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SUMMARY

This paper investigates a global stabilization problem and a nonlinear H∞ control problem for a class of
nonminimum phase nonlinear multivariable systems. To avoid the complicated recursive design procedure,
an asymptotic time-scale and eigenstructure assignment method is adopted to construct the control laws
for the stabilization problem and the nonlinear H∞ control problem. A sufficient solvability condition is
established on the unstable zero dynamics of the system for global stabilization problem and nonlinear
H∞ control problem, respectively. Moreover, based on the sufficient solvability condition, an upper bound
of the achievable L2-gain is estimated for the nonlinear H∞ control problem. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider a class of uncertain nonlinear systems whose nonlinearities are unknown but depended
only on the output. By transforming the system into a so-called special coordinate basis (SCB)
form [1, 2], the system is exactly a nonlinear system in the output feedback form which has been
extensively studied in the literature. The geometric conditions for transforming an affine nonlinear
system into the output feedback form are given in [3]. In the past two decades, various control
problems have been investigated for the nonlinear system in output feedback form, such as global
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stabilization [4], nonlinear output regulation [5–7], unknown disturbance rejection [8, 9], just to
name a few. However, most of these works are based on a minimum phase assumption. That is,
the zero dynamics of the nonlinear system is assumed to be stable. Only a few results are for
the nonminimum phase systems (see, e.g. [10–13]). Nevertheless, the systematic design method
for the global stabilization problem of the nonminimum phase systems is limited to the systems
with one-dimensional unstable zero dynamics [10, 13]. Recently, in [14], we developed a global
stabilization technique for the nonminimum phase nonlinear systems with high-order unstable
zero dynamics for single-input and single-output (SISO) systems. To construct the control law, a
recursive algorithm developed by Tsinias [15] is used. However, the recursive algorithm leads to
tedious and complex calculation for high-order systems. Especially, for the multi-input and multi-
output (MIMO) systems, the recursive algorithm needs to be performed separately for each input
channel. As a special case of the MIMO system, the SISO system is invertible. The stabilization
method proposed in [14] for SISO systems is not directly applicable to the MIMO systems if the
MIMO systems are not invertible. In the literature, the time-scale method is a familiar tool to solve
the control problems for the systems in various special structural forms. For example, Marino
et al. [16] used a time-scale method to solve almost disturbance and almost input–output decoupling
problems for linear systems in a pseudo-canonical form. This pseudo-canonical form is slightly
different from the Morse pseudo-canonical form, but the Morse (pseudo-) canonical form can be
easily deduced from it [16]. It is well known that the Morse canonical form gives information on
zero structure, observability, controllability and invertibility of the system. However, the outputs of
the system are coupled with the inputs in the Morse canonical form and the pseudo-canonical form
developed in [16]. As shown in Section 2, the SCB form not only gives a more clear structure on
zero structure, observability, controllability and invertibility of the system, but also gives a clearly
decoupled structure of inputs and outputs (see, e.g. [1, 2, 17] for details on the SCB form). With
the virtues of the SCB form, in this paper, we also adopt a time-scale method called the asymptotic
time-scale and eigenstructure assignment (ATEA) method, originated in [18, 19] for solving linear
control problems, to construct the control laws to avoid the complicated calculations for the MIMO
systems. Moreover, the extended method can tackle right invertible MIMO systems.

The nonlinear H∞ control problem has attracted much research effort since the works of
Van der Schaft [20, 21], and many interesting results are available in the literature, see [22–28] and
references therein. The solvability of the nonlinear H∞ control problem involves in the solvability
of a �-related Hamilton–Jacobi (HJ) equation, where � is a desired L2-gain from the disturbance
input to the system output. If �>0 is arbitrary, the nonlinear H∞ control problem is known as
an almost disturbance decoupling problem. It was shown that the almost disturbance decoupling
problem is solvable if the disturbance input does not affect the unstable part of zero dynamics
of the system, [29–31], or if the zero dynamics contains only a special chain of integrators [32].
However, for more general situations, disturbance decoupling is generally not feasible. One has
to seek to design a controller that achieves a pre-specified L2-gain �>�∗, where �∗ is the best
achievable performance for the problem, i.e. the problem is solvable for �>�∗ and not for �<�∗.
The optimal value �∗ can be nicely calculated for linear H∞ control problem. For more details,
see [33–35]. However, how to calculate �∗ exactly and directly is still open for nonlinear H∞
control problem. But the problem of estimating the optimal �∗ was investigated in [26, 36]. The
estimation of optimal L2-gain for nonlinear H∞ control problem is obtained in [36] under the
assumption that the zero input system is stable. In [26], an upper bound of the optimal value �∗ is
computed for a class of nonlinear systems with a second-order zero dynamics. In this paper, we
make another effort to obtain an upper estimate of the optimal L2-gain �∗ based on a sufficient
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solvability condition of the nonlinear H∞ control problem. The sufficient condition is established
by using the global stabilization technique proposed in Section 3 during which an H∞ control law
is constructed explicitly without solving any HJ equations.

The paper is organized as follows. Section 2 gives the problem formulation and a simple
introduction on the SCB form. In Section 3, the ATEA method is applied to construct a linear
state feedback control law for the global stabilization problem. Section 4 solves a nonlinear H∞
control problem by using this stabilization technique. Section 5 extends the results to the systems
that have zeros on the imaginary axis. In Section 6, an illustrative example is given for solving an
H∞ control problem. Finally, we draw some concluding remarks in Section 7.

2. PROBLEM FORMULATION AND SYSTEM TRANSFORMATION

Consider the nonlinear system of the form

�̇ = A�+Bv+�(y)+G(�)w

y = C�
(1)

where �∈Rn is the state, w∈Rs the disturbance input, v∈Rm the control input, y∈Rp the system
output and

�(y)=

⎡
⎢⎢⎢⎣

�1(y)

...

�n(y)

⎤
⎥⎥⎥⎦ , G(�)=

⎡
⎢⎢⎢⎣
g11(�) · · · g1s(�)

...
...

...

gn1(�) · · · gns(�)

⎤
⎥⎥⎥⎦

where �i (y) :Rp →R, i=1, . . . ,n, gi j (�) :Rn →R, i=1, . . . ,n, j =1, . . . ,s are some smooth
nonlinear functions, and �i (0)=0.

The global stabilization problem by linear feedback: Consider system (1) with w=0 and find
a linear state feedback control law of the form

v=K� (2)

such that the equilibrium at �=0 of the closed-loop system consisting of (1) and (2) is globally
asymptotically stable.

The nonlinear H∞ control problem by linear feedback: Given �>0, find, if possible, a linear
state feedback control law of form (2) such that the equilibrium at �=0 of the closed-loop system
consisting of (1) and (2) is globally asymptotically stable and has an L2-gain, from the exogenous
disturbance input w to the output y, that is less than or equal to �, i.e.∫ T

o
‖y(t)‖2 dt��2

∫ T

0
‖w(t)‖2 dt (3)

for all T�0 and zero initial state �(0)=0.
The following assumptions are made in this paper.
Assumption A1: (A, B) is stabilizable, and (A, B,C) is right invertible.
Assumption A2: The linear system (A, B,C) has no invariant zeros on the imaginary axis.
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Assumption A3: There exist n positive real numbers ki , i=1, . . . ,n, such that

|�i (y)|�ki‖y‖ ∀y∈Rp (4)

Assumption A4: There exist positive real numbers li j , i=1, . . . ,n, j =1, . . . ,s, such that

|gi j (�)|�li j ∀�∈Rn (5)

To establish the solvability of the stabilization problem and the nonlinear H∞ control problem,
we transform system (1) into the SCB form. Specifically, using the result of SCB (see, e.g. [1, 2]),
if (A, B,C) is right invertible, there exist nonsingular matrices �s , �i and �o such that

Ā=�−1
s A�s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A−
aa 0 0 0 L−

adCd

0 A0
aa 0 0 L0

adCd

0 0 A+
aa 0 L+

adCd

BcE
−
ca BcE

0
ca BcE

+
ca Acc LcdCd

Bd E
−
da Bd E

0
da Bd E

+
da Bd Edc Add

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̄=�−1
s B�i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 Bc

Bd 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

C̄=�−1
o C�s = [0 0 0 0 Cd ]

where in particular,

Add = A∗
dd +Bd Edd +LddCd

with

A∗
dd = blkdiag{Aq1, Aq2, . . . , Aqmd

}
Bd = blkdiag{Bq1, Bq2, . . . , Bqmd

}
Cd = blkdiag{Cq1,Cq2, . . . ,Cqmd

}
The matrices Aqi , Bqi and Cqi , i=1,2, . . . ,md , have the form

Aqi =
[
0 Iqi−1

0 0

]
, Bqi =

[
0

1

]
, Cqi =[1,0, . . . ,0]

and A−
aa∈Rn−

a ×n−
a , A0

aa∈Rn0a×n0a , A+
aa∈Rn+

a ×n+
a , Acc∈Rnc×nc with n−

a +n0a+n+
a +nc+∑md

i=1 qi =n.
It should be noted that md = p in this case. Moreover, all the eigenvalues of A−

aa are strictly in the
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left-half plane, all those of A0
aa are on the imaginary axis and all those of A+

aa are strictly in the
right-half plane.

Define the state, output and input transformations

x=�−1
s �, yd =�−1

o y, u=�−1
i v (6)

and partition x and u as follows:

x=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x−
a

x0a

x+
a

xc

xd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u=
[
ud

uc

]

where x+
a ∈Rn+

a , x0a ∈Rn0a and x−
a ∈Rn−

a , xc∈Rnc , uc∈Rmc with mc+md =m, and

xd =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...

xmd

⎤
⎥⎥⎥⎥⎥⎦ , yd =

⎡
⎢⎢⎢⎢⎢⎣

y1

y2

...

ymd

⎤
⎥⎥⎥⎥⎥⎦ , ud =

⎡
⎢⎢⎢⎢⎢⎣

u1

u2

...

umd

⎤
⎥⎥⎥⎥⎥⎦

where xi ∈Rqi , yi ∈R, ui ∈R for i=1,2, . . . ,md . Respectively, denote

�(yd)=�−1
s �(�oyd)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�−
a (yd)

�0
a(yd)

�+
a (yd)

�c(yd)

�d(yd)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, H(x)=�−1
s G(�s x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H−
a (x)

H0
a(x)

H+
a (x)

Hc(x)

Hd(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, system (1) is transformed into the SCB form

ẋ−
a = A−

aax
−
a +L−

ad yd +�−
a (yd)+H−

a (x)w

ẋ0a = A0
aax

0
a +L−

ad yd +�0
a(yd)+H0

a(x)w

ẋ+
a = A+

aax
+
a +L+

ad yd +�+
a (yd)+H+

a (x)w

ẋc = Accxc+Lcd yd +�c(yd)+Hc(x)w+Bc(uc+E−
cax

−
a +E0

cax
0
a +E+

cax
+
a )

ẋd = A∗
dd xd +Ldd yd +�d(yd)+Hd(x)w

+Bd(ud +E−
dax

−
a +E0

dax
0
a +E+

dax
+
a +Edcxc+Eddxd)

yd = Cdxd

(7)
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Remark 2.1
Since �(yd)=�−1

s �(�oyd), �(0)=�−1
s �(0)=0. Assumption A3 implies that there exists a posi-

tive real k0 such that

‖�(yd)‖�k0‖yd‖ (8)

Moreover, there exist constant matrices D+
a ∈Rn+

a ×q1 , D0
a ∈Rn0a×r and a Lebesgue measurable

function matrix G(yd)∈Rr×p such that

[
�0
a(yd)

�+
a (yd)

]
=
[
D0
a

D+
a

]
G(yd)yd (9)

where (G(yd))TG(yd)�I for all yd ∈Rp, and r is an appropriate positive integer.

Remark 2.2
Under Assumption A4, it is clear that ‖H−

a (x)‖, ‖H0
a(x)‖, ‖H+

a (x)‖, ‖Hc(x)‖ and ‖Hd(x)‖ are

bounded for all x ∈Rn . Moreover, there exist two constant matrices H0
a ∈Rn0a×s and H+

a ∈Rn+
a ×s

such that

[
H0

a(x)

H+
a (x)

][
H0

a(x)

H+
a (x)

]T
�
[
H0
a

H+
a

][
H0
a

H+
a

]T
(10)

3. STABILIZATION BY ASYMPTOTIC TIME-SCALE AND
EIGENSTRUCTURE ASSIGNMENT

In this section, we use the ATEA method to solve the global stabilization problem for systems (1)
with w=0 under Assumptions A1–A3. Assumption A2 implies that n0a =0, that is, the dynamic
equation of x0a does not appear in (7). As will be seen in Section 5, this assumption can be removed.
The concept of the ATEA method was originally proposed in [19] and developed fully in Chen
[18, 33]. It is decentralized in nature and is in fact rooted in the concept of singular perturbation
methods of Kokotovic et al. [37]. Such a design method has been utilized intensively to solve
many linear control problems, such as H∞ control, H2 optimal control, loop transfer recovery and
the disturbance decoupling problem.

Theorem 3.1
Under Assumptions A1–A3, let PL>0 and PD�0 be the solution of

PL(A+
aa)

T+A+
aa PL = L+

ad(L
+
ad)

T (11)

PD(A+
aa)

T+A+
aa PD = D+

a (D+
a )T (12)

respectively. If PL>PD , then the global stabilization problem is solvable by a linear state
feedback.
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Proof
First, let us construct a linear state feedback control law by the algorithm of ATEA [1]. Since
PL>PD , we have

P=(PL −PD)−1>0 (13)

Define and partition Fs as follows:

Fs =(L+
ad)

TP=

⎡
⎢⎢⎢⎢⎢⎢⎣

Fs1

Fs2
...

Fsmd

⎤
⎥⎥⎥⎥⎥⎥⎦

where Fsi are of dimensions 1×n+
a .

By the property of the SCB form [1], (Acc, Bc) is stabilizable. Thus, there exists a matrix
Fc∈Rmc×nc such that

Ac
cc= Acc−BcFc (14)

is stable.
Now, let

�i ={�i1,�i2, . . . ,�iqi }, i=1,2, . . . ,md

be the sets of qi elements, all in the strict left-half plane, which are closed under complex
conjugation. For i=1,2, . . . ,md , we define

pi (s)=
qi∏
j=1

(s−�i j )=sqi +Fi1s
qi−1+·· ·+Fiqi−1s+Fiqi

and a sub-gain matrix parameterized by a tuning parameter, �,

F̄i (�)= 1

�qi

[
Fiqi ,�Fiqi−1, . . . ,�

qi−1Fi1
]

(15)

and let

F̄s(�)=

⎡
⎢⎢⎢⎢⎢⎢⎣

Fs1F1q1/�
q1

Fs2F2q2/�
q2

...

Fsmd
Fmdqmd

/�qmd

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

Then, the ATEA state feedback gain is given by

F(�)=−�i (F̄(�)+ F̄0)�
−1
s (17)
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where

F̄(�) =
[
0 F̄s(�) 0 F̄d(�)

0 0 Fc 0

]
(18)

F̄0 =
[
E−
da E+

da Edc Edd

E−
ca E+

ca 0 0

]
(19)

and

F̄d(�)=blkdiag{F̄1(�), F̄2(�), . . . , F̄md (�)} (20)

We claim that there exists an �∗>0 such that

v=F(�)�

solves the global stabilization problem of system (1) for all 0<���∗. In fact, denote xs = x+
a and

Ass = A+
aa, Bs = L+

ad

It is clear that the closed-loop system in the SCB form is given by

ẋ−
a = A−

aax
−
a +L−

ad yd +�−
a (yd)

ẋs = Assxs+Bs yd +�+
a (yd)

ẋc = (Acc−BcFc)xc+Lcd yd +�c(yd)

ẋd = (A∗
dd −Bd F̄d(�))xd −Bd F̄s(�)xs+Ldd yd +�d(yd)

yd = Cdxd

(21)

Noting that A−
aa and Acc−BcFc are stable matrices, and �(yd) satisfies the linear growth condition

(8), to show the stability of (21), it suffice to show that

ẋs = Assxs+Bs yd +�+
a (yd)

ẋd = (A∗
dd −Bd F̄d(�))xd −Bd F̄s(�)xs+Ldd yd +�d(yd)

yd = Cdxd

(22)

is asymptotically stable. To this end, we define a state transformation

x̄s = xs, x̄i = xi +

⎡
⎢⎢⎢⎢⎢⎣

Fsi

0

...

0

⎤
⎥⎥⎥⎥⎥⎦ xs, i=1,2, . . . ,md , x̄d =

⎛
⎜⎜⎜⎜⎜⎝

x̄1

x̄2

...

x̄md

⎞
⎟⎟⎟⎟⎟⎠ (23)
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Then, using the special structure of A∗
dd , Bd and Cd , we have

˙̄xs = (Ass−Bs Fs)xs+L+
ad ȳd +�+

a (ȳd −Fsxs)

˙̄xi =
[
Aqi −

1

�qi
Bqi Fi Si (�)

]
x̄i + L̄is xs+ L̄id ȳd +�̄id(ȳd −Fsxs)

ȳd = yd +Fsxs =Cd x̄d

(24)

where

Fi =[Fiqi ,Fiqi−1, . . . ,Fi1], Si (�)=diag{1,�, . . . ,�qi−1} (25)

and

L̄is =

⎡
⎢⎢⎢⎢⎢⎣

Fsi

0

...

0

⎤
⎥⎥⎥⎥⎥⎦(Ass−Bs Fs)+Lis−Lid Fs, L̄id =

⎡
⎢⎢⎢⎢⎢⎣

Fsi

0

...

0

⎤
⎥⎥⎥⎥⎥⎦ Bs+Lid (26)

�̄id(yd) =

⎡
⎢⎢⎢⎢⎢⎣

Fsi

0

...

0

⎤
⎥⎥⎥⎥⎥⎦�+

a (yd)+�id(yd) (27)

with

⎡
⎢⎢⎢⎢⎢⎣

L1d

L2d

...

Lmdd

⎤
⎥⎥⎥⎥⎥⎦= Ldd ,

⎡
⎢⎢⎢⎢⎢⎣

�1d(yd)

�2d(yd)

...

�mdd(yd)

⎤
⎥⎥⎥⎥⎥⎦=�d(yd)

It should be noted that L̄is and L̄id are independent on �. Moreover, by the linear growth condition
(8), there exist constants �1,�2, . . . ,�md such that

‖�̄id(yd)‖��i‖yd‖ (28)

for i=1,2, . . . ,md .
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Now, define another state transformation for system (24),

x̃s = x̄s, x̃i = Si (�)x̄i , i=1,2, . . . ,md , x̃d =

⎛
⎜⎜⎜⎜⎜⎝

x̃1

x̃2

...

x̃md

⎞
⎟⎟⎟⎟⎟⎠ (29)

We have

˙̃xs = (Ass−Bs Fs)x̃s+Bs ỹd +�+
a (ỹd −Fs x̃s)

˙̃xi = 1

�
[Aqi −Bqi Fi ]x̃i +Si (�)L̄is x̃s+Si (�)L̄id ỹd +Si (�)�̄id(ỹd −Fs x̃s)

ỹd = Cd x̃d

(30)

Let Pi , i=1,2, . . . ,md , be positive-definite solutions of

Pi (Aqi −Bqi Fi )+(Aqi −Bqi Fi )
TPi =−I (31)

and define a Lyapunov function

V (x̃s, x̃d)=(x̃s)
TPx̃s+

md∑
i=1

x̃Ti Pi x̃i (32)

Then the derivation of (32) along the trajectory of (30) is given by

V̇ = (x̃s)
T((Ass−Bs Fs)

TP+P(Ass−Bs Fs)−FT
s (G(�))T(D+

a )TP−PD+
a G(�)Fs)x̃s

+2(x̃s)
TPL+

ad ỹd +2(x̃s)
TPD+

a G(�)ỹd

+
md∑
i=1

(
1

�
x̃Ti ((Aqi −Bqi Fi )

TPi +Pi (Aqi −Bqi Fi ))x̃i +2x̃Ti Pi Si (�)L̄is x̃s

)

+
md∑
i=1

(2x̃i Pi Si (�)L̄id ỹd + x̃Ti Pi Si (�)�̄id(�))

where �= ỹd −Fs x̃s .
Using (11)–(13), we have

(A+
aa)

TP+PA+
aa+P(D+

a (D+
a )T−L+

ad(L
+
ad)

T)P=0

Noting that Fs = BT
s P=(L+

ad)
TP and (G(�))TG(�)�I

(Ass−Bs Fs)
TP+P(Ass−Bs Fs)−FT

s (G(�))T(D+
a )TP−PD+

a G(�)Fs

=−P(L+
ad(L

+
ad)

T+D+
a (D+

a )T+L+
ad(G(�))T(D+

a )T+D+
a G(�)(L+

ad)
T)P

�−ε0 I
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for some ε0>0. Thus

V̇ (x̃s, x̃d) � −ε0(x̃s)
T x̃s+2(x̃s)

TPL+
ad ỹd +2(x̃s)

TPD+
a G(�)ỹd

+
md∑
i=1

(
−1

�
x̃Ti x̃i +2x̃Ti Pi Si (�)L̄is x̃s+2x̃i Pi Si (�)L̄id ỹd +2x̃Ti Pi Si (�)�̄id(�)

)

Since (G(�))TG(�)�I , L̄id and L̄is are independent on � and �̄id(�) satisfies the linear growth
condition (28), it is not difficult to show that there exists an �∗>0 such that

V̇ (x̃s, x̃d)�−ε1

∥∥∥∥∥
x̃s

x̃d

∥∥∥∥∥
2

for all 0<���∗, where ε1 is some positive real. This completes the proof of Theorem 3.1. �

4. NONLINEAR H∞ CONTROL

In this section, we show that the ATEA technique can be used to solve the nonlinear H∞ control
problem which yields the following theorem.

Theorem 4.1
Under Assumptions A1–A4, let PL>0, PD�0 and PH�0 be the solution of

A+
aa PL +PL(A+

aa)
T = L+

ad(L
+
ad)

T (33)

A+
aa PD+PD(A+

aa)
T = D+

a (D+
a )T (34)

A+
aa PH +PH (A+

aa)
T = H+

a (H+
a )T (35)

respectively. If there exists a 0<c<1 such that

Pc= PL − 1

c
PD>0 (36)

then the global nonlinear H∞ control problem is solvable for �>�̂+, where

�̂+ =
√

�max(P
−1
c PH )/(1−c) (37)

Proof
As the proof of Theorem 3.1, we first construct a state feedback control law by the ATEA method,
and then we show that this state feedback control law solves the nonlinear H∞ control problem.
Specifically, define

P=
(
PL − 1

c
PD− 1

(1−c)�2
PH

)−1

(38)
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Since PL>(1/c)PD and �>�̂+, P>0. Now, let Fs is given by

Fs =(L+
ad)

TP=

⎡
⎢⎢⎢⎢⎢⎢⎣

Fs1

Fs2
...

Fsmd

⎤
⎥⎥⎥⎥⎥⎥⎦

where Fsi are of dimensions 1×n+
a . Then, following the same lines of proof of Theorem 3.1, the

ATEA state feedback gain is given by

F(�)=−�i (F̄(�)+ F̄0)�
−1
s (39)

where F̄(�) and F̄0 are given by (18) and (19).
Next, we show that there exists an �∗>0 such that the state feedback control law

v=F(�)� (40)

solves the nonlinear H∞ control problem for any 0<���∗.
Denote xs = x+

a and

Ass = A+
aa, Bs = L+

ad

Transforming the closed-loop system (1) and (40) into the SCB form yields

ẋ−
a = A−

aax
−
a +L−

ad yd +�−
a (yd)+H−

a (x)w

ẋs = Assxs+Bs yd +�+
a (yd)+H+

a (x)w

ẋc = (Acc−BcFc)xc+Lcd yd +�c(yd)+Hc(x)w

ẋd = (A∗
dd −Bd F̄d(�))xd −Bd F̄s(�)xs+Ldd yd +�d(yd)+Hd(x)w

yd = Cdxd

(41)

Making state transformations

x̃−
a = x−

a , x̃s = xs, x̃c= xc, x̃i = Si (�)

⎛
⎜⎜⎜⎜⎜⎝xi +

⎡
⎢⎢⎢⎢⎢⎣

Fsi

0

...

0

⎤
⎥⎥⎥⎥⎥⎦ xs

⎞
⎟⎟⎟⎟⎟⎠ , i=1,2, . . . ,md (42)

on (41) and denoting

x̃d =

⎛
⎜⎜⎜⎜⎜⎝

x̃1

x̃2

...

x̃md

⎞
⎟⎟⎟⎟⎟⎠
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we have

˙̃x−
a = A−

aa x̃
−
a +L−

ad(ỹd −Fs x̃s)+�−
a (ỹd −Fs x̃s)+H−

a (x)w

˙̃xs = (Ass−Bs Fs)x̃s+Bs ỹd +�+
a (ỹd −Fs x̃s)+H+

a (x)w

˙̃xc = (Acc−BcFc)x̃c+Lcd(ỹd −Fs x̃s)+�c(ỹd −Fs x̃s)+Hc(x)w

˙̃xi = 1

�
[Aqi −Bqi Fi ]x̃i +Si (�)L̄is x̃s+Si (�)L̄id ỹd +Si (�)�̄id(ỹd −Fs x̃s)

+Si (�)H̄id(x)w, i=1,2, . . . ,md

ỹd = Cd x̃d

(43)

where L̄is , L̄id and �̄id are the same as (26) and (27), and H̄id(x) is given by

H̄id(x)=

⎡
⎢⎢⎢⎢⎢⎣

Fsi

0

...

0

⎤
⎥⎥⎥⎥⎥⎦H+

a (x)+Hid(x) with

⎡
⎢⎢⎢⎢⎢⎣

H1d(x)

H2d(x)

...

Hmdd(x)

⎤
⎥⎥⎥⎥⎥⎦=Hd(x) (44)

Let Pi>0, i=1,2, . . . ,md , be the positive-definite solutions of (31) and define

V1(x̃s, x̃d)=(x̃s)
TPx̃s+

md∑
i=1

x̃Ti Pi x̃i (45)

Then, we have

V̇1(x̃s, x̃d) � 2(x̃s)
TP((Ass−Bs Fs)x̃s+Bs ỹd +�+

a (ỹd −Fs x̃s)+H+
a (x)w)

+
md∑
i=1

(
−1

�
x̃Ti x̃i +2x̃Ti Pi Si (�)L̄is x̃s+2x̃i Pi Si (�)L̄id ỹd

)

+
md∑
i=1

(2x̃Ti Pi Si (�)�̄id(�)+2x̃Ti Pi Si (�)H̄idw)

� (xs)
T
(
PA+

aa+(A+
aa)

TP+P

(
1

(1−c)�2
H+
a (H+

a )T+1

c
D+
a (D+

a )T−L+
ad(L

+
ad)

T
)
P

)
xs

−(xs)
TP

(
cL+

ad(L
+
ad)

T+ 1

c
D+
a (D+

a )T+D+
a G(�)(L+

ad)
T+L+

ad(G(�))T(D+
a )T
)
Pxs

−(1−c)yTd yd +(1−c)�2wTw+(1−c)ỹTd ỹd +2(x̃s)
TPD+

a G(�)ỹd +c(x̃s)
TPL+

ad ỹd
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+
md∑
i=1

(
−1

�
x̃Ti x̃i +2x̃Ti Pi Si (�)L̄is x̃s+2x̃i Pi Si (�)L̄id ỹd

)

+
md∑
i=1

(2x̃Ti Pi Si (�)�̄id(�)+2x̃Ti Pi Si (�)H̄idw)

where �= ỹd −Fs x̃s . Using (33)–(35) and (38), we have

PA+
aa+(A+

aa)
TP+P

[
1

(1−c)�2
H+
a (H+

a )T+ 1

c
D+
a (D+

a )T−L+
ad(L

+
ad)

T
]
P=0

Moreover, since (G+
a )TG+

a �I , there exists a positive real ε0>0 such that

P

(
cL+

ad(L
+
ad)

T+ 1

c
D+
a (D+

a )T+D+
a G(�)(L+

ad)
T+L+

ad(G(�))T(D+
a )T
)
P�ε0 I

Thus, we have

V̇1(x̃s, x̃d) � −ε0(xs)
Txs−(1−c)yTd yd +(1−c)�2wTw

+(1−c)ỹTd ỹd +2(x̃s)
TPD+

a G(�)ỹd +c(x̃+
a )TPL+

ad ỹd

+
md∑
i=1

(
−1

�
x̃Ti x̃i +2x̃Ti Pi Si (�)L̄is x̃s+2x̃i Pi Si (�)L̄id ỹd

)

+
md∑
i=1

(2x̃Ti Pi Si (�)�̄id(�)+2x̃Ti Pi Si (�)H̄id(x)w)

Noting that L̄id and L̄is are independent on �, ‖H̄id(x)‖ is bounded for all x ∈Rn and �̄id(·)
satisfies the linear growth condition (28), for any arbitrary small �0>0, there exist positive reals
ε1>0 and �∗>0 such that

V̇1(x̃s, x̃d)�−ε1

∥∥∥∥∥
x̃s

x̃d

∥∥∥∥∥
2

−(1−c)‖yd‖2+(1−c)(�2+�20)‖w‖2

for all 0<���∗.
Now let Pa>0 and P0>0 be the positive-definite solutions of

Pa A
−
aa+(A−

aa)
TPa = −I (46)

P0(Acc−BcFc)+(Acc−BcFc)
TP0 = −I (47)

Define a Lyapunov function

V (x̃)=�2(x̃
−
a )TPa x̃

−
a +�3 x̃

T
c P0 x̃c+V1(x̃s, x̃d) (48)
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where �2 and �3 are positive real numbers to be defined later. Then calculating the derivation of
(48) along the trajectory of (43), we have

V̇ (x̃) � −�2‖x̃−
a ‖2+2�2(x̃

−
a )TPa(L

−
ad(Cd x̃d −Fs x̃s)+�−

a (Cd x̃d −Fs x̃s)+H−
a (x)w)

−�3‖x̃c‖2+2�3 x̃
T
c P0(Lcd(Cd x̃d −Fs x̃s)+�c(Cd x̃d −Fs x̃s)+Hc(x)w)

−ε1

∥∥∥∥∥
x̃+
a

x̃d

∥∥∥∥∥
2

−(1−c)‖yd‖2+(1−c)(�2+�20)‖w‖2

� (−�2+�22r1)‖x−
a ‖2+ ε1

4

∥∥∥∥∥
x̃+
a

x̃d

∥∥∥∥∥
2

+(1−c)�2a‖w‖2

+(−�3+�23r2)‖x−
a ‖2+ ε1

4

∥∥∥∥∥
x̃+
a

x̃d

∥∥∥∥∥
2

+(1−c)�2c‖w‖2

−ε1

∥∥∥∥∥
x̃+
a

x̃d

∥∥∥∥∥
2

−(1−c)‖yd‖2+(1−c)(�2+�20)‖w‖2

where �a and �c are arbitrary small real numbers and

r1 � 8

ε1
(‖Pa‖‖L−

ad [Cd −Fs]‖)2+ 8k0
ε1

(‖Pa‖‖[Cd −Fs]‖)2+
(

1

�a
√
1−c

‖PaH−
a (x)‖

)2

r2 � 8

ε1
(‖P0‖‖Lcd [Cd −Fs]‖)2+ 8k0

ε1
(‖P0‖‖[Cd −Fs]‖)2+

(
1

�c
√

(1−c)
‖P0Hc(x)‖

)2

Since H−
a (x) and Hc(x) are bounded, so are r1 and r2. Now select �2 and �3 such that

�2<
1

r1
, �3<

1

r2

Then there exists an ε4>0 such that

V̇ (x̃)�−ε4‖x̃‖2−(1−c)‖yd‖2+(1−c)(�2+�20+�2a+�2c)‖w‖2 (49)

Integrating two sides of (49) for 0 to T yields∫ T

0
‖yd‖2 dt�

∫ T

0
(�2+�2)‖w‖2 dt

where �=�0+�a+�c. This completes the proof of Theorem 4.1. �

Remark 4.1
In Theorem 4.1, a design parameter c is introduced. Noting that the nonlinear term �+

a (y) is
regarded as an input uncertainty in the global stabilization controller design, the design parameter
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c is a compromise between the global stabilization and the H∞ control. In stabilization controller
design, P satisfies

(A+
aa)

TP+P+A+
aa+P[D+

a (D+
a )T−L+

ad(L
+
ad)

T]P=0

while in H∞ controller design, P satisfies

(A+
aa)

TP+PA+
aa+P

[
1

(1−c)�2
H+
a (H+

a )T−(1−c)L+
ad(L

+
ad)

T+ 1

c
D+
a (D+

a )T−cL+
ad(L

+
ad)

T
]
P=0

When c=0 (only if D+
a =0, i.e. �+

a (y)=0), the nonlinear H∞ control problem is reduced to the
linear H∞ control problem. On the other hand, when c=1 (only if H+

a =0), the nonlinear H∞
control problem is reduced to the stabilization problem. When L+

ad , D
+
a and H+

a are fixed, we can
calculate the achievable L2-gain estimation by solving the following optimal problem on c:

�̂∗
+ = min

0<c<1
PL−PD/c>0

√
�max((PL −PD/c)−1PH )

1−c
(50)

Remark 4.2
In [26], an upper estimate of the optimal value �∗ is given for a class of nonlinear systems with a
second-order zero dynamics of the form

ẋ1 = f11(x1)+ f12(x1, x2)x2+ p1(x1, x2)w (51)

ẋ2 = f21(x1)+ f22(x1, x2)x2+ p2(x1, x2)w+u (52)

where x1∈R and x2∈R. The necessary condition L f11V1(x1)<0 implies that (51) is the stable
part of the zero dynamics. That is, the estimation can be calculated only for the systems with
one-dimensional unstable zero dynamics. The zero dynamics considered in this paper is of the
form

x−
a = A−

aax
−
a +L−

adu+�−
a (u) (53)

x+
a = A+

aax
+
a +L+

adu+�+
a (u) (54)

where x−
a ∈Rn−

a and x+
a ∈Rn+

a . Equation (53) is the stable part of zero dynamics, and (54) is the
unstable one. Since n+

a need not equal one, our method can tackle the systems with high-order
unstable zero dynamics. In the special case �+

a (u)=0, (54) reduces to a linear system. In this

case, it is not difficult to show that the upper estimate �̂∗
+ =

√
�max(P

−1
L PH )=�∗.

5. TACKLING ZEROS ON THE IMAGINARY AXIS

In this section, we extend the results of Sections 3 and Section 4 to the systems which have zeros
on the imaginary axis, i.e. remove Assumption A2. Without Assumption A2, n0a may not equal to
zero.
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Theorem 5.1
Under Assumptions A1 and A3, let PL>0 and PD�0 be the unique solution of (11) and (12),
respectively. If PL>PD and

x�(D0
a(D

0
a)

T−L0
ad(L

0
ad)

T)x<0 (55)

for any eigenvector x of −(A0
aa)

T, the global stabilization control problem is solvable by a linear
state feedback.

Proof
Define

P=
[
Z Y T

Y X

]−1

(56)

where

X = PL −PD (57)

and Y is the unique solution of

A+
aaY +Y (A0

aa)
T+D+

a (D0
a)

T−L+
ad(L

0
ad)

T=0 (58)

and Z>0 is a solution of the following Lyapunov inequality:

A0
aa Z+Z(A0

aa)
T+D0

a(D
0
a)

T−L0
ad(L

0
ad)

T<0 (59)

Since all the eigenvalues of A0
aa are on the imaginary axis and (55) is satisfied, by Theorem 4 of

[35], for any Z0, there exists a solution Z of the Lyapunov inequality (59) such that Z>Z0. Since
PL>PD implies X>0, there exists a solution Z>0 of (59) such that P>0. Now, let

Fs =[(L0
ad)

T (L+
ad)

T]P=

⎡
⎢⎢⎢⎢⎢⎢⎣

Fs1

Fs2
...

Fsmd

⎤
⎥⎥⎥⎥⎥⎥⎦

where Fsi are of dimensions 1×(n0a+n+
a ). Similar to the proof of Theorem 3.1, we can design an

ATEA state feedback gain

F(�)=−�i (F̄(�)+ F̄0)�
−1
s (60)

where F̄(�) is given by (18) and

F̄0=
[
E−
da E0

da E+
da Edc Edd

E−
ca E0

ca E+
ca 0 0

]
(61)

since n0a may not equal to zero.
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Next, we show that there exists an �∗>0 such that

v=F(�)�

solves the global stabilization problem of system (1) for all 0<���∗. Denote

xs =
[
x0a

x+
a

]
, Ass =

[
A0
aa 0

0 A+
aa

]
, Bs =

[
L0
ad

L+
ad

]
, Ds =

[
D0
a

D+
a

]
, �s(yd)=

[
�0
a(yd)

�+
a (yd)

]

Then the closed-loop system in the SCB form is given by

ẋ−
a = A−

aax
−
a +L−

ad yd +�−
a (yd)

ẋs = Assxs+Bs yd +�s(yd)

ẋc = (Acc−BcFc)xc+Lcd yd +�c(yd)

ẋd = (A∗
dd −Bd F̄d(�))xd −Bd F̄s(�)x

+
a +Ldd yd +�d(yd)

yd = Cdxd

(62)

It is clear that (62) has exactly the same form of (21). Noting that A−
aa and Acc−BcFc are stable

matrices and �(yd) satisfies the linear growth condition (8), to show the stability of (62), we just
need to show

ẋs = Assxs+Bs yd +�s(yd)

ẋd = (A∗
dd −Bd F̄d(�))xd −Bd F̄s(�)x

+
a +Ldd yd +�d(yd)

yd = Cdxd

(63)

is asymptotically stable. To this end, we define a state transformation

x̃s = xs, x̃i = Si (�)

⎛
⎜⎜⎜⎜⎜⎝xi +

⎡
⎢⎢⎢⎢⎢⎣

Fsi

0

...

0

⎤
⎥⎥⎥⎥⎥⎦ xs

⎞
⎟⎟⎟⎟⎟⎠ , i=1,2, . . . ,md , x̃d =

⎛
⎜⎜⎜⎜⎜⎝

x̃1

x̃2

...

x̃md

⎞
⎟⎟⎟⎟⎟⎠ (64)

We have

˙̃xs = (Ass−Bs Fs)x̃s+Bs ỹd +�s(ỹd −Fs x̃
+
a )

˙̃xi = 1

�
[Aqi −Bqi Fi ]x̃i +Si (�)L̄is x̃

+
a +Si (�)L̄id ỹd +Si (�)�̄id(ỹd −Fs x̃

+
a )

ỹd = Cd x̃d

(65)

where L̄is , L̄id and �̄id(·) are defined by (26) and (27). Let Pi , i=1,2, . . . ,md , be positive-definite
solutions of

Pi (Aqi −Bqi Fi )+(Aqi −Bqi Fi )
TPi =−I (66)
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and define a Lyapunov function

V (x̃s, x̃d)=(x̃s)
TPx̃s+

md∑
i=1

x̃Ti Pi x̃i (67)

Then the derivation of (67) along the trajectory of (65) is given by

V̇ = (x̃s)
T((Ass−Bs Fs)

TP+P(Ass−Bs Fs)−FT
s (G(�))T(Ds)

TP−PDsG(�)Fs)x̃s

+2(x̃s)
TPL+

ad ỹd +2(x̃s)
TPDsG(�)ỹd

+
md∑
i=1

(
1

�
x̃Ti ((Aqi −Bqi Fi )

TPi +Pi (Aqi −Bqi Fi ))x̃i +2x̃Ti Pi Si (�)L̄is x̃s

)

+
md∑
i=1

(2x̃i Pi Si (�)L̄id ỹd + x̃Ti Pi Si (�)�̄id(�))

where �= ỹd −Fs x̃s . Using (11), (12) and (57), we have

A+
aa X+X (A+

aa)
T+(D+

a (D+
a )T−L+

ad(L
+
ad)

T)=0 (68)

Furthermore, with (59), (58) and (68) imply that

PAss+(Ass)
TP+P(Ds(Ds)

T−Bs(Bs)
T)P�0

Noting that Fs = BT
s P , we have

(Ass−Bs Fs)
TP+P(As−Bs Fs)−FT

s (G(�))T(Ds)
TP−PDsG(�)Fs

�−P(Bs(Bs)
T+Ds(Ds)

T+Bs(G(�))T(Ds)
T+DsG(�)(Bs)

T)P

�−ε0 I

for some ε0>0.
Thus,

V̇ (x̃s, x̃d) � −ε0(x̃s)
T x̃s+2(x̃s)

TPL+
ad ỹd +2(x̃s)

TPDsG(�)ỹd

+
md∑
i=1

(
−1

�
x̃Ti x̃i +2x̃Ti Pi Si (�)L̄is x̃s+2x̃i Pi Si (�)L̄id ỹd +2x̃Ti Pi Si (�)�̄id(�)

)

Since (G+
a (�))TG+

a (�)�I , L̄id and L̄is are independent on � and �̄id(�) satisfies the linear growth
condition (28), it is clear that there exists an �∗>0 such that

V̇ (x̃s, x̃d)�−ε1

∥∥∥∥∥
x̃s

x̃d

∥∥∥∥∥
2

for all 0<���∗, where ε1 is some positive real. That is, (65), thus (63), is asymptotically
stable. �
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Similarly, we have the following theorem for the nonlinear H∞ control problem for the systems
which have zeros on the imaginary axis.

Theorem 5.2
Under Assumptions A1, A3 and A4, let PL>0, PD�0 and PH�0 be the unique solutions of (33),
(34) and (35), respectively. Assume that there exists a 0<c<1 such that

Pc= PL − 1

c
PD>0 (69)

and

x�

(
1

c
D0
a(D

0
a)

T−L0
ad(L

0
ad)

T
)
x<0 (70)

for any eigenvector x of −(A0
aa)

T, then the nonlinear H∞ control problem is solvable for a given
�>�̂ :=max{�̂+, �̂0}, where

�̂+ =
√

�max(P
−1
c PH )/(1−c) (71)

and

�̂0=

√√√√√√max
‖x‖=1

⎧⎪⎨
⎪⎩

x�H0
a (H0

a )Tx

(1−c)x�(L0
ad(L

0
ad)

T− 1

c
D0
a(D

0
a)

T)x

⎫⎪⎬
⎪⎭ (72)

for any eigenvector x of −(A0
aa)

T.

Proof
Define

P=
[
Z Y T

Y X

]−1

(73)

where

X = PL − 1

c
PD− 1

(1−c)�2
H+
a (H+

a )T (74)

and Y is the unique solution of

A+
aaY +Y (A0

aa)
T+ 1

(1−c)�2
H+
a (H0

a )T+ 1

c
D+
a (D0

a)
T−L+

ad(L
0
ad)

T=0 (75)

and Z is a solution of the following Lyapunov inequality:

A0
aa Z+Z(A0

aa)
T+ 1

(1−c)�2
H0
a (H0

a )T+ 1

c
D0
a(D

0
a)

T−L0
ad(L

0
ad)

T<0 (76)
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Since �>max{�̂+, �̂0}, we have X>0 and

x�

(
1

(1−c)�2
H0
a (H0

a )T+ 1

c
D0
a(D

0
a)

T−L0
ad(L

0
ad)

T
)
x<0 (77)

for any eigenvector x of −(A0
a)

T. Then, by Theorem 4 of [35], there exists a Z>0 of the Lyapunov
inequality (76) such that P>0. Let

Fs =[(L0
ad)

T (L+
ad)

T]P=

⎡
⎢⎢⎢⎢⎢⎢⎣

Fs1

Fs2
...

Fsmd

⎤
⎥⎥⎥⎥⎥⎥⎦

where Fsi are of dimensions 1×(n0a+n+
a ). Similar to the proof of Theorem 3.1, we can design an

ATEA state feedback gain as

F(�)=−�i (F̄(�)+ F̄0)�
−1
s (78)

where F̄(�) and F̄0 are given by (18) and (61), respectively.
Next, we need to show that there exists an �∗>0 such that

v=F(�)� (79)

solves the global stabilization problem of system (1) for all 0<���∗. Toward this target, denote

xs =
[
x0a

x+
a

]
, Ass =

[
A0
aa 0

0 A+
aa

]
, Bs =

[
L0
ad

L+
ad

]

Ds =
[
D0
a

D+
a

]
, �s(yd)=

[
�0
a(yd)

�+
a (yd)

]
, Hs(x)=

[
H0

a(x)

H+
a (x)

]

and transforming the closed-loop system (1) and (79) into the SCB form yields

ẋ−
a = A−

aax
−
a +L−

ad yd +�−
a (yd)+H−

a (x)w

ẋs = Assxs+Bs yd +�s(yd)+Hs(x)w

ẋc = (Acc−BcFc)xc+Lcd yd +�c(yd)+Hc(x)w

ẋd = (A∗
dd −Bd F̄d(�))xd −Bd F̄s(�)xs+Ldd yd +�d(yd)+Hd(x)w

yd = Cdxd

(80)
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Making state transformations

x̃−
a = x−

a , x̃s = xs, x̃c= xc, x̃i = Si (�)

⎛
⎜⎜⎜⎜⎜⎝xi +

⎡
⎢⎢⎢⎢⎢⎣

Fsi

0

...

0

⎤
⎥⎥⎥⎥⎥⎦ xs

⎞
⎟⎟⎟⎟⎟⎠ , i=1,2, . . . ,md (81)

on (80) and denoting

x̃d =

⎛
⎜⎜⎜⎜⎜⎝

x̃1

x̃2

...

x̃md

⎞
⎟⎟⎟⎟⎟⎠

we have

˙̃x−
a = A−

aa x̃
−
a +L−

ad(ỹd −Fs x̃s)+�−
a (ỹd −Fs x̃s)+H−

a (x)w

˙̃xs = (Ass−Bs Fs)x̃s+Bs ỹd +�s(ỹd −Fs x̃s)+Hs(x)w

˙̃xc = (Acc−BcFc)x̃c+Lcd(ỹd −Fs x̃s)+�c(ỹd −Fs x̃s)+Hc(x)w

˙̃xi = 1

�
[Aqi −Bqi Fi ]x̃i +Si (�)L̄is x̃s+Si (�)L̄id ỹd +Si (�)�̄id(ỹd −Fs x̃s)

+ Si (�)H̄id(x)w, i=1,2, . . . ,md

ỹd = Cd x̃d

(82)

where L̄is , L̄id , �̄id and H̄id(x) are defined in (26), (27) and (44). Let Pi>0, i=1,2, . . . ,md , be
the positive-definite solutions of (31) and define

V (x̃s, x̃d)=(x̃s)
TPx̃s+

md∑
i=1

x̃Ti Pi x̃i (83)

Then

V̇ (x̃s, x̃d) � 2(x̃s)
TP((Ass−Bs Fs)x̃s+Bs ỹd +�s(ỹd −Fs x̃s)+Hs(x)w)

+
md∑
i=1

(
−1

�
x̃Ti x̃i +2x̃Ti Pi Si (�)L̄is x̃s+2x̃i Pi Si (�)L̄id ỹd

)

+
md∑
i=1

(2x̃Ti Pi Si (�)�̄id(�)+2x̃Ti Pi Si (�)H̄idw)

� (xs)
T
(
PA+

aa+(A+
aa)

TP+P

(
1

(1−c)�2
Hs(Hs)

T+ 1

c
Ds(Ds)

T−Bs(Bs)
T
)
P

)
xs
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−(xs)
TP

(
cBs(Bs)

T+ 1

c
Ds(Ds)

T+DsG(�)BT
s +Bs(G(�))T(Ds)

T
)
Pxs

−(1−c)yTd yd +(1−c)�2wTw+(1−c)ỹTd ỹd +2(x̃s)
TPDsG(�)ỹd +c(x̃s)

TPL+
ad ỹd

+
md∑
i=1

(
−1

�
x̃Ti x̃i +2x̃Ti Pi Si (�)L̄is x̃s+2x̃i Pi Si (�)L̄id ỹd

)

+
md∑
i=1

(2x̃Ti Pi Si (�)�̄id(�)+2x̃Ti Pi Si (�)H̄idw)

where �= ỹd −Fs x̃s . Using (33)–(35) and (73), we have

PA+
aa+(A+

aa)
TP+P

[
1

(1−c)�2
H+
a (H+

a )T+ 1

c
D+
a (D+

a )T−L+
ad(L

+
ad)

T
]
P�0

Moreover, since (G+
a )TG+

a �I , there exists a positive real ε0>0 such that

P

[
cBs(Bs)

T+ 1

c
Ds(Ds)

T+DsG(�)BT
s +Bs(G(�))T(Ds)

T
]
P�ε0 I

Thus, we have

V̇ (x̃s, x̃d) � −ε0(xs)
Txs−(1−c)yTd yd +(1−c)�2wTw

+(1−c)ỹTd ỹd +2(x̃s)
TPDsG(�)ỹd +c(x̃+

a )TPBs ỹd

+
md∑
i=1

(
−1

�
x̃Ti x̃i +2x̃Ti Pi Si (�)L̄is x̃s+2x̃i Pi Si (�)L̄id ỹd

)

+
md∑
i=1

(
2x̃Ti Pi Si (�)�̄id(�)+2x̃Ti Pi Si (�)H̄id(x)w

)

Noting that L̄id and L̄is are independent on �, ‖H̄id(x)‖ is bounded for all x ∈Rn and �̄id(·)
satisfies the linear growth condition (28), for any arbitrary small �0>0, there exist positive reals
ε1>0 and �∗>0 such that

V̇ (x̃s, x̃d)�−ε1

∥∥∥∥∥
x̃s

x̃d

∥∥∥∥∥
2

−(1−c)‖yd‖2+(1−c)(�2+�20)‖w‖2

for all 0<���∗. Finally, the remainder of the proof can be completed by following the same
reasoning of the proof of Theorem 4.1. �
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Remark 5.1
By Theorem 5.2, the achievable L2-gain can be estimated by solving the following minimization
problem on c:

�̂∗ = min
0<c<1

PL−PD/c>0
x�( 1c D

0
a(D

0
a)

T−L0
ad (L0

ad )T)x<0

max{�̂+, �̂0} (84)

where x is the eigenvector of −(A0
a)

T.

6. AN ILLUSTRATIVE EXAMPLE

Consider the system

ẋ = Ax+Bu+�(y)+Hw (85)

y =
[
y1

y2

]
=Cx (86)

with

A=

⎡
⎢⎢⎢⎢⎣
1 0 3 1

0 1 0 2

1 1 1 2

0 1 1 1

⎤
⎥⎥⎥⎥⎦ , B=

⎡
⎢⎢⎢⎢⎣
0 0

0 0

1 0

0 1

⎤
⎥⎥⎥⎥⎦ , H =

⎡
⎢⎢⎢⎢⎣

−1 −2

−1 0

−2 −1

0 −1

⎤
⎥⎥⎥⎥⎦

and

C=
[
0 0 1 0

0 0 0 1

]
, �(y)=

⎡
⎢⎢⎢⎢⎣
y1 sin(y2)

y2

0

sin(y1)

⎤
⎥⎥⎥⎥⎦

System (86) is already in the SCB form with

A+
aa =

[
1 0

0 1

]
, L+

ad =
[
3 1

0 2

]
, H+

a =
[−1 −2

−1 0

]
, �+

a (y)=
[
y1 sin(y2)

y2

]

and

Add =
[
1 2

1 1

]
, Bd =

[
1 0

0 1

]
, Cd =

[
1 0

0 1

]
, Eda =

[
1 1

0 1

]
, Edd =

[
1 2

1 1

]
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System (86) has two unstable invariant zeros. It is easy to verify that Assumptions A1–A4 are all
satisfied. Moreover, let

�+
a (y)=

[
y1 sin(y2)

y2

]
=D+

a G(y)y :=
[
1 0

0 1

][
sin(y2) 0

0 1

]
y

It is clear that (G(y))TG(y)�I2. Solving the following Lyapunov equations:

PL(A+
aa)

T+A+
aa PL = L+

ad(L
+
ad)

T

PD(A+
aa)

T+A+
aa PD = D+

a (D+
a )T

PH (A+
aa)

T+A+
aa PH = H+

a (H+
a )T

yields

PL =
[
5 1

1 2

]
, PD =

[
0.5 0

0 0.5

]
, PH =

[
2.5 0.5

0.5 0.5

]

H∞ control law: Solving the following minimization problem:

�̂∗
+ = min

0<c<1
PL−PD/c>0

√
�max((PL −PD/c)−1PH )

1−c

gives �̂∗
+ =1.1496 under c∗ =0.4752. Let �=1.2>�̂∗

+ and c=c∗ =0.4752, then all the conditions
in Theorem 4.1 are satisfied. Let

Ph =
(
PL − 1

c
PD− 1

(1−c)�2
PH

)−1

=
[

4.1737 −4.9348

−4.9348 9.3290

]

and

Fs =(L+
ad)

TPh =
[
Fs1

Fs2

]
=
[
12.5211 −14.8045

−5.6959 13.7232

]

Let �11=−2 and �21=−3, we have

F̄d(�)=
[
2/� 0

0 3/�

]

Then

F̄s(�)=
[
2Fs1/�

3Fs2/�

]
=
[

25.0423/� −29.6090/�

−17.0878/� 41.1695/�

]

Finally, the H∞ control law is given by

F(�)=−
[
1+25.0423/� 1−29.6090/� 1+2/� 2

−17.0878/� 1+41.1695/� 1 1+3/�

]
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Figure 1. Output response and control input under H∞ control law.

Let �=0.8, initial condition x(0)=0 and the disturbance inputs w1=5te−0.5t and w2=5te−0.6t ;
the simulation result is shown in Figure 1. It is clear that the closed-loop system is asymptotically
stable and can reject the disturbance efficiently.
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7. CONCLUSIONS

Global stabilization problem and nonlinear H∞ control problem of a class of nonminimum phase
nonlinear MIMO systems are investigated. The nonminimum phase nonlinear system is globally
exponentially stabilized by a linear feedback under the assumption that the nonlinear functions in
the system satisfy a group of linear growth conditions. Our method can deal with the nonminimum
phase systems with high-order unstable zero dynamics. The designed control law can act as a
desired stabilizer for solving the adaptive estimation and rejection problem of the nonminimum
phase nonlinear systems (see, e.g. [11] and [12]). Moreover, instead of solving the HJ equations,
the nonlinear H∞ control law is constructed explicitly by solving a set of Lyapunov equations
on the unstable zero dynamics. The achievable L2-gain estimation can be calculated based on the
solutions of these Lyapunov equations.
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