation
�̃ = � − �∗ gives

˙̃� = f (�̃ + �∗, r) := f̃ (�̃, r),

then, we have f̃ (0, r) = 0. Moreover, we assume that

A1: (A, B) is controllable,
A2: (A, B, C) is invertible and has no invariant zeros at

s = 0, and
A3: there exists a C1 positive definite function V�(�) and

class K∞ functions �1 and �2 such that

�1(‖�‖)�V�(�)��2(‖�‖), (5)

�V�(�)

��
f (�, r) < 0 (6)

for all � ∈ � ⊆ Rm, where � is a compact set containing
the origin.

Remark 2.1. Assumptions A1 and A2 are quite standard in
the tracking control literature. Assumption A3 is to ensure
that the nonlinear system (1) is asymptotically stable when
the system output y tracks exactly the step command input r.

Remark 2.2 (Sussmann and Kokotovic [15]). Consider the
nonlinear control system of the form:

�̇ = f (�, r + �(t)), (7)
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which satisfies Assumption A3. When �=Rm, Theorem 4.1
of [15] shows that given any � > 0 and � > 0, there exists a
scalar a > 0 such that for any

|�(t)|��e−at , t �0, (8)

the solution �(t) of (7) exists and is bounded for all t �0
provided that �(0) ∈ {�: ‖�‖��}. And such an a is called
good for (�, �) with respect to (7). For the case � ⊂ Rm, let
� > 0 such that

{� : V�(�)�c + 1} ⊆ �,

where c = max{V�(�): ‖�‖��}. From the proof of Theorem
4.1 of [15], it is clear that, for any given a > 0, there exists
an � > 0 such that a is good for (�, �).

3. Design of the composite nonlinear feedback control
law

In this section, we proceed to design a CNF control law
for system (1)–(3). We assume that the given system (1)–(3)
satisfies Assumptions A1–A3, and all the states of the linear
system (2) are available for feedback. The CNF control law
can be constructed by the following step-by-step procedure.

Step S.1: Design a linear feedback law

uL = Fx + Gr , (9)

where r is a step command input and F is chosen such that

(1) A + BF is Hurwitz and
(2) the closed-loop system C(sI −A− BF)−1B has certain

desired properties, e.g., having a small damping ratio.

The existence of such an F is guaranteed by Assumption A1,
i.e., (A, B) is controllable. In fact, it can be designed using
methods such as the H2 and H∞ optimization approaches,
as well as the robust and perfect tracking technique. G is a
scalar given by

G = −[C(A + BF)−1B]−1. (10)

Note that G is well defined since A + BF is Hurwitz and
the triple (A, B, C) is invertible and has no invariant zeros
at s = 0. We also let

H := [1 − F(A + BF)−1B]G (11)

and

xe := Ger := −(A + BF)−1BGr. (12)

Step S.2: Given a positive-define matrix W ∈ Rn×n, solve
the Lyapunov equation

(A + BF)′P + P(A + BF) = −W (13)

for P > 0. Note that such a P exists since A+ BF is asymp-
totically stable. Then, the nonlinear feedback control law

uN(t) is given by

uN = �(r, y)B ′P(x − xe), (14)

where �(r, y) is any non-positive function locally Lipschitz
in y. This nonlinear control law is used to change the system
closed-loop damping ratio as the output approaches the step
command input.

Step S.3: Let � > 0 such that {�: V�(�)�c + 1} ⊆ � with
c = max{V�(�): ‖�‖��}, and 0�a��min(W)/(2�max(P )).
Then select an appropriate scalar � > 0 such that a is good
for (�, �) with respect to (7).

Step S.4: The CNF control law is given by combining the
linear and nonlinear feedback law derived in the previous
steps,

u = uL + uN = Fx + Gr + �(r, y)B ′P(x − xe). (15)

Theorem 3.1. Consider the given system (1)–(3) satisfies
Assumptions A1–A3. Let �, �, a, F, H and P be selected in
above-described procedure, and let

N :=
{

x ∈ Rn: ‖x‖� �

‖C‖

√
�min(P )

�max(P )

}
. (16)

For any 	 ∈ (0, 1), let c	 > 0 be the largest positive scalar
satisfying the following condition:

|Fx|�umax(1 − 	) (17)

for all x ∈ X	, where

X	 := {x: x′Px�c	, x ∈ N}.
Then for any non-positive function �(r, y), locally Lipschitz
in y, the state trajectory of the closed-loop system comprising
the given system (1)–(3) and the CNF control law (15) is
bounded for all t �0, provided that the initial states �0 and
x0, and amplitude of step input r satisfy

‖�0‖��, x̃0 := (x0 − xe) ∈ X	, |Hr|�	umax. (18)

Moreover, the system output y tracks asymptotically the step
command input of amplitude r.

Proof. The closed-loop system comprising the given plant
(1)–(3) and the CNF control law (15) is given by

�̇ = f (�, y), (19)

ẋ = Ax + B sat(Fx + Gr + �(r, y)B ′P(x − xe)), (20)

y = Cx. (21)

Let x̃ = x − xe. The closed-loop system (19)–(20) can be
expressed as

�̇ = f (�, r + Cx̃), (22)

˙̃x = (A + BF)x̃ + Bw, (23)
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where

w = sat(F x̃ + Hr + �(r, y)B ′P x̃) − F x̃ − Hr. (24)

Define a Lyapunov function Vx̃(x̃) = x̃′P x̃, then we have

�min(P )‖x̃‖2 �Vx̃(x̃)��max(P )‖x̃‖2, (25)

where �min(P ) and �max(P ) are the minimal and maximal
eigenvalues of P, respectively. Then,

V̇x̃ (x̃) = �Vx̃(x̃)

�x̃
((A + BF)x̃ + Bw)

= − x̃′Wx̃ + �Vx̃(x̃)

�x̃
Bw.

It have been shown in [3] that

�Vx̃(x̃)

�x̃
Bw = 2x̃′PBw�0

for all x̃ ∈ X	 and |Hr|�	umax. Thus

V̇x̃ (x̃)� − x̃′Wx̃, x̃ ∈ X	, (26)

i.e., X	 is an invariant set of the system (23). Therefore,
the solution of (23) exists and is bounded for all t �0 and
x̃0 ∈ X	. Noting that x =xe + x̃, x exists and is bounded for
all t �0 and x0 satisfies (18).

To show the existence and boundedness of the solution �
of (22), it is sufficient to show that ‖ỹ‖ := ‖Cx̃‖��e−at .
Noting that (26) gives

V̇x̃ (x̃)� − x̃′Wx̃� − �min(W)‖x̃‖2 (27)

for all x̃ ∈ X	. According to the proof of Theorem 4.10 of
[11], (25) and (27) yield that

‖x̃(t)‖�
(

�max(P )

�min(P )

)1/2

‖x̃(0)‖e−[�min(W)/2�max(P )]t

�
(

�max(P )

�min(P )

)1/2

‖x̃(0)‖e−at ,

since a is selected such that 0 < a��min(W)/(2�max(P )).
Then

‖ỹ(t)‖ = ‖Cx̃(t)‖�‖C‖‖x̃(t)‖

�‖C‖
(

�max(P )

�min(P )

)1/2

‖x̃(0)‖e−at

��e−at

for all x̃(0) ∈ X	. Thus, by Remark 2.2, the solution of (22)
exists and is bounded for all t �0.

Moreover, noting that W > 0, all trajectories of (23) start-
ing from X	 will converge to the origin. Thus,

lim
t→∞ x(t) = xe

Fig. 1. Interpretation of the nonlinear function �(r, y).

for all initial state x0 and the step command input of ampli-
tude r that satisfy (18). Therefore,

lim
t→∞ y(t) = Cxe = −C(A + BF)−1BGr = r .

This completes the proof of Theorem 3.1. �

Remark 3.1. The CNF control law (15) is reduced to the
linear feedback control law (9) when the function �(r, y)=0.
Thus, Theorem 3.1 shows that the additional nonlinear feed-
back control law (14) does not affect the ability of the closed-
loop system to track the command input. Any command in-
put that can be asymptotically tracked by the linear control
law (9) can also be asymptotically tracked by the CNF con-
trol law (15). However, this additional term uN in the CNF
control law can be used to improve the performance of the
overall closed-loop system. This is the key property of the
control technique studied in this manuscript.

Remark 3.2. The main purpose of adding the nonlinear part
to the CNF control law is to speed up the settling time, or
equivalently to contribute a significant value to the control
input when the tracking error, r − y, is small. The nonlinear
part, in general, will be in action when the control signal is
far away from its saturation level and, thus, it will not cause
the control input to hit its limits. Under such a circumstance,
it is straightforward to verify that the closed-loop system
comprising (2) and (15) can be expressed as

˙̃x = (A + BF)x̃ + �(r, y)BB′P x̃. (28)

It is clear that eigenvalues of the closed-loop system (28)
can be changed by the function �(r, y). In fact, define the
auxiliary system Gaux(s) as

Gaux(s) := Caux(sI − Aaux)
−1Baux

:= B ′P(sI − A − BF)−1B. (29)

Then, system (28) can be expressed as Fig. 1. Using the well-
known classical root-locus theory, the poles of the closed-
loop system (28) approach the location of the invariant zeros
of Gaux(s) as |�| becomes larger and larger.

Remark 3.3. It is shown in [3] that the auxiliary system
Gaux is stable and invertible with a relative degree equal to
1, and is of minimum phase with n−1 stable invariant zeros.
It should be noted that there is freedom in pre-selecting the
locations of these invariant zeros by selecting an appropriate
W in (13). In general, we should select the invariant zeros
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of Gaux, which are corresponding to the closed-loop poles
of (28) for large |�|, such that the dominated ones have a
large damping ratio, which in turn will yield a smaller over-
shoot. Interested readers are referred to [3] for the detailed
procedure for the selecting of such a W. Another important
step in designing the CNF control law is the selection of the
non-positive nonlinear function �(r, y). We usually choose
�(r, y) as a function of the tracking error r − y, which in
most practical situations is known and available for feed-
back, such that �(r, y) has the following two properties:
(1) when the output y is far away from the final set point,
|�(r, y)| is small and thus the effect of the nonlinear part
on the overall system is very limited, and (2) when the out-
put approaches the set point, |�(r, y)| becomes larger and
larger, and the nonlinear control law will become effective.
Of course, the choice of �(r, y) is non-unique. The follow-
ing choice is one of the suitable candidates:

�(r, y) = −�n|e−�n|y(t)−r| − e−�n|y(0)−r||, (30)

where �n > 0 and �n > 0 are tuning parameters.

4. Illustrative examples

In this section, we illustrate the CNF design method with
two examples. To compare the performance of the CNF con-
trol law and the linear control law, we first take the exam-
ple from [14] where the semi-global stabilization problem is
solved by a linear state feedback. Based on the linear con-
trol law given by [14], we will design a CNF control law
to improve the performance of the closed-loop system. The
second example is the design of a flight control system for
a simplified model of a fighter aircraft reported in [19].

Example 4.1. Consider a partially linear composite system
(see [14]) characterized by

�̇ = −� + �2y, (31)

ẋ = Ax + B sat(u), (32)

y = Cx (33)

with

A =

⎡
⎢⎢⎢⎣

0 1 0 0 0
−1 0 1 0 0
0 0 0 1 0
0 0 −1 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎦

C = [0 0 0 0 1], (34)

and umax = 0.2. For the stabilization problem of (31)–(33),
we let r=0.5. It is simple to verify that the triple (A, B, C) is
controllable and has a relative degree of 1 and four invariant
zeros at {j, −j, j, −j}. Thus, Assumptions A1 and A2 are
satisfied. Assumption A3 is satisfied for {�: ‖�‖�1.5}. Let
�=0.5 and �=1, then it can be shown that any a > 0 is good

for (�, �). To design the CNF control law, we use the linear
feedback control law

uL = Fx

= [0.403 − 0.0001 − 0.204 − 4.06 − 10.4]x (35)

reported in [14]. Next, we select W = I5 and solve the fol-
lowing Lyapunov equation:

(A + BF)′P + P(A + BF) = −W ,

which yields a solution

P=⎡
⎢⎢⎢⎣

12.7439 −0.5000 −8.2902 −25.8924 −2.4813
−0.5000 12.8221 26.6781 4.4923 0.1934
−8.2902 26.6781 75.5045 26.7835 1.9341
−25.8924 4.4923 26.7835 70.7732 6.7201
−2.4813 0.1934 1.9341 6.7201 0.6942

⎤
⎥⎥⎥⎦

> 0.

The nonlinear function �(r, y) is chosen as

�(r, y) = −25.5(e−0.8|y−r| − e−0.8|y(0)−r|). (36)

Finally, the CNF control law is given by

u = Fx + Gr + �(r, y)B ′P(x − Ger). (37)

The simulation result is shown in Fig. 2 where the tran-
sient performance is compared between the linear control
law and the CNF control law under the same initial condi-
tions �(0) = −0.2 and x(0) = 0. Clearly, the CNF control
has outperformed the linear counterpart significantly. Com-
paring Figs. 2(a) and (b), we can see that all the states of
the closed-loop system under the CNF control convergence
to the steady state quickly, and their transient amplitudes
are much smaller than the ones under the linear control law.
Figs. 2(c) and (d) show the system output of the closed-loop
system and the control inputs applied on the system under
the linear control and the CNF control. The overshoot un-
der the linear control is 19.19%, but under the CNF control,
there is no overshoot at all.

Example 4.2. Consider a simplified model of a fighter air-
craft reported in [19], which is characterized by

v̇ = 1.8254 cos(0.0175(� + 11.3404)) − 1.9821

× 10−3(0.0886 + 1.75 × 10−2�)v2, (38)

�̇ = −0.5923� + 50.7296q − 0.1145sat(u), (39)

q̇ = −0.0178� − 0.3636q − 0.0676sat(u), (40)

where the airspeed v (m/s), angle of attack � (deg), and
pitch angular rate q (rad/s) are state variables, deflection
of elevator u (deg) is control input with a saturation level
umax=10◦. The model is extracted from the nonlinear model
of six degree of freedoms based on a steady flight condition
with mach = 0.3, height = 1000 m, and with a straight and
horizontal flight. The control objective is to set the angle of
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Fig. 2. State responses and control signals of the closed-loop systems. (a) State responses with the linear control law. (b) State responses with the CNF
control law. (c) System output of the closed-loop system. (d) Control signals.

attack to a reference attitude 5◦ quickly without experiencing
large overshoot.

Let �=v and x=(�, q)′, and let y=�. Then, the dynamics
in the aircraft can be rewritten in the form of (1)–(3), i.e.,

�̇ = 1.8254 cos(0.0175(y + 11.3404)) − 1.9821

× 10−3(0.0886 + 1.75 × 10−2y)�2, (41)

ẋ = Ax + B sat(u), (42)

y = Cx, (43)

where

A =
[−0.5923 50.7296
−0.0178 −0.3636

]
, B =

[−0.1145
−0.0676

]
,

C = [1 0].
The triple (A, B, C) is controllable, and has a relative

degree of 1 and an invariant zero at −30.3140. Thus, As-
sumptions A1 and A2 are satisfied. Let r = 5, then the
nonlinear system (41) with y = r has an equilibrium point
� = v0 = 70.8328. Let �̃ = � − v0. We have

˙̃� = −0.0495�̃ − 3.4912 × 10−4�̃
2
. (44)

It is simple to verify that (44) is regionally asymptoti-
cally stable, e.g., Assumption A3 is satisfied locally in
{�̃: ‖�̃‖�60}. Thus, a CNF control law can be constructed,

which is given as follows:

u = Fx + Gr + �(r, y)B ′P(x − Ger) (45)

with F =[0.9253, 35.5945] placing the eigenvalues of A+
BF at −1.7677±j1.7677, G=−1.5966, Ge =[1, 0.0097]′,
�(r, y) = −(e−|y−r| − e−|y0−r|) (46)

and P is the positive-define solution of the following Lya-
punov equation

(A + BF)′P + P(A + BF) = −W ,

where

W =
[

0.4 9.4
9.4 2568.7

]
> 0 (47)

is selected, according to [3,4], such that the invariant zeros
of Gaux(s) = B ′P(sI − A − BF)−1B is −0.5.

The simulation results shown in Fig. 3(a) shows the sys-
tem output (angle of attack) under the CNF control law (45)
and the linear control law which switches off the nonlinear
part of the CNF control law (45) under the initial conditions
�(0)=100 and x(0)=0. Thanks to the nonlinear part of the
CNF control law, the output can track the reference com-
mand input rapidly, and the overshoot is reduced evidently,
4.31% for the linear control law, 0.26% for the CNF control
law. Fig. 3(b) shows the control input applied to the system
under these two control laws.
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Fig. 3. Output responses and control signals of the flight control system.
(a) Output responses. (b) Control signals.

5. Conclusions

The composite nonlinear feedback control technique is
extended to the partially linear composite system with input
saturation. Simulation result shows that the nonlinear con-
trol law greatly improved the performance of the closed-loop
system. It should be noted that, in this paper, we have as-
sumed that the linear part of the composite system is SISO,
and all the states of the linear part are available to feedback.
It should not be too difficult to extend the result of this pa-
per to MIMO systems with state and measurement feedback
using the result reported in [6].
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