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SUMMARY 
This paper is concerned with the discrete-time H,  control problem with measurement feedback. We 
extend previous results by having weaker assumptions on the system parameters. We also show explicitly 
the structure of H, controllers. Finally, we show that it is in certain cases possible, without loss of 
performance, to reduce the dynamical order of the controllers. 
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1 .  INTRODUCTION 

The Hm control problem has been studied extensively. First in continuous-time (see, for 
example, References 3, 4, 10 and 13) and later in discrete time (see, for example, References 
1, 8, 6 and 14). For a more extensive reference list we refer to two recent books [2,15]. 

The objective of this paper is to present a solution of the general discrete-time H, control 
problem. One way to approach this problem is to transform the discrete-time H m  optimal 
control problem into an equivalent continuous-time Hm control problem via bilinear 
transformation. Then the continuous-time controllers that are solutions to the auxiliary 
problem can be obtained and transformed back to their discrete-time equivalent using inverse 
bilinear transformation. However, in our opinion it is more natural to solve this problem 
directly in discrete-time setting and in terms of the original system’s performance. This 
approach leaves the possibility of directly observing the effect of certain physical parameters 
which might otherwise be blurred by the transformation to continuous-time. In view of this, 
and in accordance with earlier literature [ l ,  6,8,12], we take this direct approach in solving 
the discrete-time H, optimal control problem. 
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Compared to the existing literature, we solve this problem under weaker assumptions. All 
the existing literature on the discrete-time Hm control problem make the following assumptions 
on the system: 

The subsystem from the control input to the control output should be left invertible and 

0 The subsystem from the disturbance to the measurement output should be right invertible 
should not have invariant zeros on the unit circle. 

and should not have invariant zeros on the unit circle. 

These conditions are the discrete-time analogue of what are called regular problems in 
continuous-time H, control problems. In this paper, we remove the abovementioned left and 
right invertibility condition. 

Moreover, we give a representation of one controller in a suitable form such that it becomes 
very transparent that this controller is a state and disturbance estimator in conjunction with 
a full-information feedback (i.e. a feedback of both state and disturbance). Such an 
interpretation was not available before and because of the involved formulas it was not very 
clear what kind of structure discrete-time H m  controllers should have. 

Finally, a novel aspect of this paper is that we show that if certain states or disturbances 
are observed directly, then this yields the possibility of deriving a controller of lower 
MacMillan degree. This result again corresponds to  those obtained in continuous-time case (see 
Reference 16). 

The notation in this paper will be fairly standard. By IN and IR we denote the natural 
numbers and the real numbers, respectively. Moreover by u we denote the shift 

(ux)(k)  := x(k + 1) vk  E N 

rank.x denotes the rank as a matrix with entries in the field X. By IR(z) we denote the field 
of real rational functions. Moreover, by X' we denote the Moore-Penrose inverse of the 
matrix X. Finally, by p ( X )  we denote the spectral radius of the matrix X. 

2. PROBLEM FORMULATION AND MAIN RESULTS 

We consider the following time-invariant system: 

u x = A x +  B u + E w  
c: [ y = C 1 x  + Dnw (1) 

z = CZX + D21u + D22w 

where for all k~ IN, x(k )  E IR" is the state, u(k)  E I R m  is the control input, y ( k )  E IR' is the 
measurement, w(k)E IR4 is the unknown disturbance and z(k) E Rp is the output to be 
controlled. A, B, E, C1, C2, 0 1 2 ,  DZI and 0 2 2  are matrices of appropriate dimension. 

If we apply a dynamic feedback law u = Fy to C then the closed-loop system with zero initial 
conditions defines a convolution operator &F from w to y .  We seek a feedback law u = Fy 
which is internally stabilizing and which minimizes the gz-induced operator norm of &,F over 
all internally stabilizing feedback laws. We will investigate dynamic feedback laws of the form: 

up = Kp + Ly 
u = M p + N y  CF: [ 

We will say that the dynamic compensator CF, given by (2), is internally stabilizing when 
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applied to the system C, described by ( l ) ,  if the following matrix is asymptotically stable: 

i.e. all its eigenvalues lie in the open unit disk. Denote by GF the closed-loop transfer matrix. 
The 92-induced operator norm of the convolution operator &,F is equal to the Hm norm of 
the transfer matrix GF and is given by: 

where the 92-norm is given by 

and where 11 . 11 denotes the largest singular value. We shall refer to the norm 11 GF llm as the 
Hm norm of the closed-loop system. 

In this paper we will derive necessary and sufficient conditions for the existence of a dynamic 
compensator CF which is internally stabilizing and which is such that the closed-loop transfer 
matrix GF satisfies )I GF [Im < 1. By scaling the plant we can thus, in principle, find the infimum 
of the H m  norm of the closed-loop system over all stabilizing controllers. This will involve a 
search procedure. Furthermore, if a stabilizing CF exists which makes the H m  norm of the 
closed-loop system less than 1, then we derive an explicit formula for one particular F 
satisfying these requirements. We also give an alternative nonminimal representation for this 
controller whose structure makes clear that this controller is the interconnection of a current 
state and current disturbance estimator and a static full-information feedback. In Section 5 we 
show that in some cases we can reduce the dynamical order of the estimator and we will derive 
an explicit method to derive controllers of lower dynamical order. 

In the formulation of our main result we will need the concept of invariant zero. Recall that 
zo is called an invariant zero of the system (A, B, C, D) if 

zoz-A -"> c rankmcr,(ez~A -"> 
D D rankm 

We can now formulate one of our main results. This is an extension of References 1, 8 and 14. 

Theorem 2.1 

no invariant zeros on the unit circle. The following statements are equivalent: 
Consider the system (1). Assume that the systems ( A ,  B, C2, 9 1 )  and ( A ,  E, C1, DIZ) have 

(0 

(ii) 

There exists a dynamic compensator CF of the form (2) such that the resulting closed- 
loop system is internally stable and the closed-loop transfer matrix GF satisfies 

There exist symmetric matrices P 2 0 and Q 2 0 such that 
(a) We have 

11 GF I lm < 1. 

R > O  (4) 
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where 

V:= BTPB + DIlD21 
R := I - Dzfl22 - ETPE + (ETPB + DLD21) Vt(BTPE + DIiD22) 

(b) P satisfies the discrete algebraic Riccati equation: 

BTPA + D:,C2)' ( BTPA + DIiC2) ( 5 )  ( ETPA + DIzC2 G(P)t  ETPA + DIzCZ P =  ATPA + CIC2 - 

where 

(c) For all z € C  with I z I  2 1, we have 

zl-A - B  - E  
BTPA + DIlC2 BTPB + DIIDzl BTPE + DTlD22 
ETPA + DI2C2 ETPB + D$&1 ETPE + D$&z - 

= n + q + rank~(&2(zI- A ) - ' B  + D21 

(d) We have 

s>o (7) 

where 

(e) Q satisfies the following discrete algebraic Riccati equation: 

ClQAT + D12ET CIQAT + D12ET 
C2QAT + D22ET ) If(Q)t(CzQAT + D22ET 

Q =  A Q A ~  + E E ~  - 

where 

Remarks 

(i) Necessary and sufficient conditions for the existence of an internally stablizing feedback 
compensator which makes the I f ,  norm of the closed-loop system less than some, 
a priori given, upper bound y > 0 can be easily derived from Theorem 2.1 by scaling. 
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(ii) In this paper, we only investigate controllers of the form (2). This is not an essential 
restriction, since it can be shown that we cannot make the H, norm less by allowing 
more general, possibly even nonlinear, causal feedbacks. 

(iii) Conditions (b) is the standard Riccati equation used in discrete time H, except that the 
inverse is replaced by a generalized inverse. Condition (c) is nothing else than the 
requirement that P must be a stabilizing solution of the Riccati equation. Conditions 
(b) and (c) uniquely determine, if it exists, the matrix P .  In subsection 3.1 we show how 
to reduce these very general algebraic Riccati equations appearing in the above lemma 
to classical Riccati equations which can be solved using standard techniques. A similar 
comment can be made about conditions (d)-(f). 

For the special cases of full-information and state feedback we can dispense with the second 
Riccati equation. Moreover, in these cases there always exist suitable static controllers. More 
specifically: 

0 Full information case: CI = (i), 
0 1 2  = (:) 

In this case we have y1= x and yz = w, i.e. we know both the state and the disturbance 
of the system at time k. It is easy to check that Q = O  satisfies conditions (d)-(f). 
Moreover this guarantees that the coupling condition (g) is automatically satisfied. 
Therefore there exists a stabilizing controller which yields a closed-loop system with the 
H, norm strictly less than 1 if and only if there exists a positive semidefinite matrix P 
satisfying conditions (a)-(c). Moreover in that case we can find static output feedbacks 
u = FIX + FZW with the desired properties. One particular choice for F = ( F I ,  Fz) is given 
by: 

(10) 

(1 1) 

Fi:= - Vt(BTPA + DI1Cz) + ( I -  VtV)Fo 

F2 := - Vt(BTPE + D ~ I D z z )  

where FO is an arbitrary matrix such that A + BF1 is stable. 

In that case, it is easy to see that a necessary condition for the existence of a positive 
semidefinite matrix Q satisfying conditions (d)-(f) is that 11 DZZ 11 c 1. In that case, it is 
easy to check that 

0 State feedback case: CI = I, 0 1 2  = 0 

Q = E( I - D ~ ~ D I ~ )  - I E~ 

satisfies conditions (d)-(f). Condition (g) then reduces to 

I -  DZ&Z - ETPE > 0 (12) 

Moreover, condition (12) implies that condition (a) is automatically satisfied. Therefore 
there exists a stabilizing controller which yields a closed-loop system with the H, norm 
strictly less than 1 if and only if there exists a positive semidefinite matrix P satisfying 
conditions (b), (c) and additionally condition (12). 

In that case we can find a static output feedback u = Fx with the desired properties. 
One particular choice for F is given by: 

F:= - Vt(BTPA + D11C2 + [BTPE + DIiDzz] R-I [ETPAx + DLCxl ) 
+ ( I -  VtV)Fo 
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where Fo is an arbitrary matrix such that A + BF is stable (which can be shown to always 
exist) and 

(13) 

(14) 

Ax:= A - BVt [BTPA + D T I C ~ ]  

C x  := C2 - D21 Vt [BTPA + DIlCz J 

3. THE PROOF OF THEOREM 2.1 

The proof of Theorem 2.1 is divided into three parts. Each part establishes the proof for a 
certain part of the theorem. Every part is framed up as a subsection with a heading that 
represents a significant feature of its proof technique or its overall achievement. The rationale 
for dividing the proof into three parts is mainly due to the length and the complexity of the 
proof. 

3.1. The existence of a solution to the algebraic Riccati equation 

In this subsection we assume that part (i) of Theorem 2.1 is satisfied. We will show that the 
existence of P satisfying conditions (a)-(c) in (ii) of Theorem 2.1 is necessary. We begin with 
the following definition. 

Dejnition 3.1 

subspace K o f  R" for which a mapping F exists such that 
Let a system C = (A, B, C , D )  be given. The controllability subspace S?*(C) is the largest 

( A  + BF)&t^c K 
( C +  DF)&= (0)  

and such that (A,  B I )  is controllable where BI is an arbitrary matrix such that: 

Im B1 = K n B  Ker D I7 
We next perform a basis transformation on the state and input spaces of C. We decompose 
the state-space K= S?*(&) 0 &2 where Cci = (A,  B, Cz, 0 2 )  and choose a basis adapted to 
this decomposition. We also decompose the controller input space W =  Ker V 0 W2 where V 
is as defined in Theorem 2.1. In the new bases, the matrices in the realization of C have a 
special form: 

C1=( c11 C12). D12 = D12 (15) 

C2=(  -DrF Cr), & I = (  0 Dr), D22= 0 2 2  

The above matrices have the following properties: 

0 (Al l ,  B I I )  is controllable, 
0 (A,, B,, C,, Or) is left invertible, 
0 (A,, B,) is stabilizable if and only if (A, B )  is stabilizable. 

If part (i) of Theorem 2.1 holds, i.e., if the measurement feedback problem is solvable, then 
we also know that the full information H, control problem is solvable. Let FO be such that 
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All + BllFo is stable. Then it is easy to see that, after the preliminary feedback 

u = ( ;  ;)x,, 

the subspace @*(Cci) does not affect the output to be controlled and the dynamics restricted 
to @*(Cci) is stable. Hence the achievable H m  norm using full-information feedback is 
completely determined by the following subsystem: 

However, for this subsystem the operator mapping the input u2 to the output z is left 
invertible. Therefore we can apply the results from References 2 and 15 to obtain the following 
result: 

(0 

(ii) 

(iii) 

Lemma 3.2 

Consider the systems C and C, defined by (1) and (17) respectively. Assume that the system 
( A ,  B, C2, D21) has no invariant zeros on the unit circle. Then also the system (A,, B,, C,, D , )  
has no invariant zeros on the unit circle. Moreover, the following statements are equivalent: 

There exists a full information feedback u = Fix+ F2w for the system C such that the 
resulting closed-loop system is internally stable and the closed-loop transfer matrix GF 
satisfies ( 1  GF l lm c 1. 
There exists a full information feedback u = FI,,x + F2,,w for the system C, such that 
the resulting closed-loop system is internally stable and the closed-loop transfer matrix 
GF,, satisfies (1 G F . ~  11- < 1. 
There exists a symmetric matrix Pr 2 0 such that 
(a) We have 

V,>O,  R , > O  
where 

v ,  := B:P,B, + D:D, 
R,  := I - D:&z - E,TP,E, + (E:PrBr + OLD,) V;'(B,TP,E, + D,TD22) 

(b) Pr satisfies the discrete algebraic Riccati equation: 

where 

(c) The matrix Acl,p is asymptotically stable where 

Proof. The implication (ii) c) (iii) can be found in Reference 15. The implication (ii) =. (i) 
can be easily checked using the arguments given before this lemma. 
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The implication (i) (ii) can be derived in the following manner. First note that we can 
apply, without loss of generality the transformation (16). Suppose a stabilizing feedback, 
u = Ft 1x1 + FIZX~ + F2w exists for the system 9 (after our preliminary transformation) which 
yields a closed-loop transfer matrix GF satisfying I( GF 11- < 1. Then it is easy to check that the 
following dynamic compensator stabilizes Cr and yields the same closed-loop transfer matrix 
GF: 

ux1= (A11 + Bl2FO)Xl + A12X2 + E l W  

u =  Fiixi + F 1 2 ~ 2  + F2w 
CF: 

However, C r  has a subsystem from u2 to z which is left-invertible and hence, from Reference 
14, we know that the existence of a suitable dynamic full-information feedback also guarantees 
the existence of a static full-information feedback. G 

This lemma yields a solution Pr of a discrete-time Riccati equation for the reduced-order 
system. We can extend this matrix to the original state-space by setting it zero on .B*(Cci), i.e. 
if we define P by 

P = ( "  0 Pr 0 )  

then Pr satisfies the conditions of Lemma 3.2 if and only if P satisfies the conditions of (a)-(c) 
of Theorem 2.1. The above can be combined to yield: 

Lemma 3.3 

Assume ( A ,  B, C2, D21) has no invariant zeros on the unit circle. If part (i) of Theorem 2.1 
is satisfied then there exists a symmetric matrix P 2 0 satisfying (a)-(c) of part (ii) of 
Theorem 2.1. 

We also need to know whether any solution P satisfying conditions (a)-(c) of Theorem 2.1 
can be connected to a matrix P, satisfying the conditions of Lemma 3.2. This is done in the 
following lemma: 

Lemma 3.4 

Let P 2 0 be a matrix satisfying the conditions (a)-(c) of Theorem 2.1. Then 

Ker P 2 a*(&) 
Hence, in our new bases, P will be of the form (18) for some matrix Pr. Moreover Pr satisfies 
the conditions in part (iii) of Lemma 3.2. 

Proof. First note that condition (b) implies that 

P 2 A :PA, + C:C, 

where A, and C, are defined by (13) and (14) respectively. It is easily seen that this implies that 
Ker P is controlled invariant. 

Secondly conditions (a) and (c) imply that 

rank(BTPB + DT1D21) = ranka&z(zI- A ) - ' B  + D21 



THE DISCRETE-TIME H m  CONTROL PROBLEM 465 

These two properties, when combined with the decomposition of the state-space as introduced 
0 in the beginning of this section, yield the desired result. 

Using P,, or equivalently P, we can also derive explicit formulas for static full-information 
compensators which achieve the desired objectives in parts (i) or (ii). This is outlined in the 
following lemma which is an extension of results in References 2 and 15. 

Lemma 3.5 

Let the systems C and Cr be defined by (1) and (17) respectively. Assume that a matrix Pr 2 0 
exists satisfying the conditions in part (iii) of Lemma 3.2. Moreover, define P by (18). 

0 A controller satisfying the conditions of part (ii) of Lemma 3.2 is described by: 

F1,r := - V-'(BrTpAr + DTCr) 
F2,4 := - V-'(B,TP,E, + D,TDzz) 

0 A controller satisfying the conditions of part (i) of Lemma 3.2 is described by 

F2=( 0 F2.r) 

where F and FO are the parameters of the preliminary feedback described before 
Lemma 3.2. 

Alternatively, we can also describe a suitable controller for C in terms of the original 
system parameters of C: 

F~ := - V ~ ( B = P A  + D W ~ )  + ( I -  v t v ) E  
F2 := - Vt(BTPE + DTlDzz) 

where F is an arbitrary matrix such that A + BFI is stable. 

Proof. The first part of this lemma is a direct result of Reference 14. The second part of 
this lemma gives two controllers of which it can be easily shown that when applied to the 
reduced-order system they yield the same closed-loop transfer matrix as the controller given 
in the first part of this lemma when applied to the original system. Hence the closed-loop 
system has H, norm strictly less than 1. Remains to check existence of a suitable F to yield 
internal stability of the closed-loop system. This is shown by using the decomposition 
introduced in the beginning of this section together with stability of A , +  B,Fr and 
stabilizability of (All + B12F,B11). 

In the next subsection we show that the part (i) of Theorem 2.1 also implies the remaining 
statements of the part (ii) of Theorem 2.1. 

3.2. A first system transformation 

In this subsection we assume that part (i) of Theorem 2.1 is satisfied and we show that part 
(ii) of Theorem 2.1 holds. A central component of the proof in this subsection is to transform 
the original system (1) into a new system. This transformation is designed in such a way that 
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the problem of finding an internally stabilizing feedback which makes the H, norm of the 
closed-loop system less than 1 for the original system would be equivalent to the problem of 
finding an internally stabilizing feedback which makes the H, norm of the closed-loop system 
less than 1 for the new transformed system. Moreover, this new system has some very desirable 
properties which makes it much easier to work with. In particular, for this new system the 
disturbance decoupling problem with measurement feedback is solvable. We will perform the 
transformation in two steps. First we will perform a transformation related to the full- 
information H, problem and next a transformation related to the filtering problem. We 
assume that we have a positive semidefinite matrix P satisfying conditions (a)-(c) of Theorem 
2.1. We define the following system: 

~ x p = A p ~ p  + BUP+ Epwp 
+ DII.PWP 

ZP = c 2 . p ~ ~  + D 2 i . p ~ ~  + D ~ Z , P W P  
where 

where the matrix P satisfies parts (a)-(c) of Theorem 2.1 and the matrices A, and C, are 
defined by (13) and (14), respectively. 

In order to continue, we need the system to be in the special basis as defined in the previous 
section. Using Lemma 3.4, we know that P is of the form (18) for some matrix Pr. We can 
then define the following system: 

where 

v ,  := B T P ~ B ,  + DTD, 
Au 
Bu := B,(O VF1l2) 
EU 
CZ,U := Cr - Dr Vil (BTPrAr + DTCr) 
C1,u := - R-'/2(EZTP,Au + DT2C2,u) 
D12,u := R112 
D21.u := D,V-1/2(0 V;'I2) 
D22.u := 0 2 2  - D,VF1(BTP1Ez + DTD22) 

:= A ,  - B,V;'(B:P1Ar + DTC,) 

:= Ez - BrVF1(B,TP,E2 + DTD22) 

where R is as defined in Theorem 2.1. We will show that CU has a very nice property. In order 
to  do  this, we first recall the definition of the so-called inner systems. Moreover, some of the 
important properties of inner systems are also recalled in the following two lemmas. 
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Dejnition 3.6 

A system is called inner if the system is internally stable, square (i.e. the number of inputs 
is equal to the number of outputs) and the transfer matrix of the system, denoted by G, 
satisfies: 

G ( z ) G ~ ( z - ' )  = I  (21) 

Lemma 3.7 

Let the following square system be given: 

a x = A x +  BU 
z = C x + D u  cst: 

Assume that A is asymptotically stable. The system Csl is inner if there exists a matrix X 
satisfying: 

(a) X =  ATXA + CTC 
(b) DTC+ BTXA = 0 
(c) D ~ D  + B ~ X B  = z 

Proof. See References 6 and 15. 

Lemma 3.8 

by some state-space representation: 
Suppose we have the following interconnection of two systems C1 and C2, both described 

Assume C1 is inner. Denote its transfer matrix from (w, u )  to (z,y)  by L .  Moreover, assume 
that if we decompose L compatible with the sizes of w, u, z and y: 

we have L21' E H ,  and L22 is strictly proper. Then the following two statements are 
equivalent: 

(i) The closed loop system (23) is internally stable and its closed-loop transfer matrix has 

(ii) The system C2 is internally stable and its transfer matrix has H, norm less than 1. 
H ,  norm less than 1 .  

Proof. See References 9 and 13. 0 

Now, we are ready to come back to the system CU and establish some of its properties in 
the following lemma. 
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Lemma 3.9 

decompose U compatible with the sizes of w, UU, zu and yu: 
The system CU as defined by (20) is inner. Denote the transfer matrix of CU by U. We 

Then Uzl is invertible and its inverse is in Hm. Moreover U22 is strictly proper. 

Proof. It can be easily checked that Pr satisfies the conditions (i)-(iii) of Lemma 3.7. 
Condition (i) of Lemma 3.7 turns out to be equal to the reduced-order discrete algebraic 
Riccati equation as given in Lemma 3.2. Conditions (ii) and (iii) follow by simply writing out 
the equations in terms of the system parameters of system (1). 

The stable matrix Ac1,p, as defined in Lemma 3.2, can be written in the following form: 

Aci,p = Au - EuDlz!uCi,u (25) 

Next, we show that AU is asymptotically stable. We know P, 2 0 and 

It can be easily checked that x # 0, Aux= Ax, C I , U X =  0 and C Z , U X =  0 implies that 
Acl,px= Xx. Since Ac1,p is stable we have Re X < 0. Hence the realization (20) is detectable. 
By standard Lyapunov theory the existence of a positive semidefinite solution of (26) together 
with detectability guarantee asymptotic stability of Au. 

We can immediately write down a realization for L1;i1: 

axu = Acl,pxU + E u D ~ ~ ! u w  t yu = - D ~ ~ ! u C I . U X I J  + DCfuw 
Cu,l: 

Since Ac1,p is stable we know that U;I' is an H m  function. Finally, the claim that U22 is strictly 
0 proper is trivial to check. 

We will now formulate our key lemma: 

Lemma 3.10 

Let P satisfy Theorem 2.1 part (ii) (a)-(c). Moreover, let CF be an arbitrary linear time- 
invariant finite-dimensional compensator in the form (2). Consider the following two systems, 
where the system on the left is the interconnection of (1) and (2) and the system on the right 
is the interconnection of (19) and (2): 
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Then the following statements are equivalent: 

(i) The system on the left is internally stable and its transfer matrix from w to z has H, 

(ii) The system on the right is internally stable and its transfer matrix from wp to ZP has H, 
norm less than 1. 

norm less than 1. 

Proof. We investigate the following systems: 

- Yu 

I 1p4-413p 
The system on the left is the same as the system on the left in (27) and the system on the right 
is described by the system (20) interconnected with the system on the right in (27). A realization 
for the system on the right is given by: 

o x u j x 2 . p )  = (""p * A+BNCl  0 Lk ) (" F") + (B;t:D12) 0 
w 

* LC1 K 

xu - X2.P  

zu = (  * C2+41NC1 D21M)( ; ) + ( D Z Z + D Z I N D ~ ~ ) W  

where Acl,p is defined by (25). The asterisks denote matrices which are unimportant for this 
argument. The system on the right is internally stable if and only if the system described by 
the above set of equations is internally stable. If we also derive the system equations for the 
system on the left in (28) we immediately see that, since Ac1,p is asymptotically stable, the 
system on the left is internally stable if and only if the system on the right is internally stable. 
Moreover, if we take zero initial conditions and both systems have the same input w then we 
have z = ZU, i.e. the input-output behaviour of both systems are equivalent. Hence the system 
on the left has H ,  norm less than 1 if and only if the system on the right has H, norm less 
than 1. 

By Lemma 3.9 we may apply Lemma 3.8 to the system on the right in (28) and hence we 
find that the closed-loop system is internally stable and has H, norm less than 1 if and only 
if the dashed system is internally stable and has H, norm less than 1. 

Since the dashed system is exactly the system on the right in (27) and the system on the left 
in (28) is exactly equal to the system on the left in (27) we have completed the proof. 0 

Using the previous lemma, we know that we only have to investigate the system CP. This 
new system has a nice property which is outlined in the following lemma: 
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Lemma 3. I1 

There exists a matrix FO such that if we define: 

then we have: 

(i) Ap + BFI,p is stable 
(ii) C2.p + DZI.PFI.P = 0 

(iii) D22.p + DZI,PFZ.P = 0 

Proof. We first write everything in terms of the new basis introduced in the previous section. 
Hence the system parameters have the special form described by (15). Then it is easily checked 
that conditions (ii) and (iii) are always satisfied, independent of the specific choice for Fo. If 
we also write the matrix FO in the new basis, 

Fo.11 FO,IZ 
Fo= (FOZI F0.22) 

then we have: 
Ap + BF1,p = ( A i l  + ~ I I F O , I I  

where the asterisk denotes a matrix which is unimportant for our argument. According to 
Lemma 3.2, the matrix Acl,p is asymptotically stable. Moreover, as noted in the previous 
section, (A I B1 ) is controllable. Hence, any matrix FO such that A I I + BI I Fo, 1 1  is stable 
satisfies the conditions of our lemma. Moreover, controllability guarantees the existence of 
such matrices Fo. 0 

Remark. The above lemma implies that the full-information feedback u = FI,PXP + FZ,PWP 
applied to Cp yields a stable closed-loop system for which the closed-loop H, norm is equal 
to 0. 

Next, we will look at the Riccati equation for the system Cp. It can be checked immediately 
that X =  0 satisfies (a)-(c) of Theorem 2.1 for the system CP. 

We dualize Cp. We know that (A, E, C1, D12) has no invariant zeros on the unit circle. It 
can be easily checked that this implies that (Ap, E, CI,P, DIZ) has no invariant zeros on the unit 
circle. Hence for the dual of Cp we know that (A p', C;,P, ET, D ~ I )  has no invariant zeros on 
the unit circle. If there exists an internally stabilizing feedback for the system C which makes 
the H, norm of the closed-loop system less than 1 then the same feedback is internally 
stabilizing and makes the H, norm of the closed-loop system less than 1 for the system CP. 
If  we dualize this feedback and apply it to the dual of Cp then it is again internally stabilizing 
and again it makes the H, norm of the closed-loop system less than 1. We can now apply 
Lemma 3.3 which exactly guarantees the existence of a matrix Y 2 0 satisfying the following 
conditions 

(i) Y is such that SP > 0 where 
T WP := DIZ,PDIZ,P + CI,PYC:,P 

SP := I - D~~,PDSZ,P - C2.p YCT,P 
+ (CZ.PYC:.P + Dzz.PD:z,P) WL(CI,PYCT,P + DIZ.PDL.P) 
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(ii) Y satisfies the following discrete algebraic Riccati equation: 

where 

(iii) Y satisfies a stability condition: for all z E C with 1 z 1 2 1 ,  we have 

rankR - C I , P  C1,pYCT.p + DIZ,PD:Z.P CI,PYC$P + D1z.pDT2.p ) 
21- A C1,pYATP + Di2,pETP C2.p YA 'P + Dzz,PE'P 

- CZ,P CZ,PYC:,P + D22,pDTz.p CZ,PYC:,P + D22,pDL.p - Z 
= n  + q + rankn(,)C1(zl--A)-'E+ D12 

The following lemma relates the existence and the solution of the above conditions to the 

( 
Note that Y satisfies the conditions (d)-(f) of Theorem 2.1 for the system C P .  

conditions in Theorem 2.1 : 

Lemma 3.12 

There exists a matrix Y 2 0 satisfying the above conditions if and only if there exist matrices 
P 2 0 and Q 2 0 satisfying the conditions in part (ii) of Theorem 2.1. Moreover, in that case 
we have: 

Y =  ( I -  QP)- 'Q 

The above derivation yields the necessity part of Theorem 2.1: 

Lemma 3. I3 

Let C, described by (l), be given with zero initial condition. Assume that ( A ,  B,  C2,D21) and 
( A ,  E, CI, D12) have no invariant zeros on the unit circle. If part (i) of Theorem 2.1 is satisfied 
then there exist matrices P and Q satisfying (a)-(f) of part (ii) of Theorem 2.1. 

This completes the proof (i) * (ii). In the next section we will prove the reverse implication. 
Moreover in case the desired compensator CF exists we will derive an explicit formula for one 
choice for CF which satisfies all requirements. 

3.3. The fransformation into a disturbance decoupfing problem with measurement 
feedback 

In this section we assume that there exist matrices P and Q satisfying part (ii) of Theorem 
2.1 for the system (1) and we show that part (i) of Theorem 2.1 holds. First we transform 
our original system C into another system C P , Y .  We will show that a compensator is internally 
stabilizing and makes the H, norm of the closed-loop system less than 1 for the system C if  
and only if the same compensator is internally stabilizing and makes the H, norm of the 
closed-loop system less than 1 for our transformed system C p , y .  Next we will show that CP,Y 
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has a following very special property (see Reference 11): 

There exists an internally stabilizing compensator which makes the closed-loop 
transfer matrix equal to zero, i.e. w does not have any effect on the output of the 
system z. This property of CP,Y has a special name: 'the Disturbance Decoupling 
Problem with Measurement feedback and internal Stability (DDPMS) is solvable'. 

We know a matrix Y:= (I- QP)-'Q exists satisfying the conditions as outlined in the previous 
section. Next, we define CP,Y. We start by transforming C into CP. Then we apply the dual 
transformation on CP to obtain CP,Y: 

UXP,Y = AP,YXP,Y + BP,YUP,Y + EP,YWP,Y 

[ZPsY = C~,P,YXP,Y + DZI,P,YUP,Y + DZZ,P,YWP,Y 
CP,Y:  YP,Y = CI,PXP,Y + DIZ,P,YWP,Y (31) 

where 

A, 
E y  
AP,Y 

:= AP - (APYCZP + EpD72.p) W C 1 . p  

:= EP - (APYCT,P + EPDTz,P) WLDi2.p 
:= AP + (Ay YCZ,P + E~DTZ,P)SPICZ,P 

cz ,p ,y  := SPI/ZCZ.P 

X(WP ) 

DZI,P,Y := SP1/2D2~,~ 
Dz~,P,Y := SP1/2(Cz,~YC:.~ + D~~,PDL,P)(WP ) 

BP,Y := B -I- (AyYCT,p + EYDL,P)SP'D~I.P 
EP,Y 

D12,p.y := W:" 

:= (APYCT,~ + EpDT2.p + [AyYCZ,P + EyDT2,pISP' [C~,PYC:,P + DZZ,PDTZ,PI ) 
1 / 2  t 

1/2 t 

When we first apply Lemma 3.10 on the transformation from C to CP and then the dual of 
Lemma 3.10 on the transformation from Cp to CP,Y we find: 

Lemma 3.14 

Let P satisfy Theorem 2.1 part (ii) (a)-(c). Moreover let an arbitrary linear time-invariant 
finite-dimensional compensator CF be given, described by (2). Consider the following two 
systems, where the system on the left is the interconnection of (1) and (2) and the system on 
the right is the interconnection of (31) and (2): 

2P.Y WP.Y 

YP,Y 14P.Y 

- 66 
The the following statements are equivalent: 

(i) The system on the left is internally stable and its transfer matrix from w to z has H, 

(ii) The system on the right is internally stable and its transfer matrix from WP,Y to ZP,Y has 
norm less than 1. 

H, norm less than 1. 
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It remains to be shown that for Cp,y'the (DDPMS) is solvable. We first need the following 
preliminary lemma. 

Lemma 3.15 

There exists a matrix KO such that if we define: 

then we have: 

(i) AP,Y + Kl,p,YC1,p is stable 
(ii) EP.Y + KI,P.YDIZ,P,Y = 0 

(iii) D22,p.y + D~~,P.YKz.P,YDI~,P,Y = 0 

Moreover, let F I , p  and F 2 . p  be as defined Lemma 3.11. If we define 

FI,P,Y := FI,P, 
F2,p.y := -DSI,P,YD~~,P,Y 

then we have: 

(iv) AP,Y + BP,YFI,P,Y = AP + BF1.p is stable 
(v) c 2 . p . y  + D~I,P.YFI,P = 0 

(vi) D22,p.y + DzI.P,YF~,P,Y = 0 

Proof. The construction of a suitable matrix KO satisfying conditions (i)-(iii) is dual to the 
derivation of a suitable FO satisfying the conditions of Lemma 3.5. Hence details are omitted. 

G Conditions (iv)-(vi) can be checked via straightforward algebraic manipulations. 

Remark. The first part of the lemma is dual to Lemma 3.11 and shows that because of the 
dual transformation we can now observe the states of CP,Y perfectly. Surprisingly enough the 
property that Cp could be controlled perfectly is preserved: the second part of the lemma 
shows that also for CP,Y we can find a full-information feedback that stabilizes the system and 
yields a closed-loop system with H, norm equal to 0. 

Now we are ready to show the solvability of (DDPMS) for the system CP,Y in the following 
lemma. 

Lemma 3.16 

Let CF be given by: 

where 
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The interconnection of CF and Cp,y is internally stable and the closed-loop transfer matrix 
from WP,Y to ZP,Y is zero. 

Proof. We can write out the formulas for a state-space representation of the interconnection 
of Cp,y and CF. We then apply the following basis transformation: 

After this transformation one immediately sees that the closed-loop transfer matrix from WP,Y 

to zp,y is zero. Moreover the system matrix (3) after this transformation is given by: 

AP,Y + Bp,yFi,p,y 

(AP,Y + Ki,p,yCi,p 

LP.YC1.P 
Lemma 3.15 guarantees that this matrix is asymptotically stable. Hence CF is internally 
stabilizing. 0 

We know CF is internally stabilizing and the resulting closed-loop system has H, norm less 
than 1 for the system Cp,y. Hence, by applying Lemma 3.14, we find that CF satisfies part (i) 
of Theorem 2.1. This completes the proof of (ii) = (i) of Theorem 2.1. We have already shown 
the reverse implication and hence the proof of Theorem 2.1 is completed. 

4. CONTROLLER STRUCTURE 

In the previous section, we found a controller for C which satisfies all requirements, but its 
structure is very cloudy. In this section we define a controller, which also achieves disturbance 
decoupling when applied to CP,Y, but which has a very appealing structure. 

We first need to  construct a matrix with a desired stability property: 

Lemma 4.1 

There exists a matrix ZO such that 

[ I +  Z o ( Z -  DIZ,P,YDL,P,Y)CI,PI (AP,Y - EP,YDL.P.Y) 

is stable. 

Proof. According to Lemma 3.15 there exists a matrix KO such that A1 + KOCI is stable 
where 

A I = (AP,Y - EP,YDL,P,Y 
Cl = ( I -  D l 2 . P . Y D f Z . P , Y ) C l , P  

Since, for discrete-time systems detectability of ( C I ,  A t ) implies that the pair (CIA 1 ,  A I ) is 
detectable there exists a matrix KO such that A1 + &,CIA1 is stable. This implies that EO 
satisfies the conditions of the lemma. G 

Remark. This lemma might look rather strange but it is essential. If we use one-step-ahead 
predictors then the estimator is stable if the filter gain K is such that A + KC is stable. 
However, in this section we use current estimators where we also use the measurement y ( k )  
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to estimate x(k ) .  In that case the estimator is stable if the filter gain is such that (I+ KC)A 
is stable. Intuitively the above lemma tells us that we can find a stable current estimator if we 
can find a stable one-step-ahead estimator. 

Note that an optimal full-information feedback for CP,Y is given by: 

UP,Y = F I , P . Y ~ P , Y  + FZ.P.YWP.Y 

where we change FZ.P,Y with respect to the previous section into: 
F2,p.y := - D ~ ~ , P , Y D ~ ~ . P . Y  + ( I -  Dii,p,yDzi,p,y)FoYC:.p(Wp) t 

It can be shown, along the same lines as the proof of Lemma 3.16 that the following controller 
stabilizes C p , y  and achieves disturbance decoupling: 

UP = AP,YP + B P , Y ~ P , Y  + EP,Y@ - Koni (UY - C1.P [AP,YP + BP,YUP,Y + Ep.yfiI) 

f i =  DfZ,P.Y(YP.Y - CI,PP) 
UP,Y = Fi,p,y.f + Fz,P.Y$ 

where 

n1 := I - DlZ,P,YDIZ.P.Y = I - W P  fi 
We are going to apply this controller to the system C. However, if we rewrite this controller 
in terms of the original system parameters it has a very special structure: 

(72 = A f  + BU + Efi  + o K ~  (JJ - 9 )  
a@ = R - ' ( E T P A X + D ~ z C , ) [ ~ f + B u + E f i ]  +aK2(y -E)  

= C1 [ A f  + BU + Efi] + DlzR-'(ETPA, + DLCX) [ A f  + BU + Efi] 
u =  Fif + FzG 

where 

K1= -EJI1+ YCT,pWL(Z+ Ci,pKoIli) 

Kz =DL.pW&(I+  Ci.pKoni) 

while F1 and FZ are defined by (10) and (11) respectively. We see that we have a full- 
information feedback: 

u = Fix+ F ~ w  

where we replace the state x and the disturbance w by their respective estimates f and 13. For 
the state and the disturbance we have built estimators. If we write s(k 1 k) for the estimate of 
the variable s at time k using measurements y(O), ... y(k) and s(k I k - 1) for the estimate of 
the variable s at time k using measurements y(O), . . . y (  k - 1) then we can express the structure 
even clearer. We get the following form: 

CF 

r x ( k +  1 Ik+ 1) = x ( k +  1 Ik) 
w(k+  1 Ik+ 1)= w ( k +  1 Ik) 

w(k + 1 I k) 
y ( k + l ) I k )  = C , x ( k + l ~ k ) + D l z w ( k + l ~ k )  

+ K1 [ y (k  + 1) - Y ( k  + 1) I k)l 
+Kz[y(k+ 1 ) - y ( k +  1 Ikll 

x ( k + l  Ik) = A x ( k I k ) + B u ( k ) + E w ( k I k )  
= R-'(ETPAx + DLCx)x(k + 1 I k) 

2.4 (k) = Fix(k I k )  + Fzw(k I k )  c 
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Note that in the state feedback case we can identify a worst-case response for the disturbance 

(33) 

W: 

~ ( k )  = R-'(ETPA, + DTzCX)x(k) 

In the above controller we have to estimate w(k + 1 I k). Clearly past measurements do not tell 
us anything. However, this controller expects the worst-case response (33) and estimates this 
worst-case response. 

5 .  REDUCED-ORDER ESTIMATOR-BASED CONTROLLER 

In this section we show that for the singular H, optimal control problem satisfying part (i) of 
Theorem 2.1 we can always find a solution which has dynamical order less than that of the 
plant and is of reduced-order observer-based structure. This result is analogous to those 
obtained in Reference 16 for continuous-time problems. Without loss of generality, we develop 
such a reduced-order observer-based controller for the system CP,Y defined in the previous 
section. Consider the CP,Y defined by (31). There exists a constant output prefeedback law 
Fpreyp.y such that after applying this prefeedback law, namely setting 

(34) 

the direct feed-through term from WP,Y from z p , ~  disappears. Hence without loss of generality, 
hereafter we assume that D22.p .y  = 0. 

UP,Y + Fp1eYP.Y + UP,Y 

There exists an 'optimal' state feedback gain FP,Y in the sense that 

( C 2 . p . y  + DzI,PFP,Y)(sI- AP,Y - B p , y F ~ , y ) - ~ E p , y  0 

with AP,Y + BP,YFP,Y stable. We need to construct an observer of low order. Without loss of 
generality but for simplicity of presentation, we assume that the matrices CI,P and D12.p.y are 
already in the form 

C I , p  = ( c1*02) and D12,p . y  = ( D12.0 ) 
IP-mo 0 

where mo is the rank of D12,p.y  and Dl2.0 is of full rank. Then the given 
written as, 

(35) 

system CpVy can be 

l z p . y  = 

where (x i , x i ) '  =XP,Y and (y6,yi)' =yp,y .  We note that y1 = X I .  Thus, one needs to estimate 
only the state xz in the reduced-order estimator. Then following closely the procedure given 
in Reference 16, we first rewrite the state equation for X I  in terms of the measured output y~ 
and state x2 as follows, 

(37) A I 1 . ~ 1  + A 12x2  + EIWP,Y + B I U P ~ Y  
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where y~ and U P , Y  are known. Observation of xz is made via yo and 

~ I = A I ~ X ~ + E I W P , Y = U Y I  - A I I Y I  -BIUP,Y (38) 

A reduced-order system for the estimation of state xz is given by 

(YR = CRXZ + DRWP,Y 

where 

Based on (39), one can construct a reduced-order observer for x2 as, 

where KR is the observer gain matrix which must be chosen such that AR+KRCR is 
asymptotically stable. Later, we will make a specific choice for KR. 

At this moment we have a reduced-order observer and an optimal state feedback. However, 
y, contains a future measurement (the term u y ~  in (38). We apply a transformation to remove 
this term. We partition KR = (KRo,KRI) compatible with the dimensions of the outputs 
(yd, j j i ) ' ,  and at the same time define a new variable, 

u := $2 + K R I J I  

We then obtain the following reduced-order estimator-based controller, 

{Uv = (AR + KRCR)U + (B2 + KR1Bl )UP.Y + GRYP,Y ( 0 ) u +  (" Z ) Y P P Y  
In - p + mo 0 -KRI 

(UP.Y = FP,Y+~P,Y + FpreYp.Y 

where 

G R =  [-KRo,AzI + K R I A I I  -(AR+KRCR)KRII 

and FP,Y is state feedback gain and Fpre is the output prefeedback gain. 
Finally we need to choose K R .  This will be done such that the resulting controller achieves 

disturbance decoupling when applied to CP,Y. We know that there exists an output injection 
such that: 

(43) 

is stable and 

Because the matrix in (43) is stable there exists a matrix L such that 

A ~ Z + K ~ ~ C I . O ~ + L ( A ~ Z + ~ I I ~ I , O ~ )  
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is stable. Moreover (44) implies that 

E2 + ~ z i D 1 z . o  + L ( R  + KI 1Diz.0) = 0 

We then choose: 

KR=(KRO KRI)=(K2l+LKII L )  

It is easy to check that the resulting controller is indeed stabilizing and achieves disturbance 
decoupling when applied to C P ~ Y .  

Remark. It is interesting to point out that the state-space representation of the reduced-order 
estimator-based controller in (42) might not be minimal and hence the McMillan degree of this 
controller might be less than the dynamical order of its state-space representation (42). This 
is mainly due to the stable dynamics which become unobservable in the controlled output ZP.Y 
after the preliminary output feedback law (34). 

A very interesting example is the state feedback case for CI = Z and DIZ  = 0. In this case, 
the preliminary output feedback Fpre in (34) can be chosen such that after this preliminary 
feedback C2,p.y = 0 and Ap,y is stable. Hence we can choose FP,Y = 0 but this implies that the 
reduced-order estimator-based controller (42) has McMillan degree equal to zero and it reduces 
to the static state feedback solution 

UP,Y = F p r e ~  

6. CONCLUSION 

In this paper, we removed some standard assumptions on the system parameters. Moreover, 
we specified the structure of discrete time H m  controllers. Finally, we showed how to derive 
controllers of lower dynamical order without loss of performance. This is done by deriving 
reduced-order observers. Our results are obtained under the assumption that both systems 
( A ,  B, CZ, Dzl )  and (A ,  E, C 1 , D 1 ~ )  are free of invariant zeros on unit circle. A most trivial 
technique to handle invariant zeros on unit circle is to perturb the plant data such that the 
perturbed plant satisfies our assumptions. However, the resulting criteria for the existence of 
the solution to the Hm control problem for the perturbed plant are not algebraic in the nature. 
Hence the derivation of algebraic criteria directly in discrete domain for this case is an open 
problem. 

Via the bilinear transform and our knowledge about the problems of invariant zeros on the 
imaginary axis for Hm control problems in continuous time (see References 5,  7 and lo), we 
know that in the case of invariant zeros on the unit circle several problems arise. These are 
mainly due to the fact that Hm controllers have a tendency of cancelling stable zeros of the 
system and will try to achieve this approximately if there are zeros on the unit circle. Hence 
we have poor stability margins. Moreover, the minimal achievable Hm norm may depend 
discontinuously on the system parameters if there are invariant zeros on the unit circle. Hence 
we also have numerical difficulties. The main problem in this respect is the nonuniqueness of 
(sub)optimal Hm controllers. Suppose we want to get closer and closer to the minimal 
achievable Hm norm. When can we avoid almost pole-zero cancellations near the unit circle? 
For this question, very little is known. However, there are examples where we can get very 
good stability margins even though there are zeros on the unit circle. Similarly there are 
examples where we always have bad stability margins near optimality. What is needed is a 
characterization of the achievable stability margin near optimality. 
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