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Abstract

In this paper, we present a design procedure of composite nonlinear feedback control for general multivariable systems
with actuator saturation. We consider both the state feedback case and the measurement feedback case without imposing
any restrictive assumption on the given systems. The composite nonlinear feedback control consists of a linear feedback law
and a nonlinear feedback law without any switching element. The linear feedback part is designed to yield a closed-loop
system with faster rise time, while at the same time not exceeding the actuator limits for the desired command input levels.
The nonlinear feedback law is used to reduce overshoot and undershoot caused by the linear part. As such, a highly desired
tracking performance with faster settling time and smaller overshoot can be obtained. The result is illustrated by a numerical
example, which shows that the proposed design method yields a very satisfactory performance.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and problem formulation

Every physical system in our real life has nonlin-
earities and very little can be done to overcome them.
Many practical systems are sufficiently nonlinear so
that important features of their performance may be
completely overlooked if they are analyzed and de-
signed through linear techniques (see e.g.,[8]). When
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the actuator is saturated, the performance of the control
system designed will seriously deteriorate. As such,
the topic of nonlinear control for saturated linear sys-
tems has attracted considerable attentions in the past
(see e.g.[6,7,10,12,13,16]to name a few).
Inspired by a work of Lin et al.[9], which was in-

troduced to improve the tracking performance under
state feedback laws for a class of second-order SISO
systems subject to actuator saturation, Chen et al.[3]
have recently extended the so-called composite non-
linear feedback (CNF) control technique to general
SISO systems with measurement feedback. The work
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of Chen et al.[3] has been successfully applied to
design an HDD servo system. It has also been demon-
strated in[3] that the CNF design is capable of beat-
ing the time-optimal control in asymptotically track-
ing situations. The extension of the result of[9] to
MIMO systems under state feedback was reported in
[15]. However, the extension was made under a pretty
odd assumption, which will be discussed later.
In this paper, we present a design procedure of the

CNF control for improving tracking performance of
general multivariable systems with actuator saturation.
Generally, the CNF control consists of a linear feed-
back law and a nonlinear feedback law without any
switching element. The linear feedback part is de-
signed to yield a closed-loop system with faster rise
time, while at the same time not exceeding the actu-
ator limits for the desired command input levels. The
nonlinear feedback law is used to reduce overshoot
and undershoot caused by the linear part. More specifi-
cally, we consider a multivariable linear system�with
an amplitude-constrained actuator characterized by

ẋ = Ax + B sat(u), x(0)= x0,
y = C1x,
h= C2x +D2 sat(u), (1)

wherex ∈ Rn, u ∈ Rm, y ∈ Rp andh ∈ R� are, re-
spectively, the state, control input, measurement out-
put and controlled output of the given system�. A, B,
C1 andC2 are appropriate dimensional constant ma-
trices, and the saturation function is defined by

sat(u)=



sat(u1)
sat(u2)
...

sat(um)


 ,

sat(ui)= sign(ui)min(|ui |, ūi), (2)

whereūi is the maximum amplitude of theith control
channel. The objective of this paper is to design an ap-
propriate control law for (1) using the CNF approach
such that the resulting controlled output will track
some desired step references as fast and as smooth
as possible. We will address the CNF control sys-
tem design for the given system (1) for three differ-
ent situations, namely, the state feedback case, the full
order measurement feedback case and the reduced or-
der measurement feedback case. For tracking purpose,
the following assumptions on the given system are

required: (i)(A,B) is stabilizable; (ii)(A,C1) is de-
tectable; and (iii)(A,B,C2,D2) is right invertible and
has no invariant zeros ats=0. It is well understood in
the literature that these assumptions are standard and
necessary.
The paper is organized as follows: Section 2 deals

with the theory of the CNF control for the state feed-
back case, whereas Section 3 deals with the detailed
development of the CNF design with the full order
measurement feedback and the reduced order mea-
surement cases. We will address the issue on the se-
lection of some key design parameters in Section 4.
The proposed technique will then be illustrated by a
numerical example in Section 5. Some concluding re-
marks will be drawn in Section 6.

2. The state feedback case

We first proceed to develop a composite nonlinear
feedback control technique for the case when all the
state variables of the plant� of (1) aremeasurable, i.e.,
y = x. The design will be done in three steps, which
is a natural extension of the results of Chen et al.[3].
We have the following step-by-step design procedure.
StepS1: Design a linear feedback law

uL = Fx +Gr, (3)

wherer ∈ Rl contains a set of step references. The
state feedback gain matrixF ∈ Rm×n is chosen such
that the closed-loop system matrixA+BF is asymp-
totically stable and the resulting closed-loop system
transfer matrix, i.e.,D2 + (C2 + D2F)(sI − A −
BF)−1B, has certain desired properties, e.g., having a
small dominating damping ratio in each channel. We
note that such anF can be worked out using some
well-studied methods such as the LQR,H∞ andH2
optimization approaches (see, e.g.,[1,2,11]). Further-
more,G is anm× l constant matrix and is given by

G : =G′
0(G0G

′
0)

−1 (4)

with G0 : =D2 − (C2 + D2F)(A + BF)−1B. Here
we note that bothG0 andG are well defined because
A+BF is stable, and(A,B,C2,D2) is right invertible
and has no invariant zeros ats = 0, which implies
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(A+BF,B,C+D2F,D2) is right invertible and has
no invariant zeros ats= 0 (see e.g., Theorem 3.8.1 of
[4]).
StepS2: Next, we compute

H : =[I − F(A+ BF)−1B]G (5)

and

xe : =Ge r : = − (A+ BF)−1BGr. (6)

Note that the definitions ofH, Ge andxe would be-
come transparent later in our derivation. Given a pos-
itive definite matrixW ∈ Rn×n, solve the following
Lyapunov equation:

(A+ BF)′P + P(A+ BF)= −W, (7)

for P >0. Such aP exists sinceA + BF is asymp-
totically stable. Then, the nonlinear feedback control
law uN is given by

uN = �(r, y)B ′P(x − xe), (8)

where

�(r, y)= diag{�1, . . . ,�m} =



�1 · · · 0
...

. . .
...

0 · · · �m


 , (9)

and�i=�i (r, y), i=1,2, . . . , m, are respectively some
nonpositive functions, uniformly bounded and locally
Lipschitz in y, which are used to change the closed-
loop system damping ratios as the outputs approach
the targets. The choice of these nonlinear functions
andWwill be discussed in Section 4.
StepS3: The linear and nonlinear feedback laws

derived in the previous steps are now combined to
form a CNF controller:

u= uL + uN = Fx +Gr + �(r, y)B ′P(x − xe).
(10)

This completes the design of the CNF controller for
the state feedback case.
For further development, we partitionB ∈ Rn×m,

F ∈ Rm×n andH ∈ Rm×l as follows:
B = [B1 · · · Bm ],

F =


F1
...

Fm


 , H =



H1
...

Hm


 . (11)

The following theorem shows that the closed-loop sys-
tem comprising the given plant in (1) and the CNF
control law of (10) is asymptotically stable. It also de-
termines the magnitudes of the step functions inr that
can be tracked by such a control law without exceed-
ing the control limit.

Theorem 2.1. Consider the given system in(1) with
y = x, which satisfies assumptions(i) and (iii), the
linear control law of(3) and the composite nonlinear
feedback control law of(10). For any � ∈ (0,1), let
c� >0 be the largest positive scalar such that for all
x ∈ X�, where

X� : ={x : x′Px�c�}, (12)

the following property holds:

|Fix|�(1− �)ūi , i = 1, . . . , m. (13)

Then, the linear control law of(3) is capable of driv-
ing the system controlled outputh(t) to track asymp-
totically a set of step references, i.e., r, provided that
the initial statex0 and r satisfy

x̃0 : =(x0 − xe) ∈ X�, |Hi r|��ūi ,
i = 1, . . . , m. (14)

Furthermore, for any nonpositive function�(r, y),uni-
formly bounded and locally Lipschitz iny, the compos-
ite nonlinear feedback law in(10) is capable of driving
the system controlled outputh(t) to track asymptoti-
cally the step command input of amplituder, provided
that the initial statex0 and r satisfy(14).

Proof. Let us first define a new state variablex̃ =
x − xe. It is simple to verify that the linear feedback
control law of (3) can be rewritten as

uL(t)= F x̃(t)+ [I − F(A+ BF)−1B]Gr (15)

=F x̃(t)+Hr, (16)

and hence for allx̃ ∈ X� and, provided that
|Hi r|��ūi , i = 1, . . . , m, the closed-loop system is
linear and is given by

˙̃x = (A+ BF)x̃ + Axe + BHr. (17)
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Noting that

Axe + BHr = {B[I − F(A+ BF)−1B]G
− A(A+ BF)−1BG}r

= {[I − BF(A+ BF)−1]BG
− A(A+ BF)−1BG}r

= {I − BF(A+ BF)−1

− A(A+ BF)−1}BGr = 0, (18)

the closed-loop system in (17) can then be simplified
as

˙̃x = (A+ BF)x̃. (19)

Similarly, the closed-loop system comprising the given
plant in (1) and the CNF control law of (10) can be
expressed as

˙̃x = (A+ BF)x̃ + Bw, (20)

where

w = sat(F x̃ +Hr + uN)− F x̃ −Hr. (21)

Clearly, for the givenx0 satisfying (14), we havẽx0=
(x0 − xe) ∈ X�. We note that (20) is reduced to (19)
if �(r, y)= 0.
Next, we define a Lyapunov functionV = x̃′P x̃ and

evaluate the derivative ofV along the trajectories of
the closed-loop system in (20), i.e.,

V̇ = ˙̃x′
P x̃ + x̃′P ˙̃x

= x̃′(A+ BF)′P x̃ + x̃′P(A+ BF)x̃ + 2x̃′PBw
= − x̃′Wx̃ + 2x̃′PBw. (22)

Note that for all

x̃ ∈ X� = {x̃ : x̃′P x̃�c�}
⇒ |Fi x̃|�(1− �)ūi , i = 1, . . . , m. (23)

In the remainder of this proof, we adopt similar lines of
reasoning as those of Turner et al.[15] by considering
the following different scenarios. For simplicity, we
drop the dependent variables of the nonlinear function
� in the rest of this proof.

Case1: All input channels are unsaturated. It is
obvious that we have

V̇ = −x̃′Wx̃ + 2x̃′PB�B ′P x̃� − x̃′Wx̃. (24)

Case2:All input channels are exceeding their upper
limits. In this case, we have

Fix̃ +Hir + �iB
′
iP x̃� ūi ,

i = 1, . . . , m. (25)

For all x̃ ∈ X�, which implies (23) holds, andr satis-
fying (14), we have

Fix̃ +Hir� ūi , i = 1, . . . , m, (26)

and thus

wi = sat(Fi x̃ +Hir + �iB
′
iP x̃)− Fix̃ −Hir

= ūi − Fix̃ −Hir�0 (27)

and

�iB
′
iP x̃� ūi − (Fi x̃ +Hir)�0

⇒ B ′
iP x̃ = x̃′PBi�0. (28)

Hence,

V̇ = −x̃′Wx̃ + 2
m∑
i=1

x̃′PBiw̄i� − x̃′Wx̃. (29)

Case3:All input channels are exceeding their lower
limits. For this case, we have

Fix̃ +Hir + �iB
′
iP x̃� − ūi , i = 1, . . . , m. (30)

For all x̃ ∈ X�, which implies (23) holds, andr satis-
fying (14), we have

Fix̃ +Hir� − ūi , i = 1, . . . , m, (31)

and thus

wi = sat(Fi x̃ +Hir + �iB
′
iP x̃)− Fix̃ −Hir

= − ui − Fix̃ −Hir�0 (32)

and

�iB
′
iP x̃� − ūi − (Fi x̃ +Hir)�0

⇒ B ′
iP x̃ = x̃′PBi�0. (33)

Hence,

V̇ = −x̃′Wx̃ + 2
m∑
i=1

x̃′PBiwi� − x̃′Wx̃. (34)

Case4: Some control channels are saturated and
some are unsaturated. In view of Cases 1–3, it is simple
to note that for those unsaturated channels, we have

x̃′PBiwi = �i x̃
′PBiB ′

iP x̃�0, (35)
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and those input channels whose signals exceed their
upper limits, we have

wi�0, x̃′PBi�0 ⇒ x̃′PBiwi�0, (36)

and finally for those channels whose signals exceed
their lower limits,

wi�0, x̃′PBi�0 ⇒ x̃′PBiwi�0. (37)

Thus, for this case, again we have

V̇ = −x̃′Wx̃ + 2
m∑
i=1

x̃′PBiwi� − x̃′Wx̃. (38)

In conclusion, we have shown that

V̇ � − x̃W x̃, x̃ ∈ X�, (39)

which implies thatX� is an invariant set of the closed-
loop system in (20). Noting thatP >0, all trajectories
of (20) starting from insideX� will converge to the
origin. This, in turn, indicates that, for all initial state
x0 and the step command inputr that satisfy (14), we
have

lim
t→∞ x(t)= xe, (40)

which implies

lim
t→∞ u(t)= F lim

t→∞ x(t)+Gr
+ lim
t→∞ �B ′P [x(t)− xe]

= Fxe +Gr, (41)

since�(r, y) is uniformly bounded. Hence,

lim
t→∞h(t)= C2 lim

t→∞ x(t)+D2 sat
[
lim
t→∞ u(t)

]
=C2xe +D2(Fxe +Gr)
= (C2 +D2F)xe +D2Gr

= − (C2 +D2F)(A+ BF)−1

× BGr +D2Gr

= [D2 − (C2 +D2F)(A+ BF)−1B]Gr
=G0G

′
0(G0G

′
0)

−1r = r. (42)

This completes the proof of Theorem 2.1.�
Lastly, assuming that the dynamic equation of the

given system is transformed into the following form:

ẋ =
[
A11 A12
A21 A22

]
x +

[
0
B̄

]
sat(u), (43)

whereB̄ is nonsingular, Turner et al.[15] have solved
the problem in a rather strange condition, i.e.,A11
is nonsingular. It was suggested in[15] to add some
small perturbations toA11 if it is singular. Recently, it
has been pointed out by Turner and Postlethwaite[14]
for the case when the system is stabilizable andB is of
full rank, there exists nonsingular state transformation
that would convert the given system to the form of (43)
with A11 being nonsingular. Nonetheless, it is obvious
from our development that such a transformation is
totally unnecessary. We further note that our approach
to the CNF design is much more elegant compared
to that given in[15], and it carries over nicely to the
measurement feedback cases in the following section.

3. The measurement feedback cases

The assumption that all the state variables of the
given system� are measurable is, in general, not prac-
tical. For example, in HDD servo systems (see[3]),
the velocity of the actuator is usually hard to be mea-
sured. As such, in this section, we proceed to develop
CNF design using only measurement information.

3.1. Full order measurement feedback case

We first deal with the full order measurement feed-
back case, in which the dynamical order of the con-
troller is exactly the same as that of the given plant.
The following is a step–by–step procedure for the CNF
design using full order measurement feedback.
StepF1: We first construct a linear full order mea-

surement feedback control law,

ẋv = (A+KC1)xv −Ky + B sat(uL),

uL = F(xv − xe)+Hr, (44)

wherer is the set of step reference signals andxv is the
state of the controller. As usual,K, F are gain matrices
and are chosen such that(A + KC1) and(A + BF)
are asymptotically stable and the resulting closed-loop
system has desired properties. Finally,G,H andxe are
as defined in (4)–(6).
StepF2: Given a positive definite matrixWP ∈

Rn×n, solve the Lyapunov equation

(A+ BF)′P + P(A+ BF)= −WP (45)
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for P >0. As in the state feedback case, the linear
control law of (44) obtained in the above step is to
be combined with a nonlinear control law to form the
following CNF controller

ẋv = (A+KC1)xv −Ky + B sat(u),

u= F(xv − xe)+Hr + �(r, y)B ′P(xv − xe), (46)

where�(r, y) is as given in (9) with all its diagonal
elements being respectively a nonpositive function, lo-
cally Lipschitz iny, which are to be chosen to improve
the performance of the closed-loop system.
It turns out that, for the measurement feedback case,

the choice of�i (r, y), i = 1, . . . , m, the nonpositive
scalar functions, are not totally free. They are subject
to certain constraints. We have the following result.

Theorem 3.1. Consider the given system in(1),which
satisfies the standard assumptions(i)–(iii), the full or-
der linear measurement feedback control law of(44)
and the composite nonlinear measurement feedback
control law of (46). Given a positive define matrix
WQ ∈ Rn×n with

WQ>F
′B ′PW−1

P PBF, (47)

letQ>0 be the solution to the Lyapunov equation,

(A+KC1)
′Q+Q(A+KC1)= −WQ. (48)

Note that such aQ exists asA+KC1 is asymptotically
stable. For any � ∈ (0,1), let c�>0 be the largest
positive scalar such that for all(
x

xv

)
∈ XF� : =

{(
x

xv

)
:
(
x

xv

)′ [
P 0
0 Q

] (
x

xv

)

� c�

}
, (49)

the following property holds:∣∣∣∣[Fi Fi ]
(
x

xv

)∣∣∣∣ �(1− �)ūi , i = 1, . . . , m. (50)

Then, the linear measurement feedback control law in
(46) will drive the system’s controlled outputh(t) to
track asymptotically a set of step references, i.e., r,
from an initial statex0, provided thatx0, xv0 = xv(0)
and r satisfy(
x0 − xe
xv0 − x0

)
∈ XF� and |Hi r|��ūi ,

i = 1, . . . , m. (51)

Furthermore, there exist positive scalars�∗
i >0,

i = 1, . . . m, such that for any nonpositive functions
�i (r, y), i = 1, . . . , m, locally Lipschitz in y and
|�i (r, y)|��∗

i , i = 1, . . . , m, the CNF control law of
(46) will drive the system controlled outputh(t) to
track asymptotically the referencer from an initial
x0, provided thatx0, xv0 and r satisfy(51).

Proof. For simplicity, we again dropr andy in �(r, y)
throughout the proof of this theorem. Letx̃ = x − xe
and x̃v = xv − x. The linear feedback control law of
(44) can be written as

˙̃xv = (A+KC1)x̃v,

uL = [F F ]
(
x̃

x̃v

)
+Hr. (52)

Hence, for all
(
x̃

x̃v

)
∈ XF� ⇒

∣∣∣∣[Fi Fi ]
(
x̃

x̃v

)∣∣∣∣
�(1− �)ūi , i = 1, . . . , m, (53)

and for anyr satisfying

|Hir|��ūi , i = 1, . . . , m, (54)

each channel ofuL, sayuL,i , has the following prop-
erty

uL,i =
∣∣∣∣[Fi Fi ]

(
x̃

x̃v

)
+Hi r

∣∣∣∣
�

∣∣∣∣[Fi Fi ]
(
x̃

x̃v

)∣∣∣∣ + |Hi r|� ūi . (55)

Thus, for allx̃ andx̃v satisfying the condition as given
in (53), the closed-loop system comprising the given
plant and the linear control law of (44) can be rewritten
as( ˙̃x

˙̃xv
)

=
[
A+ BF BF

0 A+KC1

] (
x̃

x̃v

)
. (56)

Similarly, the closed-loop system with the CNF con-
trol law of (46) can be expressed as
( ˙̃x

˙̃xv
)

=
[
A+ BF BF

0 A+KC1

] (
x̃

x̃v

)

+
[
B

0

]
w, (57)
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where

w = sat

[
[F F ]

(
x̃

x̃v

)
+Hr

+ �[B ′P B ′P ]
(
x̃

x̃v

)]

− [F F ]
(
x̃

x̃v

)
−Hr. (58)

Clearly, forx0 andxv0 satisfying (51), we have

(
x̃0
x̃v0

)
∈ XF�, (59)

wherex̃0 = x̃(0) and x̃v0 = x̃v(0). We note that (56)
and (57) are identical when� = 0. Again, the results
of Theorem 3.1 for both the linear and the nonlinear
feedback cases can be proved in one shot.
Next, we define a Lyapunov function:

V =
(
x̃

x̃v

)′ [
P 0
0 Q

] (
x̃

x̃v

)
, (60)

and evaluate the derivative ofV along the trajectories
of the closed-loop system in (57), i.e.,

V̇ =
(
x̃

x̃′
v

) [ −WP PBF

F ′B ′P −WQ

] (
x̃

x̃v

)
+ 2x̃′PBw.

(61)

Note that for all
(
x̃

x̃v

)
∈ XF� ⇒

∣∣∣∣[Fi Fi ]

(
x̃

x̃v

)∣∣∣∣
�(1− �)ūi , i = 1, . . . , m. (62)

Again, as done in the full state feedback case, let us
find the above derivative ofV for four different cases.
Case1: All input channels are unsaturated. For this

case, we have
∣∣∣∣[Fi Fi ]

(
x̃

x̃v

)
+Hir + �i [B

′
iP B ′

iP ]

(
x̃

x̃v

)∣∣∣∣
� ūi , i = 1, . . . , m, (63)

which implies

wi = �i [B
′
iP B ′

iP ]

(
x̃

x̃v

)
(64)

and

V̇ =
(
x̃

x̃v

)′ [ −WP PB(F + �B ′P)
(F + �B ′P)′B ′P −WQ

]

×
(
x̃

x̃v

)
+ 2x̃′PB�B ′P x̃

�
(
x̂

x̃v

)′ [−WP 0
0 −W̃Q

] (
x̂

x̃v

)
, (65)

where

x̂ = x̃ −W−1
P PB(F + �B ′P)x̃v (66)

and

W̃Q =WQ − (F + �B ′P)′B ′PW−1
P

× PB(F + �B ′P). (67)

Noting (47), i.e.,WQ>F
′B ′PW−1

P PBF , and�i is
locally Lipschitz, it is clear that there exist positive
scalars�∗

i,1>0, i=1, . . . , m, such that for any nonpos-
itive scalar function satisfying|�i |��∗

i,1, i=1, . . . , m,

we haveW̃Q>0 and hencėV �0.
Case2:All input channels are exceeding their upper

limits. In such a situation, we have for alli=1, . . . , m,

[Fi Fi ]

(
x̃

x̃v

)
+Hir + �i [B

′
iP B ′

iP ]

×
(
x̃

x̃v

)
� ūi . (68)

For all the trajectories insideXF�,

∣∣∣∣[Fi Fi ]
(
x̃

x̃v

)
+Hir

∣∣∣∣ � ūi , (69)

we have fori = 1, . . . , m,

0�wi��i [B
′
iP B ′

iP ]

(
x̃

x̃v

)
. (70)

Next, let us express

wi = qi�i[B ′
iP B ′

iP ]
(
x̃

x̃v

)
, (71)

for some appropriate positive continuous func-
tion qi(t) bounded by 1 for allt. In this case, the
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derivative ofV becomes

V̇ =
(
x̃

x̃v

)′ [ −WP PB(F + q�B ′P)
(F + q�B ′P)′B ′P −WQ

]

×
(
x̃

x̃v

)
+ 2x̃′PBq�B ′P x̃

�
(
x̂+
x̃v

)′ [−WP 0
0 −W̃Q+

] (
x̂+
x̃v

)
, (72)

where

q = diag{q1, . . . , qm}, (73)

x̂+ = x̃ −W−1
P PB(F + q�B ′P)x̃v (74)

and

W̃Q+ =WQ − (F + q�B ′P)′B ′PW−1
P

× PB(F + q�B ′P). (75)

Again, noting (47), i.e.,WQ>F
′B ′PW−1

P PBF , and
�i is locally Lipschitz, it is clear that there exist pos-
itive scalars�∗

i,2>0, i = 1, . . . , m, such that for any
scalar function satisfying|�i |��∗

i,2, i=1, . . . , m, we

haveW̃Q+ >0 and hencėV �0.
Case3:All input channels are exceeding their lower

limits. In this case, we have fori = 1, . . . , m,

[Fi Fi ]
(
x̃

x̃v

)
+Hir + �i [B

′
iP B ′

iP ]

×
(
x̃

x̃v

)
� − ūi . (76)

For all the trajectories insideXF�,∣∣∣∣[Fi Fi ]
(
x̃

x̃v

)
+Hir

∣∣∣∣ � ūi , (77)

we have fori = 1, . . . , m,

�i [B
′
iP B ′

iP ]

(
x̃

x̃v

)
�wi�0. (78)

Next, let us express

wi = qi�i [B ′
iP B ′

iP ]

(
x̃

x̃v

)
(79)

for some appropriate positive continuous function
qi(t) bounded by 1 for allt. Following the similar
arguments as in the previous case, we can show that
there exist positive scalars�∗

i,3>0, i = 1, . . . , m,

such that for any scalar function satisfying|�i |��∗
i,3,

i = 1, . . . , m, the correspondinġV �0.
Case4: Some control channels are saturated and

some are unsaturated. Following the similar arguments
as those in Cases 1–3, we can express that fori =
1, . . . , m

wi = qi�i [B ′
iP B ′

iP ]

(
x̃

x̃v

)
(80)

for some appropriate positive continuous function
qi(t) bounded by 1 for allt, and show that there exist
positive scalars�∗

i,4>0, i = 1, . . . , m, such that for
any scalar function satisfying|�i |��∗

i,4, i=1, . . . , m,

the correspondinġV �0.
Finally, we let�∗

i =min{�∗
i,1,�

∗
i,2,�

∗
i,3,�

∗
i,4}. Then,

we have for any nonpositive scalar function�i satis-
fying |�i |<�∗

i , i = 1, . . . , m

V̇ �0, ∀
(
x̃

x̃v

)
∈ XF�. (81)

Thus,XF� is an invariant set of the closed-loop sys-
tem in (57), and all trajectories starting fromXF� will
remain inside and asymptotically converge to the ori-
gin. This, in turn, indicates that, for the initial state of
the given systemx0, the initial state of the controller
xv0, and step command inputr that satisfy (51)

lim
t→∞ x̃v(t)= 0 and lim

t→∞ x(t)= xe, (82)

and then it follows from (42) that the controlled output
h(t) converges asymptotically to the target reference
r. This completes the proof of Theorem 3.1.�

3.2. Reduced order measurement feedback case

For the given system in (1), it is clear that there are
p state variables of the system, which are measurable
if C1 is of maximal rank. Thus, in general, it is not
necessary to estimate these measurable state variables
in measurement feedback laws. As such, we will pro-
ceed in this subsection to design a dynamic controller
that has a dynamical order less than that of the given
plant. For simplicity of presentation, we assume that
C1 is already in the form

C1 = [Ip 0]. (83)
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Then, the system in (1) can be rewritten as
(
ẋ1
ẋ2

)
=

[
A11 A12
A21 A22

] (
x1
x2

)

+
[
B1
B2

]
sat(u), x0 =

(
x10
x20

)
,

y = [Ip 0]
(
x1
x2

)
,

h= C2
(
x1
x2

)
+D2 sat(u), (84)

where the original statex is partitioned into two parts,
x1 andx2 with y ≡ x1. Thus, we will only need to es-
timatex2 in the reduced order measurement feedback
design. Next, we letF be chosen such that (i)A+BF
is asymptotically stable, and (ii)(C2+D2F)(sI−A−
BF)−1B +D2 has desired properties, and letKR be
chosen such thatA22 +KRA12 is asymptotically sta-
ble. Here we note that it can be shown that(A22, A12)

is detectable if and only if(A,C1) is detectable. Thus,
there exists a stabilizingKR.Again, suchF andKR can
be designed using an appropriate control technique.
We then partitionF in conformity withx1 andx2:

F = [ F̄1 F̄2 ]. (85)

We further partitionF2 as follows:

F̄2 =


F̄2,1
...

F2,m


 . (86)

Also, let G, H and xe be as given in (4)–(6). The
reduced order CNF controller is given by

ẋv = (A22 +KRA12)xv + (B2 +KRB1) sat(u)

+ [A21+KRA11− (A22 +KRA12)KR]y (87)

and

u= F
[(
y

xv −KRy

)
− xe

]
+Hr + �(r, y)B ′P

×
[(
y

xv −KRy

)
− xe

]
, (88)

where�(r, y) is as given in (9).
Next, given a positive definite matrixWP ∈ Rn×n,

let P >0 be the solution to the Lyapunov equation

(A+ BF)′P + P(A+ BF)= −WP. (89)

Given another positive definite matrixWR ∈
R(n−p)×(n−p) with

WR> F̄
′
2B

′PW−1
P PBF̄ 2, (90)

letQR>0 be the solution to the Lyapunov equation

(A22 +KRA12)
′QR +QR(A22 +KRA12)

= −WR. (91)

Note that suchP andQR exist asA+BF andA22+
KRA12 are asymptotically stable. For any� ∈ (0,1),
let c� be the largest positive scalar such that for all
(
x

xv

)
∈ XR�

: =
{(
x

xv

)
:
(
x

xv

)′ [
P 0
0 QR

] (
x

xv

)
�c�

}
,

(92)

the following property holds:∣∣∣∣[Fi F2,i ]

(
x

xv

)∣∣∣∣
� ūi (1− �), i = 1, . . . , m. (93)

We have the following theorem.

Theorem 3.2. Consider the given system in(1),which
satisfies the usual assumptions(i)–(iii). Then, there
exist positive scalars�∗

i >0, i = 1, . . . , m, such that
for any nonpositive function�i (r, y), i = 1, . . . , m,
locally Lipschitz inyi and |�i (r, y)|��∗

i , the reduced
order CNF law given by(87) and (88) will drive the
system controlled outputh(t) to asymptotically track
the reference r from an initial statex0, provided that
x0, xv0 and r satisfy(
x0 − xe
xv0 − x20 −KRx10

)
∈ XR�,

|Hir|��ūi , i = 1, . . . , m. (94)

Proof. Let x̃=x−xe andx̃v=xv−x2−KRx1. Then,
the closed-loop system comprising the given plant in
(1) and the reduced order CNF control law of (87) and
(88) can be expressed as( ˙̃x

˙̃xv
)

=
[
A+ BF BF̄ 2

0 A22 +KRA12

]

×
(
x̃

x̃v

)
+

[
B

0

]
w, (95)
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where

w = sat

{
[F F̄2 ]

(
x̃

x̃v

)
+Hr + �(r, y)B ′P

×
[
x̃ +

(
0
x̃v

)]}
− [F F̄2 ]

(
x̃

x̃v

)
−Hr.

(96)

The rest of the proof follows along similar lines to the
reasoning given in the full order measurement feed-
back case. �

4. Selecting design parameters�(r, y) andW

The freedom to choose the function�(r, y) is used
to tune the control laws so as to improve the perfor-
mance of the closed-loop system as the controlled out-
puth approaches the set point. Since the main purpose
of adding the nonlinear part to the CNF controllers is
to speed up the settling time, or equivalently to con-
tribute a significant value to the control input when the
tracking error,r − h, is small. In general, we choose
the nonlinear part to be in action when the control sig-
nal is far away from its saturation level, and thus it
will not cause the control input to hit its limits. Under
such a circumstance, it is straightforward to verify that
the closed-loop system comprising the given plant in
(1) and the three different types of control law can be
expressed as

˙̃x = (A+ BF)x̃ + B�(r, y)B ′P x̃. (97)

We note that the additional term�(r, y) does not af-
fect the stability of the estimators. It is now clear that
eigenvalues of the closed-loop system in (97) can be
changed by the function�(r, y). There are different
types of nonlinear gains that have been suggested in
the literature (see e.g.,[3,9,15]). Assuming thath is
available, we follow the work of[3] to propose the
following nonlinear gains:

�i (r, h)= −�i |e−�i‖h(t)−r‖ − e−�i‖h(0)−r‖|,
i = 1, . . . , m (98)

which starts from 0 and gradually increases to a fi-
nal gain of−�i |1 − e−�i‖h(0)−r‖| as h approaches
to the target referencer. �i is used to determine the
speed of change in�i . Thus, one could properly select
scalar gains�i and�i , i=1, . . . , m, to yield a desired
performance.

   
 

 0 OUTPUT
Gaux(s)

 
− �

−

Fig. 1. Interpretation of the nonlinear function�(r, y).

To examine the behavior of the closed-loop system
(97) more explicitly, we define an auxiliary system
Gaux(s) characterized by

Gaux(s) : =Caux(sI − Aaux)
−1Baux

: =B ′P(sI − A− BF)−1B. (99)

Obviously,Gaux(s) is stable. The closed-loop system
(97) can then be cast under the framework of the mul-
tivariable root locus theory as shown inFig. 1 (we
hereafter drop the dependent variables of� for sim-
plicity). We note that

CauxBaux= B ′PB >0 (100)

which impliesGaux(s) is a square, invertible and uni-
form rank system withm infinite zeros of order 1 and
with n−m invariant zeros. Noting that

det(sI − Aaux− Baux · � · Caux)
= det(�) · det

[
sI − Aaux Baux
Caux �−1

]
, (101)

it is clear that for any eigenvalue of the closed-loop
system (97), i.e.,s ∈ �(A+ BF + B�B ′P),

det

[
sI − Aaux Baux
Caux �−1

]
= 0. (102)

Thus, when all diagonal elements of�, i.e., �i , i =
1,2, . . . , m, approach to−∞, the closed-loop eigen-
values of (97) approach to the zeros ofGaux(s) includ-
ing the invariant zeros of(Aaux, Baux, Caux) and those
at infinity. Since it was shown that the closed-loop sys-
tem remains stable for any� whose diagonal elements
are nonpositive, the invariant zeros ofGaux(s) has to
be stable. Hence,Gaux(s) is of minimum phase.
It should be noted that there is freedom in pre-

selecting the locations of these invariant zeros by se-
lecting an appropriateW in (7). In general, we should
select the invariant zeros ofGaux(s), which are cor-
responding to the closed-loop poles of (97) for large
|�|, such that the dominated ones have a large damp-
ing ratio, which in turn will generally yield a smaller
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overshoot. The following procedure for selecting an
appropriateW is adopted from that reported in[3]:

1. Given the pair(Aaux, Baux) and the desired loca-
tions of the invariant zeros ofGaux(s), we fol-
low the result reported in Chapter 9 of[4] on
finite and infinite zero assignment to obtain an
appropriate matrixCaux such that the resulting
(Aaux, Baux, Caux) has the desired relative degree
and invariant zeros.

2. SolveCaux = B ′P for a P = P ′>0. In general,
the solution is nonunique as there aren(n+ 1)/2
elements inP available for selection. However,
if the solution does not exist, we go back to the
previous step to re-select the invariant zeros.

3. CalculateW using (7) and check ifW is positive
definite. IfW is not positive definite, we go back
to the previous step to choose another solution of
P or go to the first step to re-select the invariant
zeros.

Another method for selectingW is based on a trial
and error approach by limiting the choice ofW to
a diagonal matrix and adjusting its diagonal weights
through simulation. The software package for realiz-
ing the CNF design reported in[5] was implemented
based on such an approach. Generally, it will also yield
a satisfactory result. We will illustrate such a design
approach in the numerical example in the following
section.

5. An illustrative example

We consider a two-input and two-output system
characterized by (1) with

A=




0 1 0 −1 −1 0
0 0 1 1 1 0
0 0 0 0 −1 0

−1 −2 −2 −2 −1 −2
1 2 2 2 2 3

−1 −2 −2 −2 −2 −2




B =




1 −1
−1 1
1 −1
0 1
0 −1
0 1



, x0 =




−0.6
0
0
0.5
0
0




(103)

and

C1 = C2 =
[
1 1 0 0 0 0
0 0 0 1 1 0

]
,

D2 =
[
0 0
0 0

]
. (104)

The maximum amplitudes of both control channels are
given byū1 = ū2 = 1. The target references are

r =
(

1
−1

)
. (105)

Our aim is to design appropriate CNF controllers with
full state feedback, full order measurement feedback
and reduced order measurement feedback, which
would control the controlled output of the system to
track the command reference as fast as possible and
as smoothly as possible. Following the procedures
given in the previous sections and with appropriate
selections of design parameters, we have obtained the
following CNF control laws. We note that the state
feedback gainF is carried out by carefully examining
the structural properties of the given system using the
techniques reported in[4] whereas the full order and
reduced order observer gain matrices are computed
using theH2 optimization technique given in[11].

1. Full state CNF controller:

u= Fx +Gr + �(r, y)Fn(x − xe), (106)

where

F =
[−1 −1 −3 −2 2 2
1 2 2 0 −1 −3

]
,

G=
[
2 0
0 2

]
.

The gain matrixFn is given by

Fn = B ′P=[
0.25 3.75 4.75 2.50 0.25 −1.75

−1.75 −3.75 −2.75 0.25 9.00 10.75

]
,

whereP is the solution of the Lyapunov equation
(7) withW = I . Finally,
xe = [2 −1 1 −1 0 0]′

and

�(r, y)= diag{�1(r, h), �2(r, h)}, (107)
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Fig. 2. Simulation result for the full state CNF case.

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

Time (seconds)

C
on

tr
ol

le
d 

O
ut

pu
t

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

Time (seconds)

C
on

tr
ol

 In
pu

t

Fig. 3. Simulation result for the full stateH2 linear feedback case.
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Fig. 4. Simulation result for the full order measurement CNF case.
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Fig. 5. Simulation result for the reduced order measurement CNF case.
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where

�1(r, h)= −2.8|e−‖h(t)−r‖ − e−‖h(0)−r‖| (108)

and

�2(r, h)= −1.7|e−‖h(t)−r‖ − e−‖h(0)−r‖|. (109)

2. Full order measurement CNF controller:

ẋv = (A+KC1)xv −Ky + B sat(u),

u= F(xv − xe)+Hr
+ �(r, y)Fn(xv − xe), (110)

whereF, Fn, xe are as given in the state feedback
case,

K =




65.9921 −65.9537
−57.5639 64.9515
92.5836 −73.3967

−27.4805 38.5006
26.4782 −30.0729

−34.9271 65.0887



, H =

[
1 1
1 1

]

and�(r, y) is slightly adjusted from that of (107)
with �1(r, h) being modified as

�1(r, h)= −2.5|e−‖h(t)−r‖ − e−‖h(0)−r‖|. (111)

3. Reduced order measurement CNF controller:

ẋv = Acmpxv +Kcmpy + Bcmpsat(u) (112)

and

u= F
[(
y

xv −KRy

)
− xe

]
+Hr

+ �(r, y)Fn

[(
y

xv −KRy

)
− xe

]
, (113)

where

Acmp=


−99.0046 6.1086 92.8960 87.7874
−76.6569 30.7676 43.8893 10.1217
−96.9364 −31.7442 128.6806 163.4248
11.1539 37.3526 −49.5065 −88.8591


,

Bcmp=


1 −1
1 0
1 −2
0 1


 ,

Kcmp= 103 ×



−1.4088 1.3335
−1.1589 0.1610
−1.4815 2.4787
0.1749 −1.2475


 ,

KR =



99.0046 −87.7874
74.1569 −12.6217
98.4364 −160.9248

−13.1539 86.8591




andF, H, xe, Fn are the same as those given in the
previous two cases whereas�(r, y) is identical to
that given in the full order measurement feedback
case.

Using SIMULINK in MATLAB , we obtain a set of sim-
ulation results for the system with the CNF controllers
in Figs. 2, 4 and5. The initial conditions for the dy-
namics of both full and reduced order controllers are
set to zero. The results are very satisfactory for all
three cases. Note that the settling times for the full
order and reduced order measurement feedback cases
are slightly longer compared to those of the full state
feedback case. For comparison, we include inFig. 3
the simulation result of a carefully tuned state feed-
back linear control law using anH2 optimization ap-
proach. Obviously, the CNF controller has a better
performance compared to that of a best tuned linear
controller.

6. Conclusions

We have extended the newly developed composite
nonlinear feedback (CNF) tracking control technique
to general multivariable linear systems with input sat-
urations. The problem is solved for both the state feed-
back case and the measurement feedback case. The
CNF control law consists of two parts, a linear compo-
nent and a nonlinear component. The former is usually
chosen to give fast rise time while the latter is added
to smooth out the transient peaks or overshoots when
the controlled output is approaching the target refer-
ence.We note that the hardest part in designing a CNF
controller is perhaps the selection of the parameters,
�i and �i , in the nonlinear function. However, with
the software realization of the design method, such
a problem can be easily overcome. Interested readers
might contact us for a beta version of a toolkit imple-
mented in MATLAB for the CNF design.
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