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Explicit solvability conditions for the general discrete-time H ¥
almost disturbance decoupling problem with internal stability

Ben M. Chen² , Jun He² and Yaling Chen³

We present in this paper several sets of numerically checkable solvability conditions
for the discrete-time H almost disturbance decoupling problem with internal stability
and with either i full information feedback, or ii full state feedback, or iii general
measurement feedback. The problem considered here is general in the sense that we
allow the subsystems of a given system to have invariant zeros on the unit circle.
More importantly, our conditions are to be explicitly expressed in terms of some
well-de® ned geometric subspaces, and, furthermore, these conditions can easily be
veri® ed numerically.

1. Introduction

The disturbance decoupling or almost disturbance
decoupling problem is to ® nd a compensator, either
static or dynamic, to a given system a� ected by external
disturbances, such that in the closed-loop system the
disturbances have no in¯ uence at all or almost no in¯ u-
ence in a certain sense (normally in the sense of H2- or
H -norm) on the controlled output. It is one of the
main stimuli in the development of control theory and
plays a central role in several important problems such
as decentralized control, non-interacting control, model
reference tracking control, H2 optimal control and H
optimal control. The question of when the disturbances
can be completely decoupled by feedback control from
the to-be-controlled outputs led to the development of
geometric control theory. Using the concept of A,B -
invariant subspace, C,A,B -pairs, Wohnam (1979),
Schumacher (1980), and others solved the complete dis-
turbance decoupling problem with state or measurement
feedback and with internal stability. The almost disturb-
ance decoupling problem was introduced and partially
solved by Willems (1981, 1982) and Weiland and
Willems (1989) using the concept of almost invariant
subspaces of linear systems. In the earlier results,
which dealt with the almost disturbance decoupling
problem, the stability region was normally restricted to

a closed set in the complex plane to avoid the situation
when the given plants’ subsystems have purely
imaginary invariant zeros. More recently, Scherer
(1992), has ® nally overcome this di� culty and derived
a set of necessary and su� cient conditions for the
solvability of the H almost disturbance decoupling
problem for general continuous-time systems without
any pre-assumptions. His conditions are elegantly char-
acterized in terms of geometric subspaces of the subsys-
tems of the given system.

In this paper, we consider the problem of H almost
disturbance decoupling for general discrete-time plants
whose subsystems are allowed to have invariant zeros on
the unit circle of the complex plane. Also, the stability
region of a discrete-time system considered in this paper
is de® ned as usual as the open unit disc. To be more
speci® c, we consider the following standard linear time-
invariant discrete-time system S characterized by

S :

x k 1 A x k B u k E w k ,
y k C1 x k D1 w k ,
h k C2 x k D2 u k D22 w k ,

1

where x R n is the state, u R m is the control input,
y R ° is the measurement, w R q is the disturbance
and h R p is the output to be controlled. A, B, E, C1,
D1, C2, D2 and D22 are constant matrices of appropriate
dimension. For the sake of easy reference in future
development, we denote by S P and S Q the subsystems
characterized by matrix quadruples A,B,C2,D2 and
A,E,C1,D1 , respectively. The following dynamic feed-

back control laws are investigated:
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S c :
xc k 1 Acmp xc k Bcmp y k ,

u k Ccmp xc k Dcmp y k , 2

The controller S c of (2) is said to be internally stabilizing
when applied to the system S , if the following matrix is
asymptotically stable:

Acl :
A BDcmpC1 BCcmp

BcmpC1 Acmp
, 3

i.e. all its eigenvalues lie inside the open unit disc of the
complex plane. Denote by Gcl the corresponding closed-
loop transfer matrix from the disturbance w to the con-
trolled output h. Then the H -norm of the transfer
matrix Gcl is given by

Gcl : sup
x 0,2p

s max Gcl e jx ,

where s max denotes the largest singular value. We have
the following formal de® nitions of the solvability of the
H almost disturbance decoupling problems for general
discrete-time systems.

De® nition 1.1: Consider the given discrete-time system
S of (1). Then, the problem of H almost disturbance
decoupling with measurement feedback and with
internal stability (H -ADDPMS) for S is said to be
solvable if for any given g > 0, there exists a controller
of the form (2) such that the resulting closed-loop
system is asymptotically stable and the resulting
closed-loop transfer matrix Gcl < g . h

We would like to note that for the plants whose sub-
systems S P and S Q have no invariant zeros on the unit
circle, Chen et al. (1996) have obtained a solvability
condition for the H -ADDPMS. For a plant S whose
subsystems have unit circle invariant zeros, Saberi et al.
(1996) have recently shown that the following two state-
ments are equivalent.

(1) The H -ADDPMS is solvable.
(2) The H2 almost disturbance decoupling problem for

S with measurement feedback and with internal
stability for S is solvable; and for all ² > 0 and for
any invariant zero s0 on the unit circle of either S P
or S Q, there exists a matrix K such that
s0I A BKC1 is invertible and

C2 D2KC1 s0I A BKC1
1 E BKC1

D2KD1 < ². 4

The main problem with the above conditions given by
Saberi et al. (1996) is that it is very di� cult, if not
impossible, to verify them, especially the second con-
dition of the second statement, in which one would
have to ® nd a gain matrix for each unit circle invariant
zero of S P or S Q and for each speci® c ² > 0 such that

condition (4) is satis® ed. Clearly, the second statement
of Saberi et al. (1996) is simply reformulating the orig-
inal H -ADDPMS to another problem, which is even
more di� cult to solve than the former, in our opinion.
The main object of this paper is to derive necessary and
su� cient conditions for the solvability of the H -
ADDPMS for general discrete-time systems. Our con-
ditions are explicitly expressed in terms of geometric
subspaces and are simple to be checked numerically.

The remainder of this paper is organized as follows.
In section 2, we will recall the special coordinate basis of
linear systems, which is instrumental in the derivation of
the main results of the paper. Section 3 gives sets of
necessary and su� cient conditions for the solvability
of the H -ADDPMS for general discrete-time systems
in terms of well-de® ned geometric subspaces. There are
three cases considered in this section, namely, the full
information feedback, the full state feedback and the
general measurement feedback cases. The proofs of
these results are separately given in section 4 for the
sake of clarity of presentation. Finally, the concluding
remarks are drawn in section 5.

Throughout this paper, the following notations will
also be used:

R : the set of real numbers,
C : the entire complex plane,

C : the open left-half complex plane,
C : the open right-half complex plane,
C 0

: the imaginary axis in the complex plane,
C : the set of complex numbers inside the

unit circle,
C : the set of complex numbers outside the

unit circle,
C o

: the unit circle in the complex plane,
I : an identity matrix,

¸ X : the set of eigenvalues of a square matrix X,
X : the transpose of matrix X,
X : the pseudo inverse of matrix X,
XH

: the complex conjugate transpose of
matrix X,

: the orthogonal complementary subspace
of subspace ,

Ker X : the kernel of X,
Im X : the image of X,

C 1
: x Cx , where is a subspace and C

is a constant matrix,
dim : the dimension of subspace .

The following geometric subspaces will also be heavily
used in the paper to characterize the solvability con-
ditions of the proposed problems and their proof.
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De® nition 1.2: For a linear system S characterized by
a matrix quadruple A ,B ,C ,D , with A R n n,
B R n m , C R p n and D R p m , we de® ne the
weakly unobservable subspaces of S , X, and the
strongly controllable subspaces of S , X, as follows.

(1) X S is the maximal subspace of R n which
is A B F -invariant and contained in
Ker C D F such that the eigenvalues of
A B F X are contained in C X C for some

constant matrix F .
(2) X S is the minimal A K C -invariant sub-

space of R n containing Im B K D such that
the eigenvalues of the map that is induced by
A K C on the factor space R n / X are con-

tained in C X C for some constant matrix K .

We further let X and X, if C X C C 0;
X and X, if C X C ; X and X,

if C X C C o; X and X, if C X C ; and
® nally X and X, if C X C .

Next, for any ¸ C , we de® ne

¸ S

: x C n u C n m
:

x

0

A I̧ B

C D
u ,

5

and

¸ S

: x C n u C m
: 0

A ¸I B

C D

x

u
.

6

¸ S and ¸ S are associated with the so-called
state zero directions of S if ¸ is an invariant zero of
S . h

Finally, note that X S and X S are dual in the
sense that X S w X S , where S w is characterized
by the quadruple A ,C ,B ,D . The subspaces ¸ S
and ¸ S are also dual, i.e. ¸ S ¸ S w , where
¸ is the complex conjugate of .̧

2. Background materials

We recall in this section a special coordinate basis (SCB)
of a linear time-invariant system introduced by Sannuti
and Saberi (1987), and Saberi and Sannuti (1990). Such
a special coordinate basis has a distinct feature of expli-
citly displaying the ® nite and in® nite zero structures as
well as the invertibility structure of a given system. Let
us consider a linear time-invariant (LTI) system S ,

which could be of either continuous-time or discrete-
time, characterized by the quadruple A ,B ,C ,D ,
or in the state space form,

d x A x B u,
y C x D u,

7

where d x Çx t , if S is a continuous-time system, or
d x x k 1 , if S is a discrete-time system.
Similarly, x R n, u R m and y R p are the state, the
input and the output of S . They represent x t , u t and
y t , respectively, if the given system is of continuous-
time, or they represent x k , u k and y k , respectively,
if S is of discrete-time. It is simple to verify that there
exist non-singular transformations U and V such that

UD V
Im0 0

0 0
, 8

where m0 is the rank of matrix D . In fact, U can be
chosen as an orthogonal matrix. Hence hereafter,
without loss of generality, it is assumed that the
matrix D has the form given on the right hand side of
(26). One can now rewrite the system of (25) as,

d x A x B ,0 B ,1
u0

u1
,

y0

y1

C ,0

C ,1
x

Im0 0

0 0

u0

u1
,

9

where the matrices B ,0, B ,1, C ,0 and C ,1 have
appropriate dimensions. The following theorem com-
bines the results of Sannuti and Saberi (1987), and
Saberi and Sannuti (1990).

Theorem 2.1 (SCB): Given the linear system S of 7 ,
there exist non-singular state, output and input transfor-
mations G s, G o and G i such that

u G i

u0

ud

uc

, x G s

xc

xa

xb

xd

,

xa

xa

x0
a

xa

, y G o

y0

yd

yb

,

10

with xc R nc , xa R na , xb R nb , xd R nd , and
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~A G 1
s A B ,0C ,0 G s

Acc BcEca BcE
0
ca BcEca L cbCb L cdCd

0 Aaa 0 0 L abCb L adCd

0 0 A0
aa 0 L 0

abCb L 0
adCd

0 0 0 Aaa L abCb L adCd

0 0 0 0 Abb L bdCd

BdEdc BdEda BdE0
da BdEda BdEdb Add

,

11

~B G 1
s B ,0 B ,1 G i

B0c 0 Bc

B0a 0 0
B0

0a 0 0
B0a 0 0
B0b 0 0
B0d Bd 0

, 12

~C G 1
o

C ,0
C ,1

G s

C0c C0a C0
0a C0a C0b C0d

0 0 0 0 0 Cd

0 0 0 0 Cb 0
,

13

and

~D G 1
o D G i

Im0 0 0
0 0 0
0 0 0

, 14

where Acc,Bc is completely controllable, Abb,Cb is
completely observable, and Add,Bd,Cd is invertible
and free of invariant zeros. Moreover, ¸ Aaa C ,
¸ A0

aa C 0, and ¸ Aaa C , if S is a continuous-
time system; or ¸ Aaa C , ¸ A0

aa C o,
¸ Aaa C , if S is a discrete-time system. h

By now it is clear that the special coordinate basis
decomposes the state-space into several distinct parts.
In fact, the state-space of S is decomposed as

c a
0
a a b d . 15

Here, a is related to the stable invariant zeros, i.e. the
eigenvalues of Aaa are the stable invariant zeros of S .
Similarly, 0

a and a are respectively related to the
invariant zeros of S located in the marginally stable
and unstable regions. On the other hand, b is related
to the right invertibility, i.e. the system is right invertible
if and only if b 0 , while c is related to left invert-
ibility, i.e. the system is left invertible if and only if

c 0 . Finally, d is related to zeros of S at in® nity.
The following property shows the interconnections

between the special coordinate basis and various invar-
iant geometric subspaces.

Property 2.1

(1) a
0
a c

spans S , if S is of continuous-time,
S , if S is of discrete-time.

(2) a c

spans S , if S is of continuous-time,
S , if S is of discrete-time.

(3) a
0
a a c spans S .

(4) a c d

spans S , if S is of continuous-time,
S , if S is of discrete-time.

(5) a
0
a c d

spans S , if S is of continuous-time,
S , if S is of discrete-time.

(6) c d spans S . h

The ¸ S and ¸ S can also be easily obtained
using the special coordinate basis. We have the fol-
lowing property.

Property 2.2

¸ S Im G s

¸I Aaa 0 0 0
0 Yb¸ 0 0
0 0 Inc 0
0 0 0 Ind

, 16

where

Im Yb¸ Ker Cb Abb KbCb ¸I 1 , 17

and where Kb is any appropriate matrix subject to the
constraint that matrix Abb KbCb has no eigenvalues at
.̧ We note that such a Kb always exists as Abb,Cb is

completely observable.

¸ S Im G s

Xa¸ 0
0 0
0 Xc¸

0 0

, 18

where Xa¸ is a matrix whose columns form a basis for
the subspace,

z a C na ¸I Aaa z a 0 , 19

and

Xc¸ : Acc BcFc ¸I
1
Bc, 20

with Fc being any appropriately dimensional matrix sub-
ject to the constraint that Acc BcFc has no eigenvalues
at .̧ Again, we note that the existence of such an Fc is
guaranteed by the controllability of Acc,Bc . h

Clearly, if ¸ ¸ Aaa ¸ A0
aa ¸ Aaa , then
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¸ S X S , and ¸ S X S . 21

Lastly, we would conclude this section by noting that
software packages that realize the special coordinate
basis of Theorem 2.1 can be found in LAS by Chen
(1988) and in MATLAB by Lin (1989). The rigorous
proofs of the above mentioned properties of the special
coordinate basis can be found in Chen (1998).

3. Solvability conditions for the H ¥ -ADDPMS

We are now ready to present our main results of this
paper. In this section we give the solvability conditions
for the general H almost disturbance decoupling prob-
lems with internal stability for the following three cases:
the full information feedback, the full state feedback
and the measurement feedback. These conditions are
characterized in terms of some well-de® ned geometric
subspaces. We also develop a numerical algorithm that
will check these conditions without actually computing
any geometric subspaces. The proofs of the main results
of this section are given in the next section just for
clarity of presentation.

Let us ® rst examine the full information case. We
have the following result.

Theorem 3.1: Consider the given discrete-time linear
time-invariant system S of 1 with the measurement
output being

y
x
w , or C1

I
0 , D1

0
I , 22

i.e., all state variables and disturbances full information
are measurable and available for feedback. The H
almost disturbance decoupling problem with full informa-
tion feedback and with internal stability for the given
system is solvable if and only if the following conditions
are satis® ed:

(a) A,B is stabilizable.

(b) Im D22 Im D2 , i.e., D22 D2S 0, where
S D2D2 D2D22.

(c) Im E BS S P BKer D2

¸ 1 ¸ S P . h

The result for the general measurement feedback case
is given in the next theorem.

Theorem 3.2: Consider the given discrete-time linear
time-invariant system S of 1 . The H almost disturb-
ance decoupling problem with measurement feedback and
with internal stability H -ADDPMS for 1 is solvable
if and only if the following conditions are satis® ed:

(a) A,B is stabilizable.
(b) A,C1 is detectable.

(c) D22 D2SD1 0, where S D2D2 D2D22D1
D1D1 .

(d) Im E BSD1 S P BKer D2

¸ 1 ¸ S P .
(e) Ker C2 D2SC1 S Q C 1

1 Im D1

¸ 1 ¸ S Q .
( f ) S Q S P . h

The following remarks are in order.

Remark 3.1: Note that if S P is of minimum phase and
right invertible with no in® nite zeros, and S Q is of mini-
mum phase and left invertible with no in® nite zeros,
then Conditions d to f of Theorem 3.2 are automa-
tically satis® ed. Hence, the solvability conditions of the
H -ADDPMS for such a case reduce to:

(a) A,B is stabilizable.
(b) A,C1 is detectable.
(c) D22 D2SD1 0, where S D2D2 D2D22D1

D1D1 .

Remark 3.2: For a special case when all the states of
the system (1) are measurable and available for feed-
back, i.e. y x, it can be easily derived from Theorem
3.2 that the H almost disturbance decoupling problem
with full state feedback and with internal stability for
the given system is solvable if and only if the following
conditions are satis® ed:

(a) A,B is stabilizable.
(b) D22 0.
(c) Im E S P ¸ 1 ¸ S P . h

As mentioned earlier, the conditions in Theorem 3.2
can actually be veri® ed without computing the geo-
metric subspaces of S P and S Q. This can be done by
fully understanding and utilizing the properties of the
special coordinate basis of linear systems as given in
Theorem 2.1. We have the following algorithm that
will verify the solvability conditions given in
Theorem 3.2.

Step 0. Let S D2D2 D2D22D1 D1D1 . If D22
D2SD1 0, the H -ADDPMS for (1) is not
solvable and the algorithm stops here.
Otherwise, go to the next step.

Step 1. Compute the special coordinate basis of S P, i.e.
the quadruple A,B,C2,D2 . For easy refer-
ence, we append a subscript P̀’ to all sub-
matrices and transformations in the SCB as-
sociated with S P, e.g. G sP is the state transfor-
mation of the SCB of S P, BdP is replacing the
sub-matrix Bd , and A0

aaP is associated with
invariant zero dynamics of S P on the unit circle.
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Step 2. Next, we denote the set of eigenvalues of A0
aaP

with a non-negative imaginary part as
x P1,x P2, . . . ,x PkP and for i 1,2, . . . ,kP,

choose complex matrices V iP, whose columns
form a basis for the eigenspace
x C n0

aP xH x PiI A0
aaP 0 , where n0

aP is
the dimension of 0

aP. Then, let

VP : V1P V2P . . . VkPP . 23

We also compute nxP : dim aP
dim bP dim dP , and

G 1
sP E BSD1 :

EcP

EaP

E0
aP

EaP

EbP

EdP

. 24

Step 3. Let S w
Q be the dual system of S Q and be char-

acterized by a quadruple A ,C1,E ,D1 . We
compute the special coordinate basis of S w

Q.
Again, for ease of reference, we append a sub-
script `Q’ to all sub-matrices and transforma-
tions in the SCB associated with S w

Q, e.g. G sQ
is the state transformation of the SCB of S w

Q,
BdQ is replacing the sub-matrix Bd , and A0

aaQ is
associated with invariant zero dynamics of S w

Q
on the unit circle.

Step 4. Similarly, we denote the set of eigenvalues of
A0

aaQ with a non-negative imaginary part as
x Q1,x Q2, . . . ,x QkQ and for i 1,2, . . . ,kQ,

choose complex matrices V iQ, whose columns
form a basis for the eigenspace
x C n0

aQ xH x QiI A0
aaQ 0 , where n0

aQ is
the dimension of 0

aQ. Then, let

VQ : V1Q V2Q VkQQ . 25

We next compute nxQ : dim aQ
dim bQ dim dQ , and

G 1
sQ C2 D2SC1 :

EcQ

EaQ

E0
aQ

EaQ

EbQ

EdQ

. 26

Step 5. Finally, compute

G 1
sP G 1

sQ
w w
w G , 27

where G is a nxP nxQ constant matrix.

The following proposition summarizes the result of
the above algorithm. It also gives a set of necessary
and su� cient conditions, in terms of sub-matrices as-
sociated with the special coordinate bases of S P and
S Q, for the solvability of the H -ADDPMS for the
general discrete-time system S of (1).

Proposition 3.1: Consider the given discrete-time linear
time-invariant system S of 1 . The H almost disturb-
ance decoupling problem with measurement feedback and
with internal stability H -ADDPMS for 1 is solvable
if and only if the following conditions are satis® ed:

(a) A,B is stabilizable,
(b) A,C1 is detectable,

(c) D22 D2 D2D2 D2D22D1 D1D1 D1 0.
(d) V H

P E0
aP 0, EaP 0, EbP 0, Im EdP Im BdP ,

(e) V H
QE0

aQ 0, EaQ 0, EbQ 0, Im EdQ Im BdQ ,
( f ) G 0.

Note that all the matrices in d ± f are well-de® ned in
Steps 0 to 5 of the algorithm. h

The above result can be directly veri® ed using the
properties of the special coordinate basis and the
result of Theorem 3.2 (see also Chapter 7 of Chen
(1998) for a similar result for continuous-time systems).

4. Proofs of main results

We will prove the main results of the paper in this sec-
tion. Our idea is to ® rst transform the H -ADDPMS
for the discrete-time system (1) into an equivalent H -
ADDPMS for an auxiliary continuous-time system
using the well-known inverse bilinear transformation
and then identify the mappings of geometric conditions
under such a transformation.

4.1. Proof of Theorem 3.1
Let us ® rst show the result of Theorem 3.1, i.e. the
solvability conditions of the H -ADDPMS for the
following full information system,

S FI :

x k 1 A x k B u k E w k ,
y k

I
0

x k
0
I

w k ,
h k C2 x k D2 u k D22 w k .

28

We de® ne the following auxiliary continuous-time
system,
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~S FI :

Ç~x ~
A ~x

~
B ~u

~
E ~w,

~y
I
0

~x
0
I

~w,
~z

~
C2

~x ~D2
~u ~D22

~w,
29

where ~
A, ~B, ~E, ~

C2,
~D2 and ~D22 are de® ned as

~
A A BF0 I 1 A BF0 I ,
~
B 2 A BF0 I 1B,
~
E 2 A BF0 I 1E,
~
C2 2 C2 D2F0 A BF0 I 1,
~
D2 D2 C2 D2F0 A BF0 I 1B,
~D22 D22 C2 D2F0 A BF0 I 1E,

30

and where F0 is chosen such that A BF0 has no eigen-
values at 1. This can always be done provided that
A,B is stabilizable. For future use, we denote ~S P as

the subsystem characterized by ~
A, ~

B, ~
C2, ~

D2 . It was
shown by Glover (1984) that the in® mum of H
optimization for the discrete-time system (46) is
equivalent to that of H optimization for the auxiliary
continuous-time system (47). Thus, as a direct conse-
quence, the H -ADDPMS for the discrete-time system
(46) is solvable if and only if the H -ADDPMS for the
continuous-time system (47) is solvable. Following the
results of Scherer (1992), one can show that the H -
ADDPMS for (47) is solvable if and only if the
following conditions are satis® ed.

(a) ~
A, ~B is stabilizable.

(b) There exists a matrix ~
S such that ~

D22
~
D2

~
S 0.

(c) Im ~
E

~
B

~
S

~S P ¸ C 0 ¸
~S P .

It is simple to show that A,B is stabilizable if and only
if (

~
A,~B) is stabilizable. Hence, it is su� cient to show

Theorem 3.1 by showing that the following two state-
ments are equivalent.

(1) The ® rst statement:
(a) there exists an S such that D22 D2S 0;
(b) Im E BS S P B Ker D2

¸ 1 ¸ S P .
(2) The second statement:

(a) there exists an ~
S such that ~

D22
~
D2

~
S 0,

(b) Im ~
E

~
B

~
S

~S P ¸ C 0 ¸
~S P .

Statement 1 Statement 2: It is without loss of any
generality to assume that matrix D22 in (46) is equal to 0.
Also, by the de® nitions of the geometric subspaces X,

X, ¸ and ¸, it is simple to verify that they are all
invariant under any state feedback, output injection
laws, and non-singular input as well as non-singular
output transformations. Hereafter, we will assume that
the subsystem S P, i.e. the quadruple A,B,C2,D2 , is in

the form of the special coordinate basis of Theorem 2.1.
For easy reference in future development, we further
assume that the state space of S P has been decomposed
as follows:

0
a a c a b d

01
a , 31

where 01
a corresponds to the zero dynamics of S P

associated with the invariant zero at z 1 and 0
a

corresponds to the zero dynamics of S P associated
with the rest invariant zeros on the unit circle. More
speci® cally, we let

A

A0
aa 0 0 0 L 0

abCb L 0
adCd 0

0 Aaa 0 0 L abCb L adCd 0

BcE
0
ca BcEca Acc BcEca L cbCb L cdCd BcE

01
ca

0 0 0 Aaa L abCb L adCd 0

0 0 0 0 Abb L bdCd 0

BdE0
da BdEda BdEdc BdEda BdEdb Add BdE01

da

0 0 0 0 L 01
abCb L 01

adCd A01
aa

B0C2,0, 32

B B0 B1

B0
0a 0 0

B0a 0 0
B0c 0 Bc

B0a 0 0
B0b 0 0
B0d Bd 0
B01

0a 0 0

, E

E0
a

Ea

Ec

Ea

Eb

Ed

E01
a

,

33

and

C2

C2,0

C2,1

C0
0a C0a C0c C0a C0b C0d C01

0a

0 0 0 0 0 Cd 0

0 0 0 0 Cb 0 0

,

D2

I 0 0

0 0 0

0 0 0

, 34

where A01
aa has all its eigenvalues at 1 and A0

aa has all
its eigenvalues on the unit circle, but excluding the
point 1. Then, the condition in Statement 1(b) is
equivalent to

Ea 0, Eb 0, E01
a I A01

aa X01
a , Ed BdXd,

35
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for some appropriately dimensional X01
a and Xd , and

E0
a Y 0

aa X0
a , 36

where Y 0
aa is a matrix whose columns span

a ¸ A0
aa

Im a I A0
aa and X0

a is an appropriately
dimensional matrix.

Let us now choose F0 as,

F0

C0
0a C0a C0c C0a C0b C0d C01

0a

E0
da Eda Edc Eda Edb 0 E01

da
^

E01
da

E0
ca Eca 0 Eca 0 0 0

.

37

Then, we have

^
A A BF0

A0
aa 0 0 0 L 0

abCb L 0
adCd 0

0 Aaa 0 0 L abCb L adCd 0

0 0 Acc 0 L cbCb L cdCd 0

0 0 0 Aaa L abCb L adCd 0

0 0 0 0 Abb L bdCd 0

0 0 0 0 0 Add Bd
^

E01
da

0 0 0 0 L 01
abCb L 01

adCd A01
aa

,

38

and

^
C2 C2 D2F0

0 0 0 0 0 0 0

0 0 0 0 0 Cd 0

0 0 0 0 Cb 0 0

. 39

For simplicity, we further assume that Acc, Abb and Add
have no eigenvalues at 1. Otherwise, some additional
pre-state feedback will relocate them to somewhere else.
Also, ^

E01
da is chosen such that ^

A has no eigenvalues at
1. Next, it can be computed that

A BF0 I 1

I A0
aa

1 0 0 0 X15 X16 X17

0 I Aaa
1 0 0 X25 X26 X27

0 0 I Acc
1 0 X35 X36 X37

0 0 0 I Aaa
1 X45 X46 X47

0 0 0 0 X55 X56 X57

0 0 0 0 X65 X66 X67

0 0 0 0 X75 X76 X77

,

40

where

X55 I Abb
1 I L bdCd I Add

1

Bd
^

E01
da D

1L 01
abCb I Abb

1 , 41

X56 I Abb
1L bd I L bdCd I Add

1Bd
^

E01
da D

1

L 01
ad L 01

abCb I Abb
1L bd

Cd I Add
1, 42

X57 I Abb
1L bdCd I Add

1Bd
^

E01
da D

1, 43

X65 I Add
1Bd

^
E01

da D
1L 01

abCb I Abb
1, 44

X66 I Add
1 Bd

^
E01

da D
1 L 01

ad L 01
abCb I Abb

1L bd

Cd I Add
1 I , 45

X67 I Add
1Bd

^
E01

da D
1, 46

X75 D 1L 01
abCb I Abb

1, 47

X76 D 1 L 01
abCb I Abb

1L bd L 01
ad Cd I Add

1, 48

X77 D 1, 49

X15 I A0
aa

1 L 0
abCbX55 L 0

adCdX65 , 50

X16 I A0
aa

1 L 0
abCbX56 L 0

adCdX66 , 51

X17 I A0
aa

1 L 0
abCbX57 L 0

adCdX67 , 52

X25 I Aaa
1 L abCbX55 L adCdX65 , 53

X26 I Aaa
1 L abCbX56 L adCdX66 , 54

X27 I Aaa
1 L abCbX57 L adCdX67 , 55

X35 I Acc
1 L cbCbX55 L cdCdX65 , 56

X36 I Acc
1 L cbCbX56 L cdCdX66 , 57

X37 I Acc
1 L cbCbX57 L cdCdX67 , 58

X45 I Aaa
1 L abCbX55 L adCdX65 , 59

X46 I Aaa
1 L abCbX56 L adCdX66 , 60

X47 I Aaa
1 L abCbX57 L adCdX67 , 61

and where

D I A01
aa L 01

abCb I Abb
1L bd L 01

ad

Cd I Add
1Bd

^
E01

da . 62
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Furthermore, we have

~
B 2

I A0
aa

1B0
0a X15B0b X16B0d X17B

01
0a X16Bd 0

I Aaa
1B0a X25B0b X26B0d X27B

01
0a X26Bd 0

I Acc
1B0c X35B0b X36B0d X37B

01
0a X36Bd I Acc

1Bc

I Aaa
1B0a X45B0b X46B0d X47B

01
0a X46Bd 0

X55B0b X56B0d X57B
01
0a X56Bd 0

X65B0b X66B0d X67B
01
0a X66Bd 0

X75B0b X76B0d X77B
01
0a X76Bd 0

, 63

~
E 2

I A0
aa

1Y 0
aa X0

a X16BdXd X17 I A01
aa X01

a

I Aaa
1Ea X26BdXd X27 I A01

aa X01
a

I Acc
1Ec X36BdXd X37 I A01

aa X01
a

X46BdXd X47 I A01
aa X01

a

X56BdXd X57 I A01
aa X01

a

X66BdXd X67 I A01
aa X01

a

X76BdXd X77 I A01
aa X01

a

, 64

~
D2

I 0 0

Cd X65B0b X66B0d X67B01
0a CdX66Bd 0

Cb X55B0b X56B0d X57B
01
0a CbX56Bd 0

, 65

and

~
D22

0

Cd X66BdXd X67 I A01
aa X01

a

Cb X56BdXd X57 I A01
aa X01

a

. 66

Next, let us de® ne

~
S :

0

Xd
^

E01
daX01

a

0

. 67

Noting that
I A01

aa D L 01
abCb I Abb

1L bd L 01
ad Cd I Add

1Bd
^

E01
da, 68

it is straightforward to verify that

~
D22

~
D2

~
S

0

Cd X67 I A01
aa X01

a X66Bd
^

E01
daX01

a

Cb X57 I A01
aa X01

a X56Bd
^E01
daX01

a

0, 69

which shows that Statement 2(a) holds, and

~
E

~
B

~
S 2

I A0
aa

1Y 0
aaX0

a X16Bd
^

E01
daX01

a X17 I A01
aa X01

a

I Aaa
1Ea X26Bd

^
E01

daX01
a X27 I A01

aa X01
a

I Acc
1Ec X36Bd

^E01
daX01

a X37 I A01
aa X01

a

X46Bd
^

E01
daX01

a X47 I A01
aa X01

a

X56Bd
^

E01
daX01

a X57 I A01
aa X01

a

X66Bd
^

E01
daX01

a X67 I A01
aa X01

a

X76Bd
^

E01
daX01

a X77 I A01
aa X01

a

2

I A0
aa

1Y 0
aa X0

a

w

w

0

0

0

w

, 70
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where w s are matrices of not much interest. Let the state
space of ~S P, i.e. the matrix quadruple ~

A, ~B, ~
C2

~D2 , be
decomposed as follows:

~ ~0
a

~
a

~
c

~
a

~
b

~ 1
a

~
d, 71

where ~0
a , ~

a , ~
c,

~
b and ~

d are the usual subspaces
de® ned in the special coordinate basis of ~S P, while ~ 1

a
corresponds to the zero dynamics of ~S P associated with
the invariant zero at s 1, and ~

a corresponds to the
zero dynamics of ~S P associated with the rest of the
unstable invariant zeros (excluding the point s 1). It
was shown by Chen and Weller (1998) that ~ of ~S P and

of S P are related by

~0
a

0
a , ~

a a , ~
c c, ~

a a , 72

and

~
b b, ~ 1

a d, ~
d

01
a . 73

Moreover, the zero dynamics of ~S P, corresponding to
the imaginary axis invariant zeros, are fully character-
ized by the eigenstructure of the following matrix,

~A
0
aa : A0

aa I 1 A0
aa I . 74

Noting (54), one is ready to verify that

Im I A0
aa

1Y 0
aa

b ¸
~
A0

aa

Im b I ~A
0
aa . 75

It is now straightforward to see from (70) and the
properties of the special coordinate basis that

Im ~
E

~
B

~
S

~S P
¸ C 0

¸
~S P , 76

i.e. Statement 2(b) holds.

Statement 2 Statement 1: This follows by reversing
the above arguments using the well-known bilinear
transformation and the results of Chen and Weller
(1998). Thus, it is omitted. This completes the proof of
Theorem 3.1. h

4.2. Proof of Theorem 3.2
For simplicity of presentation, we assume throughout
this proof that matrix A has no eigenvalues at 1.
Then, we de® ne the following auxiliary continuous-
time system,

~S :

Ç~x ~
A ~x

~
B ~u

~
E ~w,

~y
~
C1

~x
~
D1

~w,
~z

~
C2

~x ~D2
~u ~D22

~w,
77

where ~
A, ~

B, ~
E, ~

C1, ~
D1, ~

C2, ~
D2 and ~

D22 are de® ned as

~
A A I 1 A I ,
~B 2 A I 1B,
~
E 2 A I 1E,
~
C1 2C1 A I 1,
~
D1 D1 C1 A I 1E,
~
C2 2C2 A I 1,
~
D2 D2 C2 A I 1B,
~
D22 D22 C2 A I 1E.

78

For easy reference later on, we let ~S P denote the sub-
system characterized by ~

A, ~
E,C1, ~

D1 and ~S Q denote
the subsystem characterized by ~

A, ~E, ~
C1, ~D1 , respect-

ively. Following the result of Glover (1984), one can
show that the following two statements are equivalent.

(1) The H -ADDPMS for the originally given discrete-
time system S of (1) is solvable.

(2) The H -ADDPMS for the auxiliary continuous-
time system ~S of (97) is solvable.

It was shown in Scherer (1992) that the second statement
above is also equivalent to the following conditions,

(a) ~
A, ~

B is stabilizable.
(b) ~

A1, ~
C1 is detectable.

(c) ~D22
~D2

~
S ~D1 0,

where ~
S

~
D2

~
D2

~
D2

~
D22

~
D1

~
D1 .

(d) Im ~
E

~
B

~
S

~
D1

~S P ¸ C 0 ¸
~S P .

(e) Ker ~
C2

~
D2

~
S

~
C1

~S Q ¸ C 0 ¸
~S Q .

( f ) ~S Q
~S P .

First, it is simple to check that the triple ~
A, ~

B, ~
C1 is

stabilizable and detectable if and only if the triple
A,B,C is stabilizable and detectable. Next, following

the proof in Subsection 4.1, we have the following
equivalent statements:

(1) Statement I:
(a) D22 D2SD1 0,

where S D2D2 D2D22 D1 D1D1 .

(b) Im E BS S P B Ker D2

¸ 1 ¸ S P .

(2) Statement II:

(a) ~D22
~D2

~
S ~D1 0,

where ~
S

~
D2

~
D2

~
D2

~
D22

~
D1

~
D1

~
D1 .

(b) Im ~
E

~
B

~
S

~
D1

~S P ¸ C 0 ¸
~S P .

Dualizing the arguments of Subsection 4.1, we can show
that the following two statements are also equivalent:

(1) Statement A:
(a) D22 D2SD1 0,

where S D2D2 D2D22 D1 D1D1 .
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(b) Ker C2 D2SC1 S Q C 1
1

Im D1 ¸ 1 ¸ S Q .

(2) Statement B:

(a) ~
D22

~
D2

~
S

~
D1 0,

where ~
S ~D2

~D2
~D2

~D22
~D1

~D1
~D1 .

(b) Ker ~
C2

~
D2

~
S

~
C1

~S Q

¸ C 0 ¸
~S Q .

Finally, it was shown in Chapter 4 of Chen (1998) that

S P
~S P , S P

~S P , 79

and

S Q
~S Q , S Q

~S Q . 80

Hence, the following two statements are equivalent:

(1) S Q S P .
(2) ~S Q

~S P .

Thus, the result of Theorem 3.2 follows. h

5. Conclusions

We have presented sets of necessary and su� cient con-
ditions for the solvability of the H almost disturbance
decoupling problem with internal stability for general
discrete-time systems whose two subsystemsÐ i.e. the
subsystem from the control input to the output to be
controlled and the subsystem from the disturbance input
to the measurement outputÐ are allowed to have invar-
iant zeros on the unit circle of the complex plane. These
conditions are expressed in terms of some well-de® ned
geometric subspaces and they are numerically check-
able. Furthermore, we have also developed an algorithm
that veri® es these conditions without actually calcu-
lating any geometric subspaces at all.
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