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This paper reports on a symbolic realization of the asymptotic time-scale and eigenstructure
assignment (ATEA) state feedback design technique for multivariable control. The resulting

state feedback laws are parameterized in a scalar �. Under these state feedback laws,
the closed-loop system possesses a pre-specified time-scale and its eigenstructure approaches
a pre-specified one, as the value of the parameter � approaches zero. By appropriately specify-

ing the time-scale and the eigenstructure, the feedback laws can be obtained to solve various
control problems, such as the H2 and H1 suboptimal control, and almost disturbance
decoupling problems. We present, in this paper, the software implementation of the ATEA

design algorithm using the MATLAB symbolic programming technique. Our m-functions are
capable of returning a result, which is explicitly expressed in terms of a symbolic variable
epsilon, which represents �. The controller design for a piezoelectric bimorph actuator is
used to illustrate how the symbolic realization works.

1. Introduction

The asymptotic time-scale and eigenstructure assign-
ment (ATEA) is one of the major applications of the
structural decomposition approach in linear systems
theory (Chen et al. 2004). The concept of ATEA was
originally proposed in Saberi and Sannuti (1989,
1990b) and was further developed in Chen (1991),
Saberi et al. (1993), Lin (1998) and Chen et al. (2004).
The ATEA algorithm is decentralized in nature and is
in fact rooted in the concept of singular perturbation
methods (Kokotovic et al. 1986).
More specifically, the main idea behind the ATEA

algorithm can be described as follows. The given
linear system characterized by a matrix quadruple
ðA,B,C,DÞ is first transformed into the form of the
special coordinate basis (SCB) (Sannuti and Saberi

1987, Saberi and Sannuti 1989). On the SCB, the
system is decomposed into a networked of subsystems,
each of which captures some inherent structure of the
original system. By exploring the intricate structures of
each of these subsystems and the interconnections that
exist among them, feedback gain matrices, explicitly
parameterized in a scalar, say �, are constructed for
each of these subsystems in such a way that, when com-
posed together to form an overall state feedback gain for
the system, they result in a closed-loop system with a
pre-specified time-scale and engenstructure. The proce-
dure can also been utilized to construct observer gains,
which lead to appropriate time-scale and eigenstructure
of the resulting error dynamics. By appropriately speci-
fying the time-scale and the eigenstructre, the feedback
laws of both state feedback type and output feedback
type can be obtained that solve a wide variety of control
problems, such as the H2 and H1 suboptimal control
problems (Lin et al. 1998a, b, Chen 2000, Saberi et al.
1995), LTR (Chen 1991, Saberi et al. 1993), almost
disturbance decoupling problems (Ozcetin et al.*Corresponding author. Email: x18y@virginia.edu
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1993a, b, Chen 2000, Lin and Chen 2000), and
constrained control problems (Lin 1998).
Among the many distinct features of the ATEA

algorithm based control design methods is the ease of
the symbolic computation of the feedback laws. The
feedback gains for the subsystems are parameterized in
a scalar � and given in the form of polynomial matrices
in 1=�. The construction of these gain matrices only
involves the computation of the coefficients of the
polynomials and thus, in essence avoiding the direct
symbolic computation. The direct symbolic computa-
tion is necessary only in the last steps of the algorithm
when various feedback gains, polynomial matrices, are
composed together to form the overall feedback gain
for the original system.
The objective of this paper is to describe the AETA

algorithm and its software implementation in detail
and to show how the ATEA algorithm has been
developed in such a way that facilitates the symbolic
computation of the resulting feedback gains. We will
also use simple applications to illustrate how the
symbolic computation of ATEA based state feedback
laws leads to feedback laws that are explicitly param-
eterized in the design parameter. We will however not
describe in detail the wide variety of applications
of the ATEA algorithm that have been reported in the
literature.
The ATEA algorithm is implemented by using

the Symbolic Math toolboxes on the MATLAB

platform. The Symbolic Math Toolboxes
incorporate symbolic computation into the numeric
environment of MATLAB. These toolboxes supplement
MATLAB numeric and graphical facilities with
several other types of mathematical computation,
such as calculus, linear algebra, simplification,
solution of equations, special mathematical function,
variable-precision arithmetic and transforms. The
computational engine underlying the toolboxes is the
kernel of Maple, a system developed primarily at
the University of Waterloo, Canada and, more
recently, at the Eidgenössiche Technische
Hochschule, Zürich, Switzerland (The Math Work
Inc. 2004).
The remainder of this paper is organized as follows.

In x 2, we describe in detail the ATEA algorithm
and show how it is utilized to solve the H2 and H1 sub-
optimal control problems as well as the problem of
almost disturbances decoupling. In x 3, we describe the
symbolic implementation of the ATEA algorithm,
which the algorithm itself renders very straightforward.
Section 4 contains a simple numerical example and the
feedback design for a piezoelectric bimorph actuator

to demonstrate the ATEA based approach to control
design. Section 5 concludes the paper.

Throughout this paper, the following notation will be
used: X0 denotes the transpose of matrix X; 0 denotes
a scalar zero or a zero matrix of appropriate
dimensions; I denotes an identity matrix of
appropriate dimensions; R is the set of all real numbers;
C and C

� denote the entire complex plane and the
open left-half complex plane respectively; and
finally, �(X) denotes the set of eigenvalues of a real
square matrix X.

2. The ATEA algorithm

In this section, we describe the technique of the ATEA
design for continuous-time systems. We will also
describe, as examples of its application, how the
ATEA algorithm can be utilized in solving the H2 and
H1 suboptimal control problems as well as the almost
disturbance decoupling problem.

Consider a continuous-time linear system

� :
_x ¼ Axþ Bu,

y ¼ CxþDu,

�
ð1Þ

where x 2 R
n, u 2 R

m and y 2 R
p are the state, input

and output of the system, respectively. Without loss
of generality, we assume that (A,B) is stabilizable,
and both ½BT,DT� and ½C,D� are of row full rank.
For simplicity, we also assume that the given system
has no invariant zeros on the imaginary axis.
Detailed treatments of systems with imaginary invar-
iant zeros involve the concept of low gain feedback
and slow time-scale it induces, which can be found
in (Chen 1991, Saberi et al. 1993).

2.1 The ATEA algorithm

What follows is a step-by-step presentation of the ATEA
algorithm. The properties of ATEA algorithm will be
summarized in a theorem after the presentation of the
algorithm itself.

Step 1 Transform � into the structural decomposition
or the special coordinate basis form (Sannuti and Saberi
1987, Saberi and Sannuti 1989). That is, compute non-
singular state, input and output transformations �s,
�i and �o that transform the given system � into the
special coordinate basis, which can be put in the
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following compact form:

~A ¼ ��1
s A�s

¼

A�
aa 0 L�

abCb 0 L�
adCd

0 Aþ
aa Lþ

abCb 0 Lþ
adCd

0 0 Abb 0 LbdCd

BcE
�
ca BcE

þ
ca LcbCb Acc LcdCd

BdE
�
da BdE

þ
da BdEdb BdEdc Add

2
6666664

3
7777775

þ

B�
0a

Bþ
0a

B0b

B0c

B0d

2
6666664

3
7777775

C�
0a Cþ

0a C0b C0c C0d

� �
, ð2Þ

~B ¼ ��1
s B�i ¼

B�
0a 0 0

Bþ
0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0

2
6666664

3
7777775
, ð3Þ

~C ¼ ��1
o C�s ¼

C�
0a Cþ

0a C0b C0c C0d

0 0 0 0 Cd

0 0 Cb 0 0

2
64

3
75, ð4Þ

~D ¼ ��1
o D�i ¼

Im0
0 0

0 0 0

0 0 0

2
64

3
75, ð5Þ

where ðAbb,CbÞ is observable, ðAcc,BcÞ is controllable,
and in particular,

Add ¼ A�
dd þ BdEdd þ LddCd,

for some constant matrices Ldd and Edd of appropriate
dimensions, and

A�
dd ¼ blkdiag

n
Aq1 ,Aq2 , . . . ,Aqmd

o
, ð6Þ

Bd ¼ blkdiag
n
Bq1 ,Bq2 , . . . ,Bqmd

o
,

Cd ¼ blkdiag
n
Cq1 ,Cq2 , . . . ,Cqmd

o
, ð7Þ

with ðAqi ,Bqi ,CqiÞ being defined as

Aqi ¼
0 Iqi�1

0 0

� �
, Bqi ¼

0
1

� �
, Cqi ¼ ½1, 0, . . . , 0�:

Next, we define

Ass ¼
Aþ

aa Lþ
abCb

0 Abb

� �
, B0s ¼

Bþ
0a

B0b

� �
, Lsd ¼

Lþ
ad

Lbd

� �
,

ð8Þ

and

Bs ¼ B0s Lsd

� �
: ð9Þ

Step 2 Let Fs be chosen such that

� Ac
ss

� �
¼ � Ass þ BsFsð Þ � C

�, ð10Þ

and partition Fs in conformity with (8) and (9) as

Fs ¼
Fs0

Fs1

� �
¼

Fþ
a0 Fb0

Fþ
a1 Fb1

" #
: ð11Þ

It follows from the property of the special coordinate
basis that the pair ðAss,BsÞ is controllable provided
that the pair (A,B) is stabilizable. Then, we further
partition Fs1 ¼ Fþ

a1 Fb1

� �
as

Fs1 ¼ Fþ
a1 Fb1

� �
¼

Fþ
a11 Fb11

Fþ
a12 Fb12

..

. ..
.

Fþ
a1md

Fb1md

2
666664

3
777775,

where Fþ
a1i and Fb1i are of dimensions 1� nþa and 1� nb,

respectively.

Step 3 Let Fc be any arbitrary mc � nc matrix subject
to the constraint that

Ac
cc ¼ Acc þ BcFc ð12Þ

is a stable matrix. Note that the existence of such an Fc is
guaranteed by the property that ðAcc,BcÞ is controllable.

Step 4 This step makes use of the fast subsystems,
i ¼ 1, 2, . . . ,md, represented by ðAdd,Bd,CdÞ. Let

�i ¼ f�i1, �i2, . . . , �iqig, i ¼ 1, 2, . . . ,md,

Symbolic realization of ATEA design method 1473



be the sets of qi elements, all in C
�, which are closed

under complex conjugation, where qi and md are given
in (6) and (7). Then, we let �d :¼ �1 [�2 [ � � � [�md

.
For i ¼ 1, 2, . . . ,md, we define

piðsÞ :¼
Yqi
j¼1

ðs� �ijÞ ¼ sqi þ Fi1s
qi�1 þ � � � þ Fiqi�1sþ Fiqi ,

ð13Þ

and a sub-gain matrix parameterized by tuning
parameter, �,

~Fið�Þ :¼
1

�qi

h
Fiqi , �Fiqi�1, . . . , �qi�1Fi1

i
: ð14Þ

Step 5 In this step, various gains calculated in
Steps 2–4 are put together to form a composite state
feedback gain for the given system �. Let

~F
þ

a1ð�Þ : ¼

Fþ
a11F1q1=�

q1

Fþ
a12F2q2=�

q2

..

.

Fþ
a1md

Fmdqmd
=�qmd

2
666664

3
777775,

~Fb1ð�Þ : ¼

Fb11F1q1=�
q1

Fb12F2q2=�
q2

..

.

Fb1md
Fmdqmd

=�qmd

2
666664

3
777775,

ð15Þ

and

~Fs1ð�Þ ¼ ~F
þ

a1ð�Þ
~Fb1ð�Þ

h i
:

Then, the ATEA state feedback gain is given by

Fð�Þ ¼ �i

�
~Fð�Þ � ~F0

	
��1
s , ð16Þ

where

~Fð�Þ ¼

0 Fþ
a0 Fb0 0 0

0 ~F
þ

a1ð�Þ
~Fb1ð�Þ 0 � ~Fdð�Þ

0 0 0 Fc 0

2
64

3
75,

~F0 ¼

C�
0a Cþ

0a C0b C0c C0d

E�
da Eþ

da Edb Edc Edd

E�
ca Eþ

ca 0 0 0

2
64

3
75,

and where

~Fdð�Þ ¼ diag
n
~F1ð�Þ, ~F2ð�Þ, . . . , ~Fmd

ð�Þ
o
:

This completes the ATEA algorithm.
The following theorem, recapitulated from Chen

(2000), captures some key properties of the closed-loop
system under an ATEA based state feedback law.

Theorem 1: Consider the given system � of (1). The
ATEA state feedback law u ¼ Fð�Þx with Fð�Þ given
by (16) has the following properties:

1. There exists a scalar �� > 0 such that for every
� 2 ð0, ���, the closed-loop system is asymptotically
stable. Moreover, as � ! 0, the closed-loop poles are
given by

�ðA�
aaÞ, �ðAc

ccÞ, �ðAc
ssÞ þ 0ð�Þ,

�d

�
þ 0ð1Þ:

There are a total number of nd closed-loop poles,
which have infinite negative real parts as � ! 0.

2. Let

Cs ¼ �o

0 0
0 0
0 Cb

2
4

3
5, Ds ¼ �o

Im0
0

0 Imd

0 0

2
4

3
5:

Then, we have

Hðs, �Þ :¼ ½CþDFð�Þ�½sI�A�BFð�Þ��1

! 0 HsðsÞ 0 0
� �

��1
s ,

pointwise in s as � ! 0, where

HsðsÞ ¼ ðCsþDsFsÞðsI�Ass�BsFsÞ
�1:

2.2 H2 suboptimal control, H1 control and almost
disturbance decoupling

In what follows, we will demonstrate how, by appropri-
ately choosing the sub-feedback gain matrix Fs in Step 2,
the ATEA algorithm can be utilized to solve the H2 and
H1 suboptimal control problems as well as the almost
disturbance decoupling problem.

To be specific, we consider a continuous-time system
� with a state-space description

� :

_x ¼ Axþ Buþ Ew,

y ¼ x,

h ¼ CxþDu,

8><
>: ð17Þ

where x 2 R
n is the state, u 2 R

m is the control input,
w 2 R

q is the external disturbance input, y¼ x is the
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measurement output, and h 2 R
p is the controlled

output of �. We assume that (A,B) is stabilizable and
ðA,B,C,DÞ has no invariant zeros on the imaginary
axis. Then, the standard optimization problem is to
find a control law

u ¼ Fx,

such that when it is applied to the given system (17),
the resulting closed-loop system is internally stable,
i.e., �ðAþBFÞ�C

�, and a certain norm of the resulting
closed-loop transfer function from the disturbance input
w to the controlled output h, i.e.,

HhwðsÞ ¼ ðCþDFÞðsI� A� BFÞ�1E,

is minimized. The optimization problems do not always
possess a solution. A practical approach is to address
the so-called suboptimal control problem, where the
goal of control design is to meet a pre-specified norm
requirement on the closed-loop transfer function. Let

��
2 :¼ inf kHhwk2




 u ¼ Fx internally stabilizes �
n o

:

Then, the H2 suboptimal control problem with state
feedback is, for any given � > ��

2 , to design a stabilizing
feedback law u ¼ Fð�Þx, under which the H2 norm of
the closed-loop transfer function HhwðsÞ is less than or
equal to �.
Similarly, let

��1 :¼ inf kHhwk1




 u ¼ Fx internally stabilizes �
n o

:

Then, the H1 suboptimal control problem with state
feedback is, for any given � > ��

1, to design a stabilizing
feedback law u ¼ Fð�Þx, under which the H1 norm of
the closed-loop transfer function HhwðsÞ is less than or
equal to �.
Finally, the almost disturbance decoupling problem

(either in H2 sense or in H1 sense) is, for any a priori
given arbitrarily small �>0, to find a stabilizing feed-
back control law u ¼ Fð�Þx such that the H2 or H1

norm of the closed-loop system transfer function
HhwðsÞ is less than or equal to �.
The following theorem summarizes the ATEA

based solutions to the H2 and H1 suboptimal control
problems as well as the almost disturbance decoupling
problem. In the theorem statement, we recall that �s,
�i and �o are the nonsingular state, input and output
transformations that transform the matrix quadruple
ðA,B,C,DÞ into the special coordinate basis as in
(2)–(5). Also, let

~E :¼ ��1
s E ¼

E�
a

Eþ
a

Eb

Ec

Ed

2
6666664

3
7777775
,

and

Es :¼
Eþ
a

Eb

� �
:

Theorem 2: Consider the continuous-time system �

characterized by (17). The ATEA algorithm leads to the
solution of the H2 and H1 suboptimal control problems
as well as the almost disturbance decoupling problem
for �. More specifically, we have

1. If the sub-feedback gain matrix Fs in step 2 is chosen
to be

Fs ¼ �ðDT
s DsÞ

�1
ðBT

s Ps þDT
s CsÞ, ð18Þ

where Ps > 0 is a solution of the algebraic Riccati
equation

PsAss þ AT
ssPs þ CT

s Cs � ðPsBs þ CT
s DsÞðD

T
s DsÞ

�1

ðBT
s Ps þDT

s CsÞ ¼ 0, ð19Þ

then the resulting closed-loop transfer function from
w to h under the corresponding ATEA state feed-
back law has the following property:

kHhwk2 ¼ ½CþDFð�Þ�½sI� A� BFð�Þ��1E
�� ��

2
! ��

2 ,

as � ! 0, i.e., the corresponding ATEA state feed-
back law solves the H2 suboptimal control problem
for �. Furthermore,

��
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace ðETs PsEsÞ

q
:

2. Given a scalar � > ��1 � 0, if Fs in step 2 is chosen
to be

Fs ¼ �ðDT
s DsÞ

�1
ðBTs Ps þDT

s CsÞ, ð20Þ

where Ps > 0 is a solution of the algebraic Riccati
equation

PsAss þ ATssPs þ CTs Cs þ PsEsE
T
s Ps=�

2

� ðPsBs þ CTs DsÞðD
T
s DsÞ

�1
ðBTs Ps þDT

s CsÞ ¼ 0,
ð21Þ
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then the resulting closed-loop transfer function from
w to h under the corresponding ATEA state feedback
law has the following property:

kHhwk1 ¼ ½CþDFð�Þ�½sI� A� BFð�Þ��1E
�� ��

1
< �,

for sufficiently small �, i.e., the corresponding ATEA
state feedback law solves the H1 suboptimal control
problem for �.

3. If Es ¼ 0, which has been shown in Chen et al. (2004)
to be the necessary and sufficient condition for the sol-
vability of the almost disturbance decoupling problem
for �, then the ATEA state feedback law with any
arbitrarily chosen Fs (subject to the constraint on the
stability of Ac

ss) has a resulting closed-loop transfer
function Hhwðs, �Þ with

Hhwðs, �Þ ! 0, pointwise in s as � ! 0,

i.e., any ATEA state feedback control law solves the
disturbance decoupling problem for �.

3. Software implementation of the ATEA algorithm

With the Symbolic Math Toolboxes on MATLAB, users
can easily combine numeric and symbolic computation
into a single environment. The Symbolic Toolbox
defines a new MATLAB data type called symbolic
object, by using the command sym, to represent a
symbolic variable, expression, and matrix. Internally,
a symbolic object is a data structure that stores a
string representation of the symbol.
Symbolic computations not only improve the accu-

racy of the results, but also provide explicit expressions.
With the aid of symbolic objects, computations need
only be done once for a class controller. It is useful
for both mathematical analysis and engineering online
tuning (Chetty and Dabke 1999).
In the implementation of the ATEA algorithm, the

state feedback gain of the H2/H1 suboptimal control
problems and almost disturbance decoupling problem
are returned in term of a symbolic object epsilon,
which relates to � in the algorithm in x 2.1. Symbolic
expression enables engineers to easily analyse which
state feedback gain is sensitive to the choice of the
time-scale. By tuning epsilon (using the symbolic
substitution command subs) one can specify the
appropriate time-scale, and thus obtain desirable feed-
back laws corresponding to different design methods.
As pointed out earlier, one of the key features of the

ATEA algorithm is the ease in its symbolic implementa-
tion. It is clear from the description of the ATEA
algorithm, the first three steps of ATEA algorithm

involve only numeric operations, symbolic operations
involving the tuning parameter � (epsilon) are con-
ducted only in step 4 and step 5.

The software implementation of the ATEA algorithm
is a part of the beta version of Linear Systems Toolkit
(Lin et al. 2004) that we recently released. This toolkit
is available at http://linearsystemskit.net.

In this toolkit, four ATEA based design algorithms
have been implemented. These are:

. the ATEA algorithm

F ¼ ateaðA, B, C, D½, option�Þ

. the ATEA based H2 suboptimal control design

F ¼ h2stateðA, B, C, D, E½, option�Þ

. the ATEA based H1 suboptimal control design

F ¼ h8stateðA, B, C, D, E, gamma½, option�Þ

. almost disturbance decoupling by ATEA based
feedback law

F ¼ addpsðA, B, C, D, E½, option�Þ

These functions could either produce the numerical
values of the feedback gain matrix for a pre-specified
value of the design parameter � or return the gain
matrix as a polynomial matrix in the design parameter
1=�. One can use the option in the command line to
choose the form of output. In the event of an omission
of the option or a choice of option¼ 0, these
functions will ask the user to enter a value for epsilon
and return a numerical gain matrix. Otherwise, if
option¼ 1, these functions will return the resulting
matrix as a polynomial matrix in 1=� (i.e., 1/epsilon).
Among these four functions, atea is the core. Other
three functions can be implemented by calling the
atea function.

3.1 Implementation of atea

The flow chart of the function atea is showed in
figure 1. The implementations of the components in
the flow chart are carried out as follows.

3.1.1. SCB of (A, B, C, D). Find nonsingular state,
input and output transformations to transform
�ðA,B,C,DÞ into the SCB form, i.e., (2)–(5). The SCB
algorithm is based on a numerically stable algorithm
recently reported in Chu et al. 2002, together with an
enhanced procedure reported in Chen et al. (2004).
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The transformation is conducted by using the
m-function, scb, in the Toolkit (Lin et al. 2004). The
syntax is

½AA, BB, CC, DD, Gs, Go, Gi, dims, lv, rv, qv, m0�

¼ scbðA, B, C, D, tolÞ;

The output (AA,BB,CC,DD) corresponds to ð ~A, ~B, ~C, ~DÞ,
Gs, Go and Gi are ~�s, ~�o and ~�i respectively, and qv is
the vector fm1,m2, . . . ,mdg.

3.1.2. Computation of Fs. Define Ass, Bs as in (8) and
(9), then compute Fs in (11) according to different design
methods.
For the general ATEA design approach, if the user

choose to input eigenvalue of AssþBs*Fs, the function
place is used to compute an Fs. Otherwise, the code
generates an Fs such that AssþBs*Fs is stable.

3.1.3. Computation of Fc. Choose an Fc such that
AccþBc*Fc is stable. The user can input the desired
poles of AccþBc*Fc. The m-function place is then
called to find an Fc.

3.1.4. Assignment of eigenstructure of fast

subsystems. Select the desired eigenvalues of fast sub-
systems in (10), and compute coefficients in pi(s) of (13).

3.1.5. Computation of state feedback gain. According
to the value of option, decide whether to compute
state feedback gain Fepsilon of (16) in the symbolic
form or in the numeric form.

If option¼1, construct a symbolic object to represent
the tuning parameter �, by using the command

epsilon ¼ symð0epsilon0Þ

ðor equivalently, symsepsilonÞ:

S¼ sym(A) constructs an object S, of class ’sym’,
from A. If the input argument is a string, the result is
a symbolic number or variable. If the input argument
is a numeric scalar or matrix, the result is a symbolic
representation of the given numeric values. x ¼

sym(’x’) creates the symbolic variable with name ’x’

and stores the result in x.
Compute various gains ~Fið�Þ, ~F

þ

a1ð�Þ and ~Fb1ð�Þ in
(14)–(15). Note that all of these gains are polynomial
matrices in symbolic object (1/epsilon). Thus, the
state feedback gain of (16) is a polynomial matrix in

SCB for (A,B,C,D)

START

END

yes

no

Option=1?

Input epsilon

Syms epsilon

F(epsilon)

Based on H2/H-infinity/Disturbance
decoupling methods, design Fs

Design Fc, such that Acc-l-Bc Fc is stable
Depending on eigenstructure of
fast subsystems, compute pi(s)

Figure 1. Program flow chart of atea algorithm.

Symbolic realization of ATEA design method 1477



symbolic object (1/epsilon). The actual code of this

part is given below,

if option¼¼1

syms epsilon

tFd¼sym([ ]);

tFa1¼sym(zeros(md,nap));

tFb1¼sym(zeros(md,nb));

tF¼sym([ ]);

tF0¼sym([ ]);

else

disp(’ ’)

epsilon¼input(’Enter the value of epsilon:

epsilon ¼ ’);

tFd¼[ ];

tFa1¼zeros(md,nap);

tFb1¼zeros(md,nb);

tF¼[ ];

tF0¼[ ];

end

for kk¼1:md

for j¼1:qv(kk)

tFi(kk,j)¼Ft(kk,qv(kk)-jþ1)/

epsilon^(qv(kk)-jþ1);

end

end

%STEP ATEA-C.5

for kk¼1:md

if size(Fa1p,2)~¼0

tFa1(kk,:)¼Fa1p(kk,:)*tFi(kk,1);

end

if size(Fb1,2)~¼0

tFb1(kk,:)¼ Fb1(kk,:)*tFi(kk,1);

end

tFd¼blkdiag(tFd,tFi(kk,1:qv(kk)));

end

tFs1¼[tFa1 tFb1];

if m0~¼0

tF¼[zeros(m0,nan),Fs0,zeros(m0,ncþnd)];

tF0¼CC(1:m0,:);

end

if md~¼0

tF¼[tF;zeros(md,nan),tFs1,zeros(md,nc),

-tFd];

tF0¼[tF0;Bd’*AA(n-ndþ1:n,:)];

end

if mc~¼0

tF¼[tF;zeros(mc,nanþnapþnb),

Fc,zeros(mc,nd)];

tF0¼[tF0;Bc’*AA(n-nc-ndþ1:n-nd,

1:nanþnap),zeros(mc,nbþncþnd)];

end

Fepsilon¼Gi*(tF-tF0)*inv(Gs);

dig¼16;

Fepsilon¼vpa(Fepsilon,dig);

The code returns a state feedback gain with tuning
parameter epsilon.

If option¼ 0, the user is asked to input a value for
epsilon, then the code returns a numerical gain

directly.

Remark 3.1: In current codes, we only set the tuning
parameter �(epsilon) as a symbolic object. In fact, to
have more freedom in control design, Fs in (11), Fc in
(12) and Fi1,Fi2, . . . ,Fiqi in (13) can also be set as
symbolic objects. But in this case, the controller design
will become much more complicated.

3.2 Implementation of h2state, h8state and addps

The only difference between the above three functions
and atea is in the selection of Fs.

For the H2 design approach (i.e., h2state), Fs is
obtained by (18) through solving algebraic Riccati
equation (19).

For the H1 design approach (i.e., h8state), Fs is
obtained by (20) through solving algebraic Riccati
equation (21).

For almost disturbance decoupling problem
(i.e., addps), check the value of Es first. If Es¼ 0,
choose an Fs such that Ass+Bs*Fs is stable. Otherwise,
the almost disturbance decoupling problem is not
solvable.

After the gain matrix, in term of the tuning parameter
�, is returned, the user might use other functions in the
Symbolic Math Toolbox to analyse the closed-loop
system.

The function subs can be used to compute the gain in
numerical form for a given value of epsilon. The com-
mand subs(S,new) replaces the default symbolic vari-
able in S with the numerical value new. The command
subs(S,old,new) replaces the symbolic variable old

in the symbolic expression S with a symbolic or numeric
variable or expression new. For example, the command
subs(F,0.5) returns the feedback matrix Fð0:5Þ.

In MATLAB, by default, the Symbolic Math Toolboxes
uses variable precision floating point arithmetic with
32 decimal digit accuracy. Computation precision can
be changed by using the function vpa (variable precision
arithmetic) or digits. The command vpa(A) uses
variable-precision arithmetic to compute each element
of A to d decimal digits of accuracy, where d is the
current setting of digits. Each element of the result
is a symbolic expression. The command vpa(A,d) uses
d digits, instead of the current setting of digits.
The function vpa can also be used to display results in
a compact form for ease in debugging the code.
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The Symbolic Math Toolboxes also provides
functions to create graphs from symbolic expressions.
For example, ezmesh(f,domain,n) plots the symbolic
function f over the specified domain divided by an
n-by-n grid, where domain can be either a 4-by-1
vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max].
More details on the use of Symbolic Math Toolboxes

can be found in The Math Work Inc. (2004).

4. Examples

Example 1: Consider a given system (17) with

A ¼

0 0 �1 0 �1

0 1 0 2 �1

1 1 3 2 1

0 0 1 0 1

0 0 0 0 0

2
666666664

3
777777775
, B ¼

�1 0

0 0

1 0

0 0

�1 1

2
666666664

3
777777775
,

E ¼

0 1

0 0

1 0

0 1

0 0

2
666666664

3
777777775
,

and

C ¼

0 1 0 1 0
0 0 1 0 0
0 0 0 1 0

2
4

3
5, D ¼

0 0
0 0
0 0

2
4

3
5:

By using state, output and input transformations,

�s ¼

1 0 �1 0 0

0 1 0 �1 0

0 0 1 0 0

0 0 0 1 0

0 0 �1 0 1

2
666666664

3
777777775
, �o ¼

0 0 1

1 0 0

0 1 0

2
664

3
775,

�i ¼
1 0

0 1

" #
,

the given system � is transformed into the form of the
special coordinate basis

~A ¼

1 1 1 1 0

0 1 1 1 0

1 1 1 1 1

0 0 0 0 1

1 1 1 1 1

2
66666664

3
77777775
, ~B ¼

0 0

0 0

1 0

0 0

0 1

2
66666664

3
77777775
,

~E ¼

1 1

0 1

0 0

1 0

0 1

2
66666664

3
77777775
,

~C ¼

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

2
64

3
75, ~D ¼

0 0

0 0

0 0

2
64

3
75:

It is left invertible and has one unstable invariant
zeros at s¼ 1 and two infinite zeros of orders 1 and 2,
respectively. Moreover, we have

Ass ¼
1 1

0 1

� �
, Bs ¼

1 1

1 1

� �
, Es ¼

1 1

0 1

� �
,

and

Cs ¼

0 1

0 0

0 0

2
64

3
75, Ds ¼

0 0

1 0

0 1

2
64

3
75:

Since Es 6¼ 0, the disturbance decoupling problem for
the given system is not solvable. We will thus focus on
solving the H2 and H1 suboptimal control problems
for the system. Following the construction procedures
of the ATEA algorithm in the previous section, we
obtain a state feedback

Fð�Þ ¼�

Fs11

�
þ1

Fs12

�
þ1

Fs11þ1

�
þ3

Fs12

�
þ2 1

2Fs21

�2
þ1

2Fs22

�2
þ1

2Fs21

�2
þ
2

�
þ3

2Fs22þ2

�2
þ2

2

�
þ1

2
664

3
775,

ð22Þ

where

Fs ¼
Fs11 Fs12

Fs21 Fs22

� �
ð23Þ

is to be selected to solve either the H2 or H1 control
problem. The closed-loop eigenvalues of Aþ BF are

Symbolic realization of ATEA design method 1479



asymptotically placed at �ðAss þ BsFsÞ, �1=� and
�1=�� j=�, respectively.

1. H2 Control. Solving the H2 algebraic Riccati
equation of (19), we get

Ps ¼
7:4641 �4:7321
�4:7321 4:3660

� �
,

which gives a sub-feedback gain,

Fs ¼
�2:7321 0:3660

�2:7321 0:3660

� �
,

and ��
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace ðE0

sPsEsÞ
p

¼ 3:1353. Thus, it follows
from (22) and (23) that the H2 suboptimal control law
is given by u ¼ Fð�Þx, with

Fð�Þ ¼ �

2:7321
� þ 1 � 0:3660

� þ 1 3:7321
� þ 3 � 0:3660

� þ 2 1

5:4641
�2

þ 1 �0:7321
�2

þ 1 5:4641
�2

þ 2
� þ 3 1:2679

�2
þ 2 2

� þ 1

" #
:

The diary of the execution of the function h2state is
shown below:

F ¼ h2stateðA, B, C, D, E, 1Þ;

This program will guide your through the step-

by-step procedure of the Asymptotic Time-scale

and Eigenstructure Assignment (ATEA) Design. . .

gamma_2_star ¼

3.1353

Eigenstructure assignment for fast subsystems,

x_{d}, . . . . . .
1). Specify your own structures; or

2). Let me do it for you.

Select your option (1 or 2): 1

Enter desired eigenvalues for each fast sub-

system. The actual closed-loop eigenvalues will

be placed at [the given eigenvalues/epsilon]. . .

Fast Subsystem No: 1, q_1 ¼ 1

Enter 1 eigenvalues in row vector: -1

Fast Subsystem No: 2, q_2 ¼ 2

Enter 2 eigenvalues in row vector: [-1þj -1-j]

Fepsilon¼vpa(F,5)

f¼subs(F,0.1)

f ¼
�28:3205 2:6603 �40:3205 1:6603 �1:0000

�547:4102 72:2051 �569:4102 �128:7949 �21:0000

Figure 2 shows the values of the H2-norm of the
resulting closed-loop system versus �. Clearly, it shows
that the H2-norm of the resulting closed-loop system
tends to ��

2 as � ! 0.

2. H1 Control. It follows from Chen (2002) that

��
1 ¼ 2:0090,

and for any � > ��1, we can find the sub-feedback
gain Fs. For example, let �1 ¼ 3,

Fs ¼
�5:0036 1:7210

�5:0036 1:7210

� �
,

thus,

Fð�Þ ¼ �

5:0036
� þ 1 � 1:7210

� þ 1 6:0036
� þ 3 � 1:7210

� þ 2 1

10:0073
�2

þ 1 � 3:4419
�2

þ 1 10:0073
�2

þ 2
� þ 3 � 1:4419

�2
þ 2 2

� þ 1

" #

is an H1 �-suboptimal controller for sufficiently small �.
For illustration, we plot the maximum singular values of
the transfer function of the resulting closed-loop system
for a few different pairs of � and � in figure 3. The results
indeed confirm our claim.

The diary of the execution of the function h8state is
shown below.

F ¼ h8stateðA, B, C, D, E, 0:5, 1Þ;

This program will guide your through the step-

by-step procedure of the Asymptotic Time-scale

and Eigenstructure Assignment (ATEA) Design . . .

gm8_star ¼

2.0090

gamma ¼

0.5000

Enter the value of gamma, which has to be larger

than gm8_star; gamma¼ 3

Eigenstructure assignment for fast subsystems,

x_{d}, ......

1). Specify your own structures; or

Fepsilon ¼
� 2:7321

epsilon
� 1 0:36603

epsilon
� 1 � 3:7321

epsilon
� 3 0:36603

epsilon
� 2 �1

� 5:4641
epsilon2

� 1 0:73205
epsilon2

� 1 � 5:4641
epsilon2

� 3� 2
epsilon

� 1:2679
epsilon2

� 2 � 2
epsilon

� 1

" #
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2). Let me do it for you.

Select your option (1 or 2): 1

Enter desired eigenvalues for each fast sub-

system. The actual closed-loop eigenvalues will

be placed at [ the given eigenvalues/epsilon ]. . .

Fast Subsystem No: 1, q_1 ¼ 1

Enter 1 eigenvalues in row vector: -1

Fast Subsystem No: 2, q_2 ¼ 2

Enter 2 eigenvalues in row vector: [-1þj -1-j]

Fepsilon¼vpa(F,5)

Fepsilon ¼
� 5:0036

epsilon
� 1 1:7210

epsilon
� 1 � 6:0036

epsilon
� 3 1:7210

epsilon
� 2 �1

� 10:007
epsilon2

� 1 3:4419
epsilon2

� 1 � 10:007
epsilon2

� 3� 2
epsilon

1:4419
epsilon2

� 2 � 2
epsilon

� 1

" #

10−3 10−2 10−1
3.1

3.2
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3.4

3.5

3.6

3.7
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Figure 2. The H2-norm of the closed-loop system transfer function.
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Figure 3. The maximum singular values of the closed-loop system transfer function.
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Example 2: We revisit the state feedback design for
a piezoelectric bimorph actuator (Chen 2000). The
actuator is given by

A ¼

0 1 0 0 0

�k=m �b=m �k=m 0 0

0 0 k2 0 0

1 0 0 0 0

0 0 0 1 0

2
6666664

3
7777775
,

B ¼

0

kðd� k1Þ=m

k1k2

0

0

2
6666664

3
7777775
, E ¼

0 0

�k=m 0

0 0

0 �1

0 0

2
6666664

3
7777775
,

C ¼ 0 0 0 0 1
� �

, D ¼ 0,

with m¼ 0.01595 kg, b¼ 1.169Ns/m, k¼ 4385N/m,
d ¼ 8:209� 10�7 m/V, k1 ¼ 3:5382� 10�7, k2 ¼
�0:9597. The input u is the voltage that generates
excitation forces to the actuator system. The output to
be controlled y is the displacement of the actuator.
The working range of the displacement of this

actuator is within �1 mm. Our objective is to design

a feedback controller that meets the following

specifications:

. The steady state tracking errors of the displacement

is less than 1% for any input reference signal with a

frequency range of 0 to 30Hz, and
. The control input signal u does not exceed 112.5 volts

because of the physical limitations on the piezoelectric

materials.

The special coordinate basis of ðA,B,C,DÞ is the

following,

~B ¼

0
0
0
0
1

2
66664

3
77775, ~C ¼ 0 1 0 0 0

� �
, ~D ¼ 0:

It is obvious that the system ðA,B,C,DÞ is invertible and

of minimum phase with one invariant zero at �0:96385.

~A ¼

�0:96385 �3:8585�10�3 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

�2:7492�105 �1:1006�103 1:1418�103 �2:7492�105 �73:287

2
6666664

3
7777775
,

Figure 4. The maximum singular values of the closed-loop system transfer function.
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It also has one infinite zero of order 4. Thus, Es is empty.

Following Theorem 2, the disturbance decoupling

problem for the actuator is solvable.
Let �1 ¼ f�1, � 2, � 3, � 4g. With the aid of

Symbolic Math Toolboxes, we obtain the state feedback

gain as following,

where � is the tuning parameter that can be adjusted

to achieve disturbance decoupling. Figure 4 shows that

Hhwðs, �Þ does indeed approach zero pointwise in s as �
goes to zero.
Because the feedback controller is explicitly param-

eterized in a tuning parameter �, it can be easily adjusted

to meet other design specifications without repeating the

design process.

By tuning the parameter � and simulating the overall
design, we found that the maximum peak values of the
control signal u are independent of the frequencies of
the reference signals. They are only dependent on the
initial error between the displacement y and the refer-
ence. Let us consider the worst case, i.e., the magnitude
of the initial error is 1mm, we are able to obtain a clear
relationship between the tuning parameter � and the
maximum peak of u. We also found that the tracking
error is independent of initial errors. It only depends
on the frequency of the reference signal, the larger the
frequency, the larger the tracking error. Again, we
obtain a simple and linear relationship between the
tuning parameter � and the maximum frequency that
a reference signal such that the corresponding tracking
error is no larger than 1%. With these relationships,
we can obtain a tuning parameter � to meet both the
two control specifications. The interested reader is
referred to (Ozcetin et al. 1993a, b, Chen 2000, Lin
and Chen 2000) for detail.
The diary of the execution of the function addps we

discussed above is shown below:

F ¼ addpsðA, B, C, D, E, 1Þ; Fepsilon ¼ vpaðF, 5Þ

Hs ¼ ðCþ D � FÞ � invðj � c � eyeð5Þ � A� B � FÞ � E;

Hs8 ¼ 10 � log10ððabsðHsð1ÞÞ � absðHsð1ÞÞ

þ absðHsð2ÞÞ � absðHsð2ÞÞÞÞ;

ezmeshðHs8, ½0:01, 10000, 0:0010:1�, 100Þ;

This program will guide your through the step-

by-step procedure of the Asymptotic Time-scale

and Eigenstructure Assignment (ATEA) Design . . .
Eigenstructure assignment for fast subsystems,

x_{d}, . . . . . .
1). Specify your own structures; or

2). Let me do it for you.

Select your option (1 or 2): 1

Enter desired eigenvalues for each fast subsys-

tem. The actual closed-loop eigenvalues will be

placed at [ the given eigenvalues / epsilon ] . . .

Fast Subsystem No: 1, q_1 ¼ 4

Enter 4 eigenvalues in row vector: [-1 -2 -3 -4]

5. Conclusions

In this paper, we have presented the ATEA algorithm

and shown how the algorithm itself enables a straight-
forward symbolic computation of the resulting feedback
gain matrix as a polynomial matrix in the design

parameter. Two examples are given to demonstrate
how the ATEA algorithm works and how the symbolic
implementation of the ATEA algorithm leads to results

accurately and efficiently.
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