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SUMMARY 

Two new controller structures, namely the continuous-time current-type observer and current-type CSS 
(Chen-Saberi-Sannuti) architecture-based controllers, are considered in this paper for loop transfer 
recovery design for general non-strictly proper non-minimum phase systems. The proposed observer is 
structurally analogous to the current estimator of discrete-time systems, while the proposed CSS 
architecture falls into the category of the controller structures developed recently by Chen, Saberi and 
Sannuti.’.’ The properties of these new structures are characterized. In particular, sets of necessary and 
sufficient conditions under which a target loop transfer function can be either exactly andlor 
asymptotically recovered by the abovementioned controllers are obtained. More importantly, the new 
current-type observer balances the observer structures for continuous-time and discrete-time linear 
systems. 
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1. INTRODUCTION 

In classical as well as modem feedback control system design, many performance and robust 
stability objectives can be cast in terms of the maximum magnitude or maximum singular values 
of some particular closed-loop transfer functions, e.g., sensitivity and complementary 
sensitivity functions at certain points in a closed loop. A principal idea of ‘loop shaping’ is that 
such magnitude or singular value requirements on some closed-loop transfer functions can be 
directly determined by the corresponding singular values of certain related open-loop transfer 
functions. A prominent design methodology for multivariable systems which is based on such 
loop shaping concepts is LQG/LTR. Historically, LQG/LTR design philosophy involves two 
steps. The first step is to design a state feedback law that yields an open-loop transfer function 
which accommodates satisfactorily the given design specifications on the required sensitivity 
functions. Such an open-loop transfer function is called a target open-loop transfer function. 
The second step, called loop transfer recovery (LTR), involves the design of an output feedback 
control law such that the resulting open-loop transfer function would be either exactly or 
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approximately the same as the target open-loop transfer function. In other words, the idea of 
LTR is to come up with a measurement feedback compensator to recover a specific open-loop 
transfer function prescribed in terns of a state feedback gain. 

The topic of LTR has been the subject of a number of authors, major contributions coming 
from Athans,' Chen,4 Doyle and Stein,6" Goodman,' Kwakernaak," Niemann et ~ 1 . , " . ' ~  Saberi 
et ~ 1 . ~ ~ . ~ ~  Saberi and Sannuti,16 Sggaard-Andersen," Stein and Athans," and Zhang and 
Freudenberg.22 During the last ten years the subject has attained a certain amount of maturity. 
More recently, Saberi, Chen and Sannuti have put together various aspects of LTR analysis and 
design in a b00k.l~ The problem of loop transfer recovery treated in Reference 15 is fairly 
general and complete. Our goals in this paper are to introduce two new controller architectures, 
namely, the current-type observer and CSS (Chen-Saberi-Sannuti) architecture-based 
controllers, for loop transfer recovery design. The new controller structures, to our knowledge, 
have not been studied before in any open literature. 

The paper is organized as follows. Section 2 defines the LTR problem in precise terms. 
Section 3 deals with a current-type observer-based controller design and its properties, while in 
Section 4, we advocate using a new CSS architecture, namely, the current-type CSS 
architecture, for a controller. We next move on to show the advantages of using such a controller 
structure. Finally Section 5 draws the conclusions of our work. 

Throughout this paper, AT denotes the transpose of A and A(A) denotes the set of eigenvalues 
of A. C denotes the set of all complex numbers, 43- s { s E C(Re(s) s -6) for some desired 
6 > O* and 43' + C/C- .  A matrix A is said to be stable if A(A) C 43-. Similarly, u,,,[A] and 
ami,[A] respectively denote the maximum and minimum singular values of A. Ker(V) and 
Im(V) denote respectively the kernel and the image of V. Also, C - ' {  K ] + ( X I  Cx E K }, where 
C is a constant matrix and K is a vector space. 

2. PROBLEM STATEMENT 

In this section, we formulate in precise mathematical terms the problem of loop transfer 
recovery (LTR). Consider a linear finitedimensional and time-invariant system characterized by 

X = A X + B U  
y = CX + DU 

where x E R", U E R" and y E Rp. For the obvious reasons, we assume that C is stabilizable and 
detectable with respect to 43'. In this paper, for simplicity, we concentrate on a case when plant 
uncertainties are modelled at the input point of a nominal plant model and hence the required 
loop transfer function is specified at the plant input point. However, our results can be 
generalized easily for the case when the required loop transfer function is specified at any 
arbitrary point. In fact, for the case when the required loop transfer function is specified at the 
plant output point," our results can easily be dualized using the procedure given in Reference 
15. Let F be a desired state feedback gain matrix such that (i) the closed-loop system is 
asymptotically stable, i.e., eigenvalues of A - BF lie in 43-, and (ii) the open-loop transfer 
function when the loop is broken at the input point of the given system meets some given 

* Here we have strengthened the notion of stability in order to avoid pole-zero cancellations of closed-loop systems in bad 
locations, i.e., the neighbourhood of the imaginary axis. 
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frequency-dependent specifications. The state feedback control is 

u = - F x  (2) 
and the loop transfer function evaluated when the loop is broken at the input point of the given 
system, the so-called desired target loop transfer function, is 

L,(s) = F @ B  (3) 
where Q, = (sl- A)- ' .  

Amving at an appropriate value for F is concerned with the issue of loop shaping which is an 
engineering art and often includes the use of linear quadratic regulator (LQR) design in which 
the cost matrices are used as free design parameters to generate the target loop transfer function 
L,(s) and thus the desired sensitivity and complementary sensitivity functions. The next step of 
design is to recover the target loop using only a measurement feedback controller. This is the 
problem of loop transfer recovery (LTR) and is the focus of this paper. To explain it clearly, 
consider the configuration of Figure 1 where %(s) and P(s ) ,  

P ( s )  = C O B  + D (4) 

are respectively the transfer functions of a controller and of the given system. Given P(s)  and a 
desired target loop transfer function L,(s), one seeks then to design a proper %(s) such that E(s), 

E(s)  * L, (S)  - % ( S ) P ( S )  ( 5 )  
is either exactly or approximately equal to zero in the frequency region of interest while 
guaranteeing the internal stability of the resulting closed-loop system. Hereafter, we will call E ( s )  
the recovery errur. To be precise, we say that exact LTR @LTR) is achievable if there exists an 
internally stabilizing proper controller, %(s), such that the corresponding recovery error E(s) is 
identically zero for all s E C, and asymptotic LTR (ALTR) is achievable if there exist a family of 
internally stabilizing proper controllers, %(s, E ) ,  such that the corresponding recovery error 

E ( s ,  E )  + L,(S)  -%(s, E ) P ( S )  4 0  (6) 
pointwise in s E C as E + 0. 

Regarding the structures of % ( s )  or %(s, E ) ,  besides the Luenberger observer-based controller 
(see, for example, References 12 and 15) which is not very useful from the practical point of 
view because of the complicated relationships among its parameters, and the CSS architecture- 
based  controller^,^.^ the most commonly used ones for continuous LTR are the full and reduced 
order observer-based controllers. There are, however, three common structures for discrete LTR, 
namely, the full order (also called the prediction), the reduced order and the current-type 
observer- (or estimator-) based controllers (see for example, References 15 and 23). The main 

Figure 1.  Plant with controller closed-loop configuration 
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purpose of this paper is to fill the gap in controller structures between continuous and discrete 
LTR by introducing a current-type observer-based controller for continuous-time systems. The 
new controller is structurally analogous to the current estimator-based controller of discrete-time 
systems. We will focus our attentions in this paper only on the properties of this new structure 
for LTR, although it has potential applications in H,, H, optimal control and many other control 
problems. As a byproduct, we also obtain a current-type CSS architecture-based controller. In 
order to proceed with our development, we recall from Reference 15 the following definitions 
of two geometric subspaces of linear systems. 

Definition 2.1 

quadruple (A,  B ,  C, D ) ,  we define 
Given a linear finitedimensional and time-invariant system, 1, characterized by the matrix 

1. 9'-(Z) as the minimal (A - KC)-invariant subspace of R" containing in Im(B - KD)  such 
that the eigenvalues of the map which is induced by ( A  - KC) on the factor space R"/Y- 
are contained in 43 - for some K. 

2. V ' ( Z )  as the maximal (A - BF)-invariant subspace of R" contained in Ker(C - DF) such 
that the eigenvalues of (A - BF)lV' are contained in 43' for some F. 

3. CURRENT-TYPE OBSERVER-BASED CONTROLLER DESIGN 

We introduce in this section a new observer-based controller. It is named as a current-type observer- 
based controller because it is structurally analogous to the current estimator-based controller of 
discrete-time systems (see, for example, References 8, 15 and 23). Without loss of generality but for 
simplicity of presentation, throughout this paper we assume that matrix D is in the form of, 

.=[:I (7) 

where rank (Do) = rank ( D )  = m,. Hence, we can rewrite the given system (1) as follows, 

where CO and C, are matrices with appropriate dimensions. For the time being, we assume that 
y, ,  the current value of the measurement y,, is available for feedback. We will utilize the 
following auxiliary measurement in the construction of our new observer, 

y *  (a)=( cox;xDou )=[ :Ix+[ 3 
C,Ax + C,Bu C, A 

(9) 

For future use, we define 
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Then the continuous-time current-type observer is given by 

i = A i +  B u +  K@- d2- Du) = ( A  - Kd)2+ ( B  - KD)u + Ky' (11) 
where K is the observer gain and is the only free design parameter. Let e + x - 2. We 
have 

e = ( A  - KC)e (12) 
Obviously, lim,+ e ( t )  = 0 provided that the observer gain K is chosen such that A - KC is 
stable. Thus, 2(r) is indeed an estimation of the state x( t ) .  

Now, let us get rid of y,. Let us partition the observer gain K as follows, 

K = [ K ,  K, RI] (13) 
where KO, K, and R, are of dimensions n x m,, n x (p  - mo)  and n x (p - mo), respectively. 
Also, let us define a new variable, 

- 
2, i= 2-  K, y ,  (14) 

(15) 

It is simple to verify that 

it= P- PLYl = ( A  - KC)v + ( B  - KD)u + [KO K, + ( A  - K d ) R , ] y  
Finally, we obtain the continuous-time current-type observer-based controller, 

(16) 
s = ( A - K C ) v + ( B - K D ) u + [ K ,  KI + ( A - K C ) R l ] y  

-U = -fi = F2 = Fv + [0 FRI ] y I 
where F is the desired state feedback gain matrix given in (2). The transfer function from y to 
-U of this new observer-based controller is given by 

% o ( ~ )  = F ( s ~  - A + BF + Kd - KCF)-'[K, FR, ]  (17) 
A block diagram implementation of the current-type observer-based controller is depicted in 
Figure 2. Clearly, such a continuous-time current-type observer-based controller is physically 
realizable. 

K, + ( A  - KC)R, - ( B  - KD)FK,]  + [0 

I ;  1 ;  
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Remark 3.1 

There is a fundamental difference between the continuous-time and discrete-time current-type 
observer-based controllers. In the discrete-time systems, one does not have to include the output 
y ,  in the auxiliary measurement jj (see, for example, References 8, 15 and 23). For the 
continuous-time systems, however, the resulting pair ( A ,  6 )  will not be detectable, which 
implies that the stabilizing gain K does not exist, if y1 is excluded from jj. 

We also note that by fixing R, EO, the new controller of (16) is reduced to the well-known 
conventional full order observer-based controller. 

In what follows, we proceed to characterize the properties of this new controller structure. First, 
we have the following lemma. 

Lemma 3.1 

Consider a stabilizable and detectable system C characterized by the quadruple (A ,  B ,  C ,  D ) ,  which 
is not necessarily of minimum phase and which is not necessarily left-invertible. Let L,(s) = FOB be a 
desired target loop transfer function. Then the recovery error E,(s) between the target loop transfer 
function &(s) and that reaked by the current-type observer based controller is given by 

E,($) = M(s) [Z+  M ( s ) ] - ' ( I +  F @ B )  

M ( S )  = F ( S I -  A + K ~ ) - ~ ( B  - KD) 

(18) 

(19) 

where 

Furthermore, for all s E R, 
E,($) = 0 if and only if M ( s )  = 0 

where !2 is the set of complex numbers for which L,(s)  and L,(s) + % J s ) P ( s )  are well defined. 

Proof. It is simple to show that the transfer function of the current-type observer-based 
controller can be rewritten as 

% o ( ~ )  = [ I +  M ( s ) ] - ' ( F ( @ - '  + K6)-'[K0 K, + ( A  - K 6 ) R l ]  + [0 F R , ] )  

For future use, let us define 

N ( s ) k F ( @ - ' + K C ) - ' [ K o  K , + ( A - K j R , ] +  [O F R , ]  (20) 
In view of the special form of matrix D in (7), we have 

N ( s ) P ( s )  
= F(O-'+ KC')-'[KoCo+ K,CI  + ( A  - K 6 ) R l C , ] O B  + FR,C,@,B + F ( 0 - I  + K6)- 'KoDo 
= F ( 0 - I  + Kc)-'( [KoCo+ K , C ,  + ( A  - K c ) R , C ,  + ( @ - I  + K 6 ) R l C , ] O B  + KoDo} 
= F(O-' + Kd)-'[(KoCo+ K,CI  + R , C , A ) O B  + R , C I B  + KoDo] 
= F ( 0 - I  + K d ) - ' K C O B  + F(@-' + Kd) - 'KD 
= F [ I -  (0-' + K d ) - ' @ - ' ] @ B  + F(@-' + K d ) - ' K D  
= FOB - M ( s )  (21) 

Eo(s) = L,(s)  - %,(s)P(s) = L,(s) - [ I  + M ( s ) ]  -"(s)P(s) = M ( s ) [ I  -+ M ( s ) ]  -yz + F W )  
Now it is straightforward to show that 
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Using (18), it is trivial to verify that Eo(s) = 0 if and only if M ( s )  = 0. This completes the proof 
of Lemma 3.1. 0 

Equations (18) and (19) present a clear perspective to study the basic mechanism of LTR via 
the proposed controller. In fact, they facilitate the study of Eo(s) in terms of the study of M ( s ) .  
Thus Lemma 3.1 and the expression for M ( s )  as given by (19) form a basis for our study. As we 
will see shortly, the conditions under which a desired target loop transfer function can be either 
exactly and/or asymptotically recovered by a current-type observer-based controller turn out to 
be the constraints on the finite and infinite zero structures of the auxiliary system 5 characterized 
by the matrix quadruple ( A ,  B ,  6,o). Hence, it is important for us to investigate the properties 
of 5. We have the following proposition. 

Proposition of 3.1 

1. 2 is of (non)-minimum phase if and only if C is of (non)-minimum phase. In fact, the 

2. 2 is stabilizable and detectable if and only if C is stabilizable and detectable. 
3. Orders of infinite zeros of 2 are reduced by one from those of C. 
4. V+(5 )=V+(C) .  
5. ~ - ( 5 ) =  Y - ( c )  n c - ' { I ~ ( D ) ] .  
6. 9'-(2) = { O }  if and only if C is left-invertible and of minimum phase with no infinite 

invariant zeros of 5 and C are the same. 

zeros of order higher than one. 

Proof. See Appendix. 0 

Remark 3.2 

Here we note that the auxiliary system 2 associated with the continuous-time current-type 
observer-based controller, always has the same invariant zeros as those of the original plant Z. 
The auxiliary system corresponding to the discrete-time current estimator-based controller, 
however, always has extra invariant zeros at 0, the origin of the complex plane (see, for 
example, Reference 15). 

Now, we are ready to present the necessary and sufficient conditions for ELTR and ALTR. The 
following is the main result of this section. 

Theorem 3.1 

Consider a stabilizable and detectable system C characterized by the quadruple ( A ,  B ,  C ,  D), 
which is not necessarily of minimum phase and which is not necessarily left-invertible. Let 
L,(s) = F @ B  be a desired target loop transfer function. Then we have the following: 

1. L,(s)  is exactly recoverable by a current-type observer-based controller if and only if 

S-(C)  n C-'(Im(D)) c Ker(F) (22) 
2. L,(s )  is asymptotically recoverable by a current-type observer-based controller if and only 

if 

'?V + (C) C_ Ker(F) (23) 
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Proof. In view of Lemma 3.1, it is sufficient to prove the above theorem by deriving the 
conditions under which M ( s )  can be made identically zero or arbitrarily small. Let us consider 
an auxiliary system characterized by 

i = A T x + C T u + F T w  1 z = BTx + DTu 
=aux 

Then, with the state feedback law, U = -KTx, the closed-loop transfer function from w to z, 
denoted by TL,Js), is simply Tl,v(s) = MT(s). Hence, the problem of finding an observer gain 
mauix K such that A - KC is stable and M ( s )  = 0 is equivalent to the well-known disturbance 
decoupling problem with internal stability (DDPS) for E,,, of (24). Similarly, the problem of 
finding a family of observer gains K ( E )  such that as E + O ,  A - K ( E ) C  is stable and the 
corresponding 

M ( s ,  E ) *  F[sI  - A + K ( E ) C ] - ~ [ B - K ( E ) D ]  -+O 

pointwise in s E 43, is equivalent to the well-known almost disturbance decoupling problem with 
internal stability (ADDPS) for E,,,,. Thus, the results of Theorem 3.1 follow from Proposition 3.1 
and the well-known results of the DDPS and ADDPS (see, for example, References 5 and 20). 0 

Remark 3.3 

By utilizing the auxiliary system C,,, of (24), one can construct a current-type observer-based 
controller that achieves ELTR or ALTR using any existing design methodologies. Currently, 
there are three design procedures available for LTR. They are the H,-optimization, the H,- 
optimization, and the asymptotic time-scale and eigenstructure assignment ( A E A )  based 
design algorithms (see, for example, Reference 15). We refer the interested readers to 
Reference 15 for detail. 

Remark 3.4 

In the case when a target loop transfer function is both exactly and asymptotically 
recoverable, it is in general desirable to recover it exactly because (i) compensators that 
achieve ELTR do not have high-gain problems and (ii) the overall achieved loop preserves all 
properties of the given target loop. On the other hand, it was pointed out by one of our 
referees that, in some cases, compensators achieving ALTR may add some additional roll-off 
at high frequencies to the achieved loop. However, the price one has to pay for this additional 
roll-off may be very high as it is well-known that the ALTR is always associated with high 
gains. 

The following are some interesting corollaries. 

Corollary 3. I 

which is not necessarily of minimum phase and which is not necessarily left-invertible. Then 
Consider a stabilizable and detectable system C characterized by the quadruple (A, B, C, D), 

1. any arbitrarily given target loop transfer function is exactly recoverable by the current- 
type observer-based controller if and only if C is left-invertible and of minimum phase 
with no infinite zeros of order higher than one; 
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2. any arbitrarily given target loop transfer function is asymptotically recoverable by the current- 
type observer-based controller if and only if C is left-invertible and of minimum phase. 

Proof. Observing that Yp-(Z) f l  C-'[Im(D)) = [ O )  if and only if C is left-invertible and of 
minimum phase with no infinite zeros of order higher than one, and T + = { 0) if and only if C is 

0 left-invertible and of minimum phase, the results follow from Theorem 3.1. 

Corollary 3.2 

which is not necessarily of minimum phase and which is not necessarily left-invertible. Then 
Consider a stabilizable and detectable system C characterized by the quadruple (A,  B ,  C, D), 

1. if a target loop transfer function is exactly recoverable by any arbitrarily structured output 
feedback Controller, it can be exactly recovered by a current-type observer-based controller; 

2. if a target loop transfer function is asymptotically recoverable by any arbitrarily structured 
output feedback controller, it can be asymptotically recovered by a current-type observer- 
based controller. 

Proof. It follows from Theorem 3.1 and the results in Chapter 10 of Reference 15. cl 
The following remarks are in order. 

Remark 3.5 

We recall from References 4 and 15 that the condition under which a desired target loop 
transfer function L,(s)  = FQB can be exactly recovered by a conventional full order observer- 
based controller is Yp-(C) Ker(F). Clearly, this is stronger than the condition given in (22) 
(see also Example 3.1). Also, from the analysis of References 4 and 15, we know that the high- 
gain feature of LTR design is merely associated with the infinite zero structure of the given 
system. Since orders of infinite zeros of 2 are reduced by one from those of C (see item 3 of 
Proposition 3. l) ,  the current-type observer-based controller in general requires smaller gain than 
the conventional full order observer-based controller for the same degree of recovery. 

Remark 3.6 

In this paper, we are mainly focusing our attentions on the cases where a target loop transfer 
function is either exactly or asymptotically recoverable. For the non-recoverable case, one can 
exactly follow the procedures in Reference 15 to design a current observer-based controller that 
shapes the recovery error over certain band of frequencies or achieves recovery in a given 
control subspace. 

We illustrate our results in the following example. 

Example 3.1 

characterized by 
Let us consider an example in the seminal work of Doyle and Stein6 The given plant C is 

x = [  -3 O -4 ' ] X + [ ? ] U ,  
y = [ 2  l]X+O.U 
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It is simple to verify that C is invertible and of minimum phase with one invariant zero at s = -2 
and one infinite zero of order one. The desired target loop transfer function is characterized by a 
state feedback gain 

F =  [SO 101 

It is well understood in LTR literature that such a target loop transfer function cannot be exactly 
recovered using the conventional full order observer-based controller. Nevertheless, it can be 
exactly recovered by a current-type observer-based controller (see Corollary 3.1). From (lO), we 
obtain 

c=[  -3 -2 '1 and .=[:I 
Then it is easy to see that a current-type observer-based controller with 

achieves exact loop transfer recovery (note that B - KD = 0 and hence M ( s )  = 0). 

4. CURRENT-TYPE CSS ARCHITECTURE-BASED CONTROLLER DESIGN 

It turned that the observer-based controller architecture is not the best structure for LTR. 
Recently, Chen er focused on a number of theoretical and numerical studies of the LTIZ 
design concept and its potential practicability when an arbitrary structure is used for controller. 
The investigations of References 2 and 3 lead to an important conclusion that the dynamic 
structure on so-called architecture of a controller plays a predominant role in dictating the 
controller gain and thus the controller bandwidth required to achieve a certain degree of 
recovery. Based on the study of loop transfer recovery mechanism, Chen er a1.2.3 developed an 
architecture that can be called a CSS ~rchitecture'~ for controller. There have been two CSS 
architecture-based controllers available till now, namely the full and reduced order ones which 
structurally correspond to the full and reduced order observer-based controllers, respectively. 
Following the footsteps of References 2 and 3, we propose in this section a new current-type 
CSS architecture-based controller. 

The motivation behind the CSS architecture is very simple. Let us first study the physical 
interpretation of the recovery matrix M ( s ) .  To do so, one can view the current-type observer- 
based controller as a device having two inputs, (i) the plant input U and (ii) the plant output y, 
and one output, - li. Then it is simple to show that 

-li(s) = M(s)u(s )  + N ( s ) y ( s )  (25) 

where N ( s )  is as given in (20). It is clear that M ( s )  is the transfer function or the link from the 
plant input point U to the controller output point -li. Thus, whenever LTR is achieved, the 
controller output does not entail any feedback from the plant input. Based on this observation, 
we are inspired to remove the abovementioned link right from the start of design. Once the link 
is removed, or what is now called CSS architecture, we embark on a new design philosophy 
which is outside the realm of observer theory and hence the separation principle is no longer 
valid. Without the blessing of the separation principle, one has to prove that the design 
objectives of closed-loop stability and recovering the target loop shape can be simultaneously 
achieved. We intend to do exactly this in the following. 
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The time-domain equations of a current-type CSS architecture-based controller are given by 

ir = (A - K ~ ) v  + [KO kl + (A - KQK, ] y  
--U =-2 = FV + [0 F R l ] y  

where F again is the desired state feedback gain, d and are as defined in (lO), and 

K =  [KO K, R I ]  
is the new controller gain matrix, the only free design parameter in (26). The transfer function 
of such a controller is 

' & , ( s ) = F ( s l - A + K d ) - ' [ K ,  K l + ( A - K d ) R l ] +  [0 FK, ]  (27) 

A block diagram implementation of a current-type CSS architecture-based controller is depicted 
in Figure 3. 

We impose right from the beginning of design that the controller gain K is chosen such that 
A -  KC is stable, i.e., the controller of (26) is open-loop stable. Also, another point to be 
emphasized is this. In the case of current-type observer-based controller, the separation principle 
is valid and hence once the matrix A - Kd is designed to be stable, the closed-loop-stability of 
the plant Z together with the controller g0(s) is guaranteed. This is not so in the case of CSS 
architecture-based controllers. So we intend to design the current-type CSS architecture gain 
matrix K to meet the following goals: 

1. The current-type CSS architecture-based controller is open-loop asymptotically stable, i.e., 
I ( A  - Kc) C 43-. 

2. The closed-loop system comprising the given system C and the current-type CSS 
architecture-based controller (26) is asymptotically stable, i.e., I (Ac l )  C C - , where 

(28) I A - KC - HDF HC - HDF[O K , ] C  [ -BF A - BF[O K , ] C  Ad + 

and where H e  [KO K, + ( A - K d ) K , ] .  
3. To achieve exact or asymptotic loop transfer recovery, i.e., the attained loop transfer 

function L J s )  + % J s ) P ( s )  is either exactly or approximately equal to the target loop 
transfer function L,(s).  
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At first, by means of the following lemma, we characterize the recovery error between the 
target and attained loop transfer function via the current-type CSS architecture-based 
controller. 

Lemma 4.1 

Consider a stabilizable and detectable system C characterized by the quadruple (A, B, C, D), 
which is not necessarily of minimum phase and which is not necessarily left-invertible. Let 
L,(s)  = F @  B be a desired target loop transfer function. Then the recovery error EJs)  between 
the target loop transfer function L,(s)  and that realized by the current-type CSS architecture 
based controller is given by 

E&) = L,(s)  - L,(s)  = M ( s )  (29) 

M ( ~ ) = F ( ~ ~ - A + K ~ ) - ~ ( B - K ~ )  (30) 

where 

Proof. In view of (20), (21) and (27) we have 

%Js) = L,(s )  - %Js)P(s )  = M ( s )  

This proves Lemma 4.1, U 
Lemma 4.1 establishes a powerful interconnection between the properties of the current- 

type CSS architecture-based and the current-type observer-based controllers. Next, the 
following theorem reveals that if a desired target loop transfer function L,(s)  is exactly (or 
respectively asymptotically) recoverable by a current-type observer-based controller, it is also 
exactly (or respectively asymptotically) recoverable by a current-type CSS architecture-based 
controller. 

Theorem 4.1 

Consider a stabilizable and detectable system C characterized by the quadruple 
(A, B, C, D), which is not necessarily of minimum phase and which is not necessarily left- 
invertible. Let L,(s )  be a desired target loop transfer function. Then we have the 
following: 

1. L,(s)  can be exactly recovered via a current-type CSS architecture-based controller if and 
only if 

9'- (C) f l  C-I{ Im(D)) Ker(F) (31) 
2. L, ( s )  can be asymptotically recovered via a current-type CSS architecture-based controller 

if and only if 

'Y + (C) Ker(F) (32) 

Proof. In view of the results of Lemma 4.1 and the proof of Theorem 3.1, in order to prove 
Theorem 4.1 for each case considered, all one requires is to prove that the resulting closed-loop 
system under the current-type CSS architecture-based controller is asymptotically stable. First, 
let us define a new variable, 

w c x -  v - R , y ,  (33) 
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We have 
- 

W v = f - V - K  131 

= AX + BU - ( A  - K ~ ) v  - Koyo - K l y ,  - ( A  - K 6 ) K I y l -  KICI Ax -KICIBu 
= A X + B u -  ( A - K C ) v -  K o C o ~ - K I C l ~ - ~ l C ~ A x - K ~ D ~ ~ - K ~ C ~ B ~ -  (A-KC)y l  
= ( A  - K C ) ( X  - v - R l y l )  + ( B  -KD)u 
= ( A  - KQW + ( B  - KD)U (34) 

and 
- .U = FV + [0 FKl ]y  = FX - FW (35) 

Then it is simple to verify that the dynamic matrix of the closed-loop system with a current-type 
CSS architecture-based controller is given by 

1 A - KC + (B - KD)F -(B - KD)F 
Ad @ [ BF A - B F  

The rest of our proof follows along the same lines of reasoning given in References 4 and 15. 0 

Remark 4.1 

current-type CSS architecture-based controller. 
Again, one can use any design methodologies mentioned in Remark 3.3 to construct the 

The above development culminating in Theorem 4.1 shows clearly that a current-type CSS 
architecture-based controller can do whatever the corresponding current-type observer-based 
controller or any arbitrarily structured controllers can do. Our next task is to show the benefits of 
CSS architecture-based controllers. Let us note that the task leading to Theorem 4.1 pursued 
only the capabilities of CSS architecture-based controllers. Theorem 4.1, in the case of 
asymptotic recovery, merely examines whether the recovery error E,(s )  can be asymptotically 
rendered zero. It does not take into account the rate at which the recovery error tends to zero. A 
crucial question that arises here is how does the compromised level of recovery when the CSS 
architecture-based controller is used, compared with that when the observer-based controller is 
used. To seek an answer to such a question, one needs to study the rate at which different 
recovery errors tend to zero. Theorem 4.2 presents the result of such a study. 

Theorem 4.2 
Consider a stabilizable and detectable system C characterized by the quadruple ( A ,  B,  C, D ) ,  

which is not necessarily of minimum phase and which is not necessarily left-invertible. Let the 
given target loop transfer function L, ( s )  be asymptotically recoverable. Also, let the same gain 
matrix K be used for both current-type observer-based and CSS architecture-based controllers 
and be such that a , , [M( jw) ]  is small (say, 6 1 but nonzero) for all w.  Furthermore, assume 
that 

a m i n [ L , ( j w ) l  = a m i n [ F ( j w Z - A ) - ' B ]  + 1 for all w E 0, (37) 
for some frequency region of interest, R,. Then for all w E R,, the error between the target 
loop transfer function and the one attained by the current-type CSS architecture-based 
controller, is always less than the corresponding one attained by the current-type observer-based 
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controller. More specifically, we have 

~,,,[E,,(jo)I % c~,,[E,(jo)l for all 0 E SZ, (38) 

Proof. It follows from the similar arguments as in Theorem 7 of Reference 2. 0 

Remark 4.2 

It is well known (see, for example, Reference 7) that in order to have a good command 
following and disturbance rejection properties, the target loop transfer function L,(jw) has to be 
large and consequently, the minimum singular value a,,,,,[L,(jw)] should be large in the appropriate 
frequency region. Thus the condition (37) is always satisfied in all practical situations. 

We illustrate the above result in the following example. 

Example 4.1 

Consider a system3 characterized by 

which is square and invertible and one invariant zero at s = 0.3. Since the given system is of 
non-minimum phase, not all the target loop transfer functions are recoverable. The geometric 
subspace 'V * (E) for this example is given by 

-25 -25 1 -25 1 0  
0 0  

Let the target loop transfer function, L,(s)  = FcPB, be specified by the following gain matrix, 

F = [  -;; 2:: ; :;I 
It is simple to see that the specified target loop transfer function is asymptotically recoverable 
since T'(Z) g Ker(F). From (lO), we obtain 

1 0 0  0 0  
c = [  -25 1 -25 1 -25 and D = [ O  1 0  '1 

0 0  0 0  
Using the H,-optimization-based algorithm (see, for example, Reference 15), we obtain a gain 
matrix, 

1 0.985 490 66 -0.025 349 23 0.998 348 55 -0.029 878 38 
-0.025 349 23 1.367 509 84 -0.003 400 46 0.883 195 93 

6-742 081 27 21.629 345 95 0.580 565 03 14-187 561 98 
-0.029 878 38 0.883 195 93 -0.238 550 59 95.134 419 70 
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which places 1 ( A  -Kc) at { -103.0974, -1.0297, -1.4373, -0.2937}. Let the above K be 
used for both current-type observer- and CSS architecture-based controllers. The plots of the 
maximum and minimum singular values of the target loop transfer function as well as the two 
recovered loop transfer functions, one for the current-type observer-based controller and 
another for the current-type CSS architecture-based controller, are given in Figure 4. Also, the 
maximum singular values of the recovery errors E, , ( jo )  and E,(jw) are plotted in Figure 5. 
Both figures clearly show that the CSS architecture-based controller is much better than the 
observer-based controller for LTR. It is worth noting that the maximal values ofa,,,[E,(jo)] 
and a,,,[E,(jw)] in the frequency range shown in the plots are 45.1537 and 0.9177, 
respectively. 

5 .  CONCLUDING REMARKS 

In this paper, we have introduced two new controller structures, namely the current-type 
observer- and current-type CSS architecture-based controllers, for LTR design. It turned out that 
these controllers have the capacity to do whatever any arbitrarily structured controllers can do. 
As expected, the CSS architecture-based, however, requires much smaller gain than the 
observer-based one for the same degree of recovery. It is worth noting that the new current-type 
observer has balanced the observer structures for continuous-time and discrete-time systems and 
it has potential applications in H2 and H ,  optimal control. This will be the subject of our future 
research. 

APPENDIX: PROOF OF PROPOSITION 3.1 

In what follows we first recall from References 17 and 18 the special co-ordinate basis (SCB) for a linear 
time-invariant system. Such a co-ordinate basis has a distinct feature of explicitly displaying the finite and 
infinite zero structures of a given system as well as other system geometric properties. 

Consider a system C characterized by the quadruple (A, B, C, D )  as in (1). It is simple to verify that 
there exist nonsingular transformations U and V such that 

UDV=['-. 0 0  '1 (39) 

where ino is the rank of matrix D. Hence hereafter, without loss of generality, it is assumed that the 
matrix D has the form given on the right-hand side of (39). One can now rewrite the system of (1) 
as, 

where the matrices B,, B,, CO and C, have appropriate dimensions. We have the following theorem. 

Theorem A.1 (SCB) 

For any given system C characterized by (A, B, C, D), there exist 

1. nonnegative integers n; , n:, nh, n,, nd, tnd d tn - m, and qi, i = 1 ,  ..., tnd, and 
2. nonsingular state, output and input transformations r,, r, and r, which take the given C into a 

special co-ordinate basis that displays explicitly both the finite and infinite zero structures of C. 
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The special co-ordinate basis is described by the following set of equations: 

and 

andfo reach i= l ,  ..., m,, 

(46) 

(47) 

1 1% 

[ j =  1 
ij = A  X. +Lioyo  + L j d y d  +Bqj U; + EiUxu + Ejhxb + Eicx, + Eii  xi 4 ;  f 

yi = C,,Xi, y ,  = C$, 
Here the states x i ,  x:, x,, x, and x, are respectively of dimensions n;, n,+, n,, n, andrid= 
is of dimension qi for each i = 1, ..., ind. The matrices A , ,  B ,  and Cu, have the following form: 

qi, while xi 

Furthermore, we have A(%;) E 43-, A(%:) E C', the pair (A,,, B,)  is controllable and the pair (A,,, C,) is 
observable. 

0 Proof. See Sannuti and Saberi," and Saberi and Sannuti." 

The following are some important properties of the special co-ordinate basis. 

Property AI 

1. Invariant zeros of I: are the eigenvalues of A,. Moreover, the invariant zeros which are in C- and 
C+ are respectively the eigenvalues of 4 and $a. 

2. The given system C is right-invertible if and only if xb and hence yb  are nonexistent, left-invertible 
if and only if x, and hence U, are nonexistent, invertible if and only if both x, and x, are 
nonexistent. 

3. Let i n  = in,,. Let dj be an integer such that exactly Qj elements of qi,  i = 1 ,  ..., in,, are equal to j .  Also, 
let k be an integer such that (r, = 0 for all j >  k.  Then has jqj number of infinite zeros of order j ,  
forj=O, ..., k. 

4. x,' @x,ex, spans Y-( I : )  and x,'@ x, spans "v'(C). 

Now we are ready to prove Proposition 3.1. Without loss of generality but for simplicity of 
presentation, we assume that the given system C is in the form of the special co-ordinate basis given in 
Theorem A.l.  Let us partition x,= [(x,,)~, ( x , , ) ~ ,  ( x ~ ) ~ ] ~ ,  where xdl is the part of the output associated 
with the infinite zeros of order one, x, is the rest of the output associated with the infinite zeros of order 
higher than one and x, consists of the state variables corresponding to the rest of the infinite zeros. Now, 
by an appropriate permutation transformation of the state variables, we can partition the given system as 
follows, 
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BdOl 
Bd 00 0 0 0  
Bbo 0 0 0 

Bi0 0 0 0 

Bi0 0 0 0 

Bco O O Bc 
-Bd02 ‘ d 2  

A - BOCO = 

Edll  Ed10 Ebl E,i ECl Ed12 

LdOl LdOO 0 0 0 cd2 
Lbdl  ‘ b d 0  Abb 0 0 0 0 

‘id1 Libcb 0 0 0 

Lldl Libcb AOa 0 0 

Lcdl LcdO ‘cbCb 4, 0 

,Ad21 Ad20 ’d2 Eb2 ’dZEi2 B d 2 E i 2  Bd2Ec2 Ad22 -k Ed22 

Let us define [ CO cl ] and D% [‘- C i l ]  
C? + C, ( A  - BOCO) 

We note that e = I‘d and B = rD, where r is a nonsingular matrix, 

Thus, establishing the required properties for a system characterized-by (A, B ,  c, D), isAequivalent to 
doing the same for a system characterized by the quadruple ( A ,  B, C ,  D).  We next rewrite C and 6 in the 
form, 

0 0 ‘0, 

E d l l  Ed10 Ebl E i l  Eu’I Ed12 

LdOl LdOO ‘d2  

‘ b L b d l l  ‘hLbdl0  ‘hAbh 
I 0 0 0 0 0 0  
0 I 0 0 0 0 0  
0 0 c ~ o o o o  

, B =  

41, 0 0 0 

0 I 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
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It is trivial then to verify that the system characterized by (A, B ,  e, 6 )  has the same finiIe apd 
infinite zero structures, and the invertibility properties as the system characterized by (A, ,  B , ,  C,) 
does, where 

A ,  = 

and 

0 0  0 0 0 0 0 
LdOl LdOO 0 0 0 0 'd 2 
Lbdl LhdO 0 0 0 0 

' i d  I Libch 0 0 0 

Lrr+hch A,= 0 0 

Lcdl LcdO Lcbcb BcEci BcEL Arc 0 

Ad21 Ad20 Bd2Eb2 Bd2Ei2 Bd2Ez2 Bd2Ec2 Ad22 + Bd2Ed22 

0 0  
0 0  
0 0  

0 0  

0 0  

O Bc 

Bd2 

where 

0 1 0 0  
0 1  0 

ALC,' 0 0 C,' 
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where (Acc,Dc) is a controllable pair, and E;, ..., are some constant matrices with appropriate 
dimensions. It is now trivial to see that the above system is in the standard form of the SCB. Hence all the 
properties listed in Proposition 3.1 can be verified easily by the properties of the SCB (see Property A.l) 
and by some simple algebra. 
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