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Full and reduced-order observer-based controller design for
Hroptimization

ANTON A. STOORVOGEL t, ALl SABERI:j: and BEN M. CHEN§

t

In this paper the most general Hz control problem is considered. We derive
necessary and sufficient conditions when the infimum is attained by state
feedback. We do the same for the measurement feedback case where we derive
necessary and sufficient conditions when the infimum is attained by proper
dynamic compensators. We also investigate reduced-order compensators if
some states are observable without noise. We discuss, for all of these cases, the
freedom that the non-uniqueness of optimal compensators gives us in assigning
the closed-loop eigenvalues. The second half of this paper investigates the case
when the infimum cannot be attained. We give a constructive algorithm to find
a minimizing sequence of stabilizing controllers and discuss the freedom in the
asymptotic locations of the closed-loop eigenvalues. Again we do the above for
three different cases: static-state feedback, full-order measurement feedback
and reduced-order measurement feedback.
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1. Introduction

During the last two decades the H 2 control problem and its stochastic
interpretation, the linear quadratic Gaus'.ian (LOG) control problem, have been
thoroughly investigated (see for example, Anderson and Moore 1989, Fleming
and Rishel 1975, Kailath 1974, Kwakernaak and Sivan 1972 and Willems 1978
and the references contained therein). Recently, the LOG theory has been
investigated in the form of the so-called mixed LOG /H 00 control problems (see
for example, Bernstein and Haddad 1989 a, 1989b, Mustafa and Glover 1990
and Rotea and Khargonekar 1991). However, in most of these papers a number
of standard assumptions are made.

(i) The subsystem from noise w to the measurement y should not have
invariant zeros on the imaginary axis and its direct feedthrough matrix
should be surjective.

(ii) The subsystem from control input u to the controlled output z should not
have invariant zeros on the imaginary axis and its direct feedthrough
matrix should be injective.

More recently, the H 2 control problem was investigated without these assump-
tions. Geerts (1989) and Willems et al. (1986), discussed the state feedback case
while Schumacher (1985), investigated the filtering side. Stoorvogel (1990) noted
that for the problem of attaining the infimum, the separation principle does not
hold: there are systems for which we can attain the infimum (over all static-state
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feedbacks) with some static-state feedback and there also exists an optimal
observer. Yet the interconnection of observer and state feedback does not attain
the infimum for the measurement feedback case. This shows that we cannot, in
general, use classical techniques for this problem. Therefore, the measurement
feedback case deserves a separate investigation.

This paper intends to unify and extend the results from the papers mentioned
above. We investigate systems without any assumptions. On the other hand we
restrict ourselves to proper controllers and we do not consider the stochastic
interpretation.

We give necessary and sufficient conditions when the infimum of the H2
norm can be attained. In Stoorvogel (1990), existence conditions were given
only for the case of optimal strictly proper compensators. However, here we
give conditions for the existence of optimal proper compensators. A novel
aspect of this paper is an analysis of the behaviour and the freedom of the
closed-loop eigenvalues. In general, the optimal H 2 controller is not unique and
we study how to use this non-uniqueness to obtain suitable locations for the
closed-loop eigenvalues.

We discuss this problem for three classes of compensators.

li

"

(1) Static-state feedback.

(2) Full-order proper dynamic output feedback. (By 'full-order compensator'
we mean a compensator with the same dynamical order as the given
plant; and by 'reduced-order compensator' we mean a compensator with
dynamical order less than the dynamical order of the plant.)

(3) Reduced-order proper dynamical output feedback.

In the last case, we investigate the situation when some of the states can be
observed without noise. It turns out that this yields the possibility of attaining
the infimum of the H 2 norm by a lower-order compensator.

We also discuss the suboptimal case when we cannot attain the infimum by a
proper compensator. Again we consider the classes of compensators mentioned
above. A novel aspect is a derivation of a minimizing sequence of reduced-order
compensators in case the infimum is not attained. For these classes we also
investigate the asymptotic behaviour of the closed-loop eigenvalues and the
freedom we have in changing these asymptotic properties by using different
minimizing sequences. We will give explicit algorithms to achieve this freedom
in the closed-loop eigenvalues. We do this both for suboptimal design and for
optimal design.

This paper has the following structure: in § 2 we give the problem statement.
In § 3 we give a transformation of our system into a new system. This
transformation replaces the role of the separation principle which, as mentioned
before, is not applicable to show all the goals stated above. Then, in § 4 we
discuss optimal design for the three classes mentioned. We investigate when we
can attain the infimum and the available freedom in assigning the closed-loop
eigenvalues. In § 5 we investigate suboptimal design: we derive minimizing
sequences of stabilizing controllers in case the infimum is not attained.
Moreover, we investigate the available freedom in the asymptotic locations of
the closed-loop eigenvalues. We end the paper in § 6 with some concluding
remarks. In Appendix A we recall a special coordinate basis from Sannuti and

')
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Saberi (1987) and Saberi and Sannuti (1990), which will be instrumental in the
proofs and algorithms of this paper. We also delegate some of the more
technical proofs and algorithms for the constructions of optimal and suboptimal
control laws to Appendices B to E.

Throughout this paper, AT denotes the transpose of A, and I denotes an
identity matrix with appropriate dimension. C, C-, CO and C+ respectively
denote the whole complex plane, the open left-half complex plane, the imagin-
ary axis, and the open right-half complex plane. Ker [V] and 1m [V] denote,
respectively, the kernel and the image of V. We will denote, for a given
subspace 2£and a matrix Cb by C11{2£}the set {xlC1x E 2£}.

..
2. Problem statement

Consider the following system

J.i = Ax + Bu + Ew2::
l
y = C1x + D1w
Z = Czx + Dzu

where x E [Rn is the state, u E [Rmis the control input, w E [Rl is the unknown
disturbance, Y E [RPis the measured output and z E [Rqis the controlled output.
The closed-loop transfer function from w to z after applying a dynamic
compensator 2:F to the system will be denoted by Tzw(2:F)' Let us define

y* := inf {IITzw(2:F)IIHzl2:Finternally stabilizes 2:}

(2.1)

(2.2)

,

where the Hz norm is defined as

IIGllk2 := {OTrace GT(- jw)G(jw) dw

The goal of this paper is twofold. First we would like to design stabilizing
control laws to minimize the Hz-norm of Tzw(2:F). We study this problem for
three classes of control laws, namely, static-state feedback, dynamic output
feedback and reduced-order dynamic-output feedback laws. Secondly, in the
case that the infimum cannot be attained exactly we design suboptimal control
laws. Here, we mean by suboptimal laws, a parametrized family of controllers
which achieves the infimum, y*, asymptotically as the parameter goes to infinity.
We study suboptimal design for the same three classes of control laws. We will
also study the locations of the closed-loop eigenvalues, either the exact locations
or the asymptotic locations depending on whether the infimum can be attained
or not.

In our problem formulation, we have assumed that the direct feedthrough
matrix from w to z is equal to O. This can be done without loss of generality: if
this matrix is unequal to 0 and there exists a compensator which makes the
closed-loop Hz norm finite then there always exists a preliminary static output
feedback which makes the direct feedthrough matrix from w to z equal to O. We
have also assumed that the direct feedthrough matrix from u to y is O. The
absence of such an assumption forces one to handle some extra problems with
respect to the fact that the closed-loop system should be well-posed. Although
not difficult, this yields results which are somewhat messier. To prevent these
difficulties we assume this matrix to be O.
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3. Preliminaries

Our intention in this section is to recall some known results from Stoorvogel
(1990) and to develop some new results which are pertinent to our present
work. It was shown by Stoorvogel (1990) that the Hz optimal control problem
for the given plant 2: can be reformulated as a disturbance (or almost
disturbance) decoupling problem via measurement feedback with internal stabil-
ity for an auxiliary system 2:PQ' Here, in this section, we first state the dynamic
equations of 2:PQand then develop its properties as to its invertibility, finite and
infinite zero structure. Next, a theorem is recalled which connects the given Hz
problem for 2: to a disturbance decoupling problem for 2:PQ.

The auxiliary system 2:PQis described by

{

iPQ = AXpQ + BUpQ + EQ wPQ

2:PQ: YPQ = ClxPQ + DQwpQ
ZpQ = CpxpQ + DpupQ

with Cp, Dp, EQ and DQ satisfying: (i) [Cp Dp] and [Eb Db]T are of maximal
rank; and (ii)

F(P) = [~~] [Cp Dp] and G(Q) = [~~] [Eb Db]

~

(3.1)

(3.2)

Here

F(P) := [ATP T+ PA +TcIcz PB +TCIDz]B P + DzCz DzDz

G(Q) := [AQ + QAT + ~ET QcI ~ ~DI ] (3.4)
CIQ + DIE DIDI

and furthermore, P and Q are the largest solutions of the respective matrix
inequalities F(P) ~ 0 and G(Q) ~ O.

The following lemma ch[.racterizes the properties of the auxiliary system
2:PQ.

(3.3)

Lemma 3.1: Consider system (2.1). Assume that (A, B) is stabilizable and (CI,
A) is detectable. Then (3.1) has the following properties.

(1) (A, B, Cp, Dp) is right-invertible with no invariant zeros in C+ and has

the same infinite zero structure as 2:ci_:=(A, Bo Cz, Dz). +Moreover, (A,
B, Cp, Dp) has a total number of na (2:ci)+ na(2:ci) + na (2:ci)+ nb(2:ci)
invariant zeros which are given by:

(a) the stable invariant zeros of 2:ci,

(b) the invariant zeros of 2:ci which are on the imaginary axis,

(c) the mirror images with respect to the imaginary axis of the invariant
zeros of 2:ci in C+, and

(d) some fixed locations in the open left-half plane which contain the
stable input decoupling zeros (but not invariant zeros) of 2:ci'

(2) (A, EQ, Cl> DQ) is left-invertible with no invariant zeros in C+ and has
the same infinite zero structure as 2:di := (A, E, Cl> DI). Moreover, (A,
EQ, CI, DQ) has a total number of n;;(2:di) + n~(2:di) + n~(2:di) +

~
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ncCJ:di)invariant zeros which are given by:

(e) the stable invariant zeros of 2:'di,

(I) the invariant zeros of 2:'diwhich are on the imaginary axis,

(g) the mirror images with respect to the imaginary axis of the invariant
zeros of 2:'diin C+, and

(h) some fixed locations in the open left-half plane which contain the
stable output decoupling zeros (but not invariant zeros) of 2:'di'

Here n;;(2:'*), n~(2:'*), n;(2:'*), nb(2:'*)and nc(2:'*)are the constants n;;, n~, n;,
nb and nc as defined in Appendix A when we bring 2:'* to the special coordinate
basis.

Proof: For the proof see Appendix B. 0

We would like to give an interpretation of the constants n;;(2:'*), n~(2:'*),
n;(2:'*), nb(2:'*) and nc(2:'*)which appear in the above lemma, and the constant
nl2:'*) used later.

(i) n;;(2:'*), n~(2:'*) and n;(2:'*) are the number (counting multiplicity) of
invariant zeros in C-, COand C+ respectively.

(ii) nt(2:'*) is the number of infinite zeros.

(iii) nc(2:'*) is the dimension of ~he intersection ?Jg(2:'*)n Vg(2:'*)which are
both subspaces of the state-space defined in Definition 3.1. This
intersection is the largest subspace of the state-space which is completely
controllable by the input u while maintaining an output equal to O.

(iv) nb(2:'*) equals the dimension of the state space n minus the numbers
defined above. Ii: is equal to n minus the dimension of
?Jg(2:'*) + V g(2:'*).

Next, we recall from Stoorvogel (1990) the following theorem which reform-
ulates the given Hz optimal control problem for 2:'in terms of another problem
for 2:'po. Such a reformulation indeed plays a significant role in the development
of subsequent sections.

Theorem 3.1: Let an arbitrary compensator 2:'F be given as

"

2:' .
{

V = Kv + Ly
F. -u = Mv + Ny

Then the following two statements are equivalent.

(i) The compensator 2:'Fapplied to the system 2:'defined by (2.1) is internally
stabilizing and the resulting closed-loop transfer function from w to Z is
strictly proper and has Hz norm y.

(ii) The compensator 2:'Fapplied to the new system 2:'po defined by (3.1) is
internally stabilizing and the resulting closed-loop transfer function from
w to zPo is strictly proper and has Hz norm

{yZ- Trace ET PE - Trace (A TP + PA + ci CZ)Q}l/Z

Since (A, B, Cp, Dp) and (A, Eo, Cb Do) are right- and left-invertible
respectively and since neither one of these systems has invariant zeros in C+, we

(3.5)
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know that for 1:'PQthe H 2 almost disturbance decoupling problem with measure-
ment feedback and stability is solvable (see Stoorvoge1 1990), i.e. we can find a
stabilizing compensator for 1:'PQwhich makes the H 2 norm of the closed-loop
system arbitrarily small. Note that this is, in general, not true if we replace the
H 2 norm by the Hoc norm (except when we exclude invariant zeros on the
imaginary axis, see for example Trentelman 1986, Weiland and Willems 1989,
Willems 1981 and 1982). Combining this result with Theorem 3.1 yields the
following corollary.

Corollary 3.1: Let y* be defined by (2.2). Moreover, let P and Q be the largest
solutions of the respective matrix inequalities F(P) ~ 0 and G(Q) ~ O. Then we
have

y* = {TraceETPE + Trace (ATp + PA + CIC2)Q}1/2

In this section we deal with the design problems for the cases when the
infimum, y*, can be attained exactly. We will consider the following types of
controllers.

(1) Static-state feedback controllers.

(2) Dynamic output feedback controllers based on either full or reduced-
order observers.

For each type of controller considered, we first develop the necessary and
sufficient conditions under which an optimal controller exists, and then proceed
with the design of controller. Our conditions for the existence of an optimal
controller, are expressed in subspace inclusions. The required geometric sub-
spaces are defined as follows.

Definition 3.1: We define the detectable strongly controllable subspace 2Tg(A,
B, C, D) as the smallest subspace 2T of Iffinfor which there exists a linear
mapping K such that the following subspace inclusions are satisfied

(A - KC)2T k 2T (3.6)

1m (B - KD) k 2T (3.7)

and such that A - KCllffinj2T is asymptotically stable. We also define the
stabilizable weakly unobservable subspace OVg(A, B, C, D) as the largest
subspace OVfor which there exists a mapping F such that the following subspace
inclusions are satisfied

(A - BF)"If k "If (3.8)

(C - DF)OV= {O} (3.9)

and such that A - BFIOV is asymptotically stable. D

The subspaces "Ifg(A, B, C, D) and 2Tg(A, B, C, D) defined above can be
computed by means of well-known algorithms (see for example Stoorvogel1992,
Sannuti and Saberi 1987, Saberi and Sannuti 1990 and Wonham 1985). We note
also that if (A, B) is stabilizable then for OVg(A, B, C, D) there exists an F
such that (3.8) and (3.9) are satisfied and moreover A - BF is asymptotically
stable. A similar comment can be made for 2Tg(A, B, C, D) in case (C, A) is
detectable.

~
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3.1. Static-state feedback design

In this subsection, we deal with the problem when all states of the given
system (2.1) are available for feedback, i.e. C1 = I and Dl = O. We have the
following theorem regarding the existence of an optimal static-state feedback
law.

Theorem 3.2: Consider the given system (2.1) with C1 = I and Dl = O. The
infimum, y*, can be attained by a static-state feedback law if and only if (A, B)
is stabilizable and

1m (E) ~ Vg(A, B, Cp, Dp) (3.10)

Proof: By Theorem 3.1 and Corollary 3.1 the infimum y* is attained if and
only if there exists a state feedback law which stabilizes 17pQand which yields a
closed loop transfer matrix equal to O. By Stoorvogel and van der Woude
(1991), this is equivalent to condition (3.10). 0

,'"

Design

The next step is to design state feedback control laws which attain the
infimum. In general, the state feedback laws which attain the infimum are not
unique. However, it can be shown that the~closed loop transfer matrix is unique.
Weare going to see how this freedom yields a freedom in the location of the
closed-loop poles. Because the closed-loop transfer matrix is unique we cannot
affect the external behaviour but we can vary the responses of the internal
signals.

Clearly, if 1m (E) = {O} any stabilizing feedback will do. On the other hand,
if we have equality in (3.10) then our choice will be severely limited. We can
build a design method around any subspace V for which a matrix F exists such
that A - BF is stable, (3.8) and (3.9) are satisfied for the system (A, B, Cp,
Dp) and such that 1m (E) ~ V. A smaller subspace V yields extra freedom in
our design. However no method is available to generate th~ smallest subspace V
satisfying all these conditions. Therefore we will only discuss design techniques
based on the largest subspace Vg(A, B, Cp, Dp) satisfying all these conditions.
In particular, we have the following lemma.

Lemma 3.2: Suppose 1m (E) = Vg(A, B, Cp, Dp). Let Fop denote the set of
feedback gains F such that A - BF is asymptotically stable and such that the
conditions of Definition 3.1 are satisfied for Vg(A, B, Cp, Dp). Then, any
member of the set Fop, say F, is an optimal solution, i.e. the feedback law
I! = - Fx applied to 17 is stabilizing and the closed-loop Hz norm is equal to the
infimum (2.2). Moreover, any feedback u = - Fx which is stabilizing and yields
a closed-loop Hz norm equal to y* is in Fop, i.e. FE Fop.

Proof: For the proof see Appendix C. 0

This set Fop can be constructed using the algorithm given in Appendix C.
We will compare different state feedbacks by investigating the location of the
closed-loop poles. We can derive the following result.

Lemma 3.3: Let Fop be as defined in Lemma 3.2. Define 17cito be the system
(A, B, Cz, Dz).

Any F E Fop yields a feedback law u = - Fx which is stabilizing and, when
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applied to 1:, the resulting closed loop Hz norm is equal to y* defined by (2.2).
Moreover, by varying the feedback gain over the set Fop, we have the following
freedom in assigning the closed-loop eigenvalues

(1) n;;(1:ci) eigenvalues lie at the locations of the stable invariant zeros of 1:ci,

(2) n;(1:ci) eigenvalues lie at the locations of the mirror images with respect to
the imaginary axis of the invariant zeros of 1:ci in the open right-half
plane.

(3) nb(1:ci) eigenvalues lie at fixed (independent of our specific choice for F)
locations in the open left-half plane which contain the stable input
decoupling zeros (but not invariant zeros) of 1:ci'

(4) n~(1:ci)+ nc(1:ci)+ nl1:ci) eigenvalues can be assigned to arbitrary loca-
tions in the open left-half plane depending on the specific choice of F.

Here n;;(1:ci)' n;(1:ci), n~(1:ci)' nb(1:ci), nc(1:cz)and nl1:ci) are the constants n;;,
n;, n~, nb, nc and nf as defined in Appendix A when we transform 1:ci to the
special coordinate basis.

If we have strict inclusion in (3.10) then, in general, there exist feedback laws
u = - Fx which are stabilizing and attain the infimum y* but which are not in

Fop, i.e. F It Fop.

Proof: For the proof see Appendix C. 0

This lemma completely characterizes the available freedom and the con-
straints on the closed-loop eigenvalues for the case that 1m (E) = "Vg(A, B, Cp,
Dp). For the case when 1m (E) is a proper subset of "Vg(A, B, Cp, Dp), the
result of this lemma is valid only for a subclass of all state feedback laws which
attain the infimum. This is to be expected. For example, as mentioned before,
for the case when E = 0, any stabilizing feedback will attain the infimum and we
clearly cannot say anything specific about the closed-loop eigenvalues.

It is obvious that, in general, an Hz optimal controller is not unique.
However, it is easy to see that if

(1) Dz injective

(2) E surjective, and

(3) (A, B, Cz, Dz) has no invariant zeros on the imaginary axis,

then Fop is a singleton and hence an Hz optimal controller is unique. This
observation was also noted in Rotea and Khargonekar (1991).

We illustrate our results in the following example.

Example: Consider a given plant characterized by

1 0 0 1 0 1 2 0 0 5 0 9
1 1 0 1 0 1 1 0 0 0 0 0

A = 10
0 2 1 0 1

B=
0 0 0

E=
0 -0.2929 0

0 0 0 1 0 l ' 0 0 0 ' 0 0 0
1 1 1 1 1 1 0 0 1 3 3 5
1 1 1 1 1 1 0 1 0 0 2 0

C, [

1 0 0 0

n D, D

0

n
0 0 0 0 0
0 0 1 0 0
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Ci = 16 and Di = O. It can be verified that the system 2:cicharacterized by (A,
B, C2, D2) is neither right nor left-invertible with three invariant zeros at -1, 0
and 2, and one infinite zero of order one, i.e. n~(2:ci)= n~(2:c;)= n;(2:d) =
nb(2:ci)= nc(2:ci)= nJ2:ci)= 1. Using the software package developed by Lin et
ai. (1991), we obtain,

[
1 1 0 0 0 O

J [
1 0 O

JCp = 0 0 6.828427 -0.414214 0 1 ' Dp = 0 0 O'

and

"Vg(A, B, Cp, Dp) = 1m

-0.7662610
-0.1915653
-0.0957826
-0.1915653

0
0.5746958

0.640502
-0.176888
-0.115702
-0.176888

0
0.716793

-0.051008
0.656593

-0.013974
0.656593
0
0.367389

g 1

g 707107 j

It is straightforward to verify that the quadr~le (A, B, Cp, Dp) is right
invertible with four invariant zeros at 0, -1, - V2 and - 2, and one infinite zero
of order one. Moreover, 1m (E) ~"Vg(A, B, Cp, Dp). Then, following the
procedure given in Appendix C, we obtain that the set Fop consists of matrices
of the form

f11, 112, f2l and h2 are free parameters such that

A([
0 0

J [
2,236068 O

J [
f11 f12

J )
C c-

-0.447214 7.414214 - 0 1 hi h2

the parameter fe is constrained by fe > 1/Y2 while * denotes completely free
parameters.

It is simple to verify that {-I, -Y2, -2} C A(A - BF) for any FE Fop while
the three eigenvalues of A - BF can be anywhere in C- by varying F over the
set Fop. 0

3.2. Full-order dynamic output feedback design

In this subsection and the next we consider dynamic output feedback
controllers. More specifically, this subsection considers full-order observer-based
controllers, while the next subsection considers reduced-order observer-based
controllers. As we already noted, attaining the minimal H 2 norm for 2: is

[-0.957826

0.463613 0.605585 -0.447214+ f11 0

112] I

0.478913 2.770753 7.992790 hi 0.707107 2 r;
* * * * !c

where

-0.766261 -1.532522 -4.020051 1.387438 0 0
0.640502 1.281003 -5.010269 -1.337875 0 0

r-i = I -0.051008
-0.102017 -2.522660 1.567380 0 0

s 0 2.236068 0 -2.236068 0 0
0 0 0 0 1.414213 0
0 0 6.828427 -0.414214 0 1
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nothing else than disturbance decoupling with measurement feedback and
stability for .l'PQ, i.e. construction of compensators which make the closed-loop
transfer matrix equal to O. This fact is a key in getting our results.

We consider general proper, i.e. not necessarily strictly proper controllers.
Perhaps some justification for the use of such controllers is warranted here. In
all books related to the linear quadratic Gaussian control problem (see for
example, Kwakemaak and Sivan 1972 and Davis 1977), which is simply the
stochastic interpretation of the H 2 control problem, only strictly proper con-
trollers are considered. This was necessary since the disturbance w is white-
noise. Only integrated white-noise has a thorough mathematical interpretation
via stochastic integrals (see for example Davis 1977). Since we clearly want a
well-defined input process this yields the extra requirement that the closed-loop
transfer matrix from w to u should be strictly proper. Together with the classical
as!'umption that Dl is surjective, this yields the requirement that the controller
should be strictly proper. Also, if D2 is injective and Dl is surjective, which are
both classical assumptions, then a strictly proper compensator is necessary for a
finite H2 norm (since this requires a strictly proper transfer matrix from w to
z). On the other hand, in this paper we do not make these classical assumptions
nor do we use this stochastic interpretation. Therefore, it makes sense to
investigate non-strictly proper compensators as well.

The following theorem gives necessary and sufficient conditions under which
we can attain the infimum y* for general proper (not necessarily strictly proper)
stabilizing compensators:

Theorem 3.3:
equivalent.

(1) There exists a proper internally stabilizing compensator of the form (3.5)
such that the infimum y* is attained.

(2) (A, B) is stabilizable, (Cb A) is detectable and

(a) 1m (EQ) ~'Vg(A, B, Cp, Dp) + BKer(Dp),

(b) Ker(Cp):2 2Jg(A, EQ, Cb DQ) n Cl1{Im(DQ)},

(c) 2Jg(A, EQ, Cb DQ) ~'Vg(A, B, Cp, Dp).

Consider the system (2.1). The following two statements are

Proof: Again, this is a combination of the results in Stoorvogel and van der
Woude (1991) and Theorem 3.1. 0

The conditions of Theorem 3.3 are weaker than the conditions derived by
Stoorvogel (1990) in the sense that they are implied by the conditions of
Stoorvogel (1990) but not vice versa. This is due to the fact that in Stoorvogel
(1990) only strictly proper compensators are considered. It is possible for a
system to have an optimal non-strictly proper output feedback control law but
not to have any optimal strictly proper output feedback control law. Also, a
system can have an optimal non-strictly proper output feedback control law
while not having any optimal state feedback law. This is possible since, in
general, in the case of a non-strictly proper output feedback law, we have a
feedback of the disturbance (which is part of the measurement) as well; often
this will hurt the design, but in some cases one can use this to attain the
infimum which would not have been possible by feedback of the state only.

It should be noted that the above conditions do not satisfy the separation
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principle. The separation principle tells us that we can look separately at state
feedback and observer design and afterwards we can simply interconnect them.
Condition (a) in the above theorem guarantees that we can attain the infimum
of the closed loop H 2 norm in the case of state feedback. Condition (b) yields a
dual result for observer design. On the other hand, condition (c) is a require-
ment which expresses whether we can couple the state feedback and the
observer in a suitable way. The above conclusion is the reason why we cannot
use the classical technique of the separation principle in the most general case.
It should be noted that the separation principle does not hold for the question of
attaining the infimum. The separation principle does indeed hold for the
infimum itself, i.e. we can find a state feedback and an observer which are each
separately arbitrarily close to the infimum (for their respective objectives) such
that 'the interconnection' is close to the infimum y* defined by (2.2).

We will now, under the assumptions of Theorem 3.3, proceed with the
design of compensators which attain the infimum. As in the previous subsection
we. will also investigate the freedom available in assigning the closed-loop
eigenvalues.

Design

We will only discuss controllers of a particular structure. Given a static
full-information feedback of the form u = -Fx + NDlw, where F and N are
suitably chosen gains, we replace x by its estimate x and Dl w = Y - Clx by the
estimate y - Clx. Here x is an estimate of x obtained via a suitably chosen
observer. In this way we obtain an observer of the form

iJ = Av + Bu + K(y - ClV)

}u = - Fv + N(y - Clv)

Note that whenever the infimum can be attained by a compensator of the form
(3.5), it can also be attained by a compensator of the form (3.11). In Stoorvogel
and van der Woude (1991) a necessary condition was derived which the direct
feedthrough matrix has to satisfy whenever it achieves disturbance decoupling
with measurement feedback and stability. This is the condition given in the
following lemma.

(3.11)

Lemma 3.4: Define X and Y such that

"ViA, B, Cp, Dp) = Ker(X), 2Jg(A, EQ, Cl, DQ) = Im(Y)

Define the following linearequation

[~ ~] [[~p ~Q] + [~p] N[C1DQ]] [~ ~] = 0 (3.12)

Under the conditions of Theorem 3.3 there exists at least one matrix N satisfying
this equation.

Proof: For the proof see Stoorvogel and van der Woude (1991). D

Next, we define Cop to be the set of proper output feedback control laws of
the form (3.11) where F and K are arbitrary elements of the sets Fop and Kop,
and N is any solution of (3.12). Here Fop is the set defined in Lemmas 3.2 while
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Kop denotes the set of matrices K which satisfies the conditions of Definition
3.1 for ;:rg(A, Eo, Cb Do) and which is such that A - KC1 is asymptotically
stable.

We note that such a set K op can be constructed first by constructin1 a set
using the algorithm from Appendix C for the system (AT, cI, E~, Do), and
then taking the transpose of the elements in the resulting set.

Lemma 3.5: Under the conditions given in Theorem 3.3, any member of Cop
applied to 2: is stabilizing and attains the infimum y*.

Proof: Combine Theorem 3.1 with Stoorvogel and van der Woude (1991). D

The following lemma shows the available freedom that exists in assigning the
closed-loop eigenvalues while using the above class of compensators.

Lemma 3.6: Assume the conditions of Theorem 3.3 are satisfied. Define 2:ciand
2:di to be the systems (A, B, Cz, Dz) and (A, E, Cb Dl) respectively.

By varying the output feedback control laws over the set Cop, we have the
following freedom and constraints in assigning the closed-loop eigenvalues

(1) n-;;(2:ci)+ n-;;(2:dJ eigenvalues lie at the locations of the stable invariant
zeros of 2:ciand 2:di'

(2) n;(2:ci) + n;(2:di) eigenvalues lie at the locations of the mirror images
with respect to the imaginary axis of the invariant zeros of 2:ciand 2:di'in
the open left-half plane.

(3) nb(2:ci)+ nc(2:dJ eigenvalues lie at fixed (independent of our specific
choice for the compensator) locations in the open left-half plane which
contain the stable input decoupling zeros (but not invariant zeros) of 2:ci
and the stable output decoupling zeros (but not invariant zeros) of 2:di'

(4) n~(2:cJ + nC<2:ci)+ nJ..2:ci)+ n~(2:di)+ nb(2:di)+ nJ..2:dJ eigenvalues can
be assigned to arbitrary locations in the open left-half plane depending on
the specific choice for the compensator.

Here n-;;(2:*), n~(2:*), n;(2:*), nb(2:*), nc(2:*) and nJ..2:*)are the constants n-;;,
n~, n;, nb, nc and nf as defined in Appendix A when we bring 2:* to the special
coordinate basis.

Proof: It is straightforward to check that the closed-loop eigenvalues of the
interconnection of the controller defined by (3.11) and the system 2:po described
by (3.1) are the sum of the eigenvalues of A - BF and the eigenvalues of
A - KCl. Lemma 3.3 gives us the freedom and constraints in the eigenvalues of
A - BF when we vary F over the set Fop. Dualizing the result of Lemma 3.3
yields similar results for the freedom and constraints on the eigenvalues of
A - KC1 when we vary K over the set Kop. Finally, we use that
n-;;(2:*)= n-;;(2:I), n~(2:*) = n~(2:J), n;(2:*) = n;(2:I), nb(2:*) = nc(2:I),
nc(2:*) = nb(2:I) and nJ..2:*)= nJ..2:I). The above lemma is then a straight-
forward combination of these results. 0

Remark 3.1: It should be noted that varying N over the set of solutions to
equation (3.12) has no effect on the closed-loop eigenvalues, and the freedom
given in this lemma in assigning the closed loop eigenvalues is independent of
N. However, it is not true, in general, that we have the same freedom in
assigning the closed-loop eigenvalues by using proper (not necessarily strictly
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proper) compensators as one can have by using strictly proper compensators. In
our case this is true because of the structure we imposed on the controller.
Hence, in general, the direct feedthrough matrix N of the controller does have
an effect on the closed-loop eigenvalues, but N will always satisfy (3.12) if the
resulting compensator attains the infimum. D

3.3. Reduced-order observer-based controller design

In this subsection we will discuss the case where our system 2: is such that
some states are directly available for feedback without perturbation by noise. It
will be shown that the order of the compensator in these cases can be reduced
and we wiH discuss the effect of using reduced-order observers on the freedom
available in assigning the closed-loop eigenvalues.

We assume that there exists a proper compensator which attains the infimum
y*. In other words, conditions (a)-(c) of Theorem 3.3 are satisfied. The
technique presented in this section is completely similar to the method used in
Stoorvogel et at. (1991). It should be noted that if we can attain the infimum y*
by some proper compensator of the form (3.5) then we can also attain the
infimum by a reduced-order observer-based compensator. The reduction in
McMillan degree for the compensator is equal to the number of states we can
observe without noise.

Without loss of generality but for simplicity of presentation, we assume that
the matrices CI and DQ have already been transformed to the following form

[ 0 Coz
J [

Do
JCI = I p-mo 0 and DQ = 0

Thus, the system 2:PQ as in (3.1) can be partitioned as follows

= [All A12

J
.

[Xl

J
+ [Bl

J upQ + [El

J W
AZI A22 Xz Bz Ez

+ [~oJ w

(3.13)

[;~J

[
yo

J
-

[
0

Yl -. Ip-mo C~zJ [~~J
(3.14)

zpQ = CpxpQ + DpupQ

where [xI, XDT = xpQ and [Y6, yIF = YPQ.The idea behind the construction of
a reduced-order observer-based controller is that we only need to build an
observer for Xz. Our techniques are based on the method discussed in § 7.2 of
Ander,son and Moore (1989). The differential equation for Xl is given by

Xl = AZZXl + [AZI BzJ[ Yl

J + Ezw
upQ

where (Yb upQ) are known. Observations of Xz are made via Y1and

y = A12xz + Elw = h - AUXI - BlupQ (3.15)

If we do not worry about the differentiation for the moment we note that we
have to build an observer for the following system

f.

XZ = Azzxz + [AZI

2:,:

[~J= [~~~Jxz +

BzJ[~~J+ Ezw (3.16)

[~~ J w
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The following lemma identifies the properties of 1:r.

Lemma 3.7: Let the system 1:rebe defined by the quadruple

( A22, E2, [~~~] , [~~] )
(3.17)

Then we have

(1) 1:re is detectable if and only if (A, Eo, Cb Do) is detectable.

(2) The invariant zeros of 1:reare the same as the invariant zeros of (A, Eo,
Cb Do).

(3) The infinite zeros of 1:reare the infinite zeros of (A, Eo, Cb Do) with
order larger than 1. Their order is reduced by 1 when compared with the
order of zeros of (A, Eo, C1, Do).

(4) 1:reis left invertible if and only if (A, EO, C1, Do) is left invertible.

(5) (~)'Vg(1:re) C;'Vg(A, Eo, C1, Do).

(6) (~)2Jg(1:re)C;2Jg(A, Eo, Cb Do) n C-1{Im(Do)}.

Proof: For the proof see Appendix D. D

Next, we build a full-order observer for the system 1:r defined by (3.16).
Using (3.15) we find the following observer which utilizes the gain Kr

i2 = A22X2 + A21Yl + B2upo + Kr ([ . A
Yo

B ] -
[A

CO2
] X2

)Y1 - llX1 - 1UPO 12

We factorize Kr = [K rO K rd, compatible with the sizes of (Yo, y). Then, using
the change of variables v := X2- Kr1Y1results in a reduced-order observer

iJ = (A22 - KrOC02 - Kr1Adv + (B2 - Kr1B1)upo

+ [Kro, A21 - Kr1All + (A22 - KrOC02 - Kr1AdKrdypo

~ [
0

] [Ip-m ]xPo = v + 0 Y1
In-p+mo Kr1

Next we use this reduced-order observer to implement the full information
feedback uPo = - Fxpo + NDo w given in the previous subsection and we also
replace uPo and Ypo by u and Y respectively. This leads to a reduced-order
proper control law of the form

iJ = (A22 - KrOC02 - Kr1A12)v + (B2 - Kr1B1)u

+ [Kro, A21 - Kr1All + (A22 - KrOC02- Kr1A12)Krdy

u = - (F+ NC1) [I 0 ]v
n-p+mo

-
(

,[0 Ip-mo] + N[-In-p+mo

~~O Kr1 0

(3.18)

CO2: r1])Y

Let us first define the set K ~p as the set of matrices Kr = [K rO, K rd which
satisfies the conditions of Definition 3.1 for 2Jg(1:re) and which are such that
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An - KroC02 - KrlA12 is asymptotically stable. The element of this set can be
constructed by applying the algorithm of Appendix C to a dual system of 2:re>
i.e. (AI2, [CJ2, AI2], EI, [DJ, EID. Next, we define C~p to be the set of
non-strictly proper output feedback control laws of the form (3.18) where F and
Kr are the arbitrary elements of Fop and K ~prespectively, and N is any solution
of (3.12). Here Fop is the set defined in Lemma 3.2.

Lemma 3.8: Under the conditions given in Theorem 3.3, any member of C~p
applied to 2: is stabilizing and attains the infimum y*.

Proof: Combine Theorem 3.1 and Lemma 3.7 with Stoorvogel and van der
Woude (1991). D

As in the previous subsections, in what follows we give a lemma that shows
the freedom and constraints the above class of compensators yields in assigning
the closed-loop eigenvalues.

Lemma 3.9: Assume that the conditions of Theorem 3.3 are satisfied. Define 2:ci
and 2:di to be the systems (A, B, C2, D2) and (A, E, Cb D1) respectively.

By varying the output feedback control laws over the set C~p, we have the
following freedom and constraints in assigning the closed-loop eigenvalues

(1) n~(2:cJ + n~(2:di) eigenvalues lie at the locations of the stable invariant
zeros of 2:ciand 2:di'

(2) n;(2:ci) + n;(2:di) eigenvalues lie at the locations of the mirror images
with respect to the imaginary axis of the invariant zeros of 2:ciand 2:di in
the open right half-plane.

(3) nb(2:ci)+ nc(2:di) eigenvalues lie at fixed (independent of our specific
choice for the compensator) locations in the right half-plane which contain
the stable input decoupling zeros (but not invariant zeros) of 2:ciand the
stable output decoupling zeros (but not invariant zeros) of 2:di'

(4) n~(2:ci) + nc(2:cJ + nl.2:ci) + n~(2:di)+ nb(2:di)+ nl.2:di) - (p - mo)
eigenvalues can be assigned to arbitrary locations in the open right
half-plane depending on the specific choice for the compensator.

Here n~(2:*), n~(2:*), n;(2:*), nb(2:*), nc(2:*) and nl.2:*) are the constants n~,
n~, n;, nb, nc and nf as defined in Appendix A when we bring 2:* to the special
coordinate basis.

Proof: To show that these controllers attain the infimum we use the techniques
outlined in Stoorvogel (1990) in combination with properties of 2:re given in
Lemma 3.7, to conclude that this controller achieves disturbance decoupling
with measurement feedback and stability when applied to 2:PQ. The available
freedom and constraints for the closed-loop eigenvalues are shown by noting
that the closed-loop eigenvalues are the eigenvalues of the matrices A - BF and
A22 - KrOC02 - KrlA12' By Lemma 3.3 choosing elements Kr and F from the
sets K ~pand Fop yields the required freedom and constraints. D

To conclude, we note that whenever we can attain the infimum y*, we can
reduce the dynamic order of the compensator in case some states are observed
without noise. We can clearly assign less closed-loop eigenvalues for the
closed-loop system but we have the same constraints as we encountered using
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full-order dynamic compensators. In principle, the above theorem allows us to
reobtain the results of Theorem 3.2 and Lemmas 3.2 and 3.3 by setting C1 = I
and Dl = O. The above result then yields static-state feedbacks, i.e. dynamic
compensators with O-dimensional state-space. Moreover, if there are no states
which are observed without noise, namely when p = mo, then the set C~p
reduces to the set Cop (i.e. C~p = Cop) and the results given in this subsection
allow us to re-obtain the results of the previous subsection.

4. Suboptimal Hz design
It must be clear from the previous section that we cannot always attain the

infimum y*. In this section we discuss techniques to approach this infimum. As
in the previous section, we consider both static-state feedback, and dynamic
output feedback controllers. We start this section by introducing the definition
of a suboptimal solution for the Hz optimization problem.

Definition 4.1: A sequence of state or output feedback control laws
{~F(£)I£ > O} is said to be suboptimal if there exists £0> 0 such that for all
£ E (0, £0), the closed-loop system comprising of the given system ~ and
controller ~F(£) is asymptotically stable and the Hz-norm of the corresponding
closed-loop transfer function Tzw[~F(£)] decreases as £ ~ 0 with limit y*. 0

In the previous section we showed that we cannot always attain the infimum.
In contrast, we can, of course, always find a suboptimal sequence as long as the
system is stabilizable and detectable. The intention here is to construct such
suboptimal sequences. Also, a secondary goal here is to characterize the
closed-loop eigenvalues as to the available freedom and constraints in their
asymptotic locations.

We again split this section in three parts: state feedback, full-order measure-
ment feedback, and reduced-order observer-based controllers.

4.1. Static-state feedback

In this subsection, we will generate a sequence of suboptimal state ,feedback
controllers utilizing a variation of the cheap control approach. This technique is
outlined in Appendix E.

We have the following results.

Lemma 4.1: Consider the system (2.1) with C1 = I, Dl = O. Define ~ci to be
the system (A, B, Cz, Dz).

Denote the class of sequences of static-state feedbacks described in Appendix
E for the system ~ci by F~~q. Any sequence in the set F~~q is a suboptimal
sequence. Moreover, by choosing an appropriate sequence in the set F~~qwe have
the following freedom and constraints in the asymptotic behaviour of the
closed-loop eigenvalues.

(1) n~(~ci) eigenvalues converge to the locations of the stable invariant zeros
of ~ci'

(2) n;(~ci) eigenvalues converge to the locations of the mirror images with
respect to the imaginary axis of the invariant zeros of ~ci in the open right
half-plane.
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(3) n~(L:eJ eigenvalues converge to the locations of the invariant zeros of L:e;
on the imaginary axis,

(4) nb(L:ci) eigenvalues converge to certain fixed (independent of the specific
sequence in F~;q) locations in 1[-, which include the input-decoupling
zeros (but not invariant zeros) of L:ci'

(5) ne(L:eJ eigenvalues can be assigned with arbitrary asymptotic behaviour in
1[- .

(6) nl.-L:eJ eigenvalues go to infinity in the open left half-plane and remain
bounded away from the imaginary axis.

Here n;;(L:ci)' n;(L:ci), n~(L:ci)' nb(L:ci), ne(L:ci)and nl.-L:ci)are the constants n;;,
n;, n~, nb, ne and nf as defined in Appendix A when we transform L:ci to the
special coordinate basis.

Proof: The construction of suboptimal sequences with the above freedom and
constraints is given in Appendix E. 0

Remark 4.1: In the appendix we find two methods to design a suboptimal
sequence. The first one, i.e. using Lemma E.1 directly, does not need the
special coordinate basis and therefore is very easy to use. However, we lose the
freedom to assign poles arbitrarily. A second method is described using the
special coordinate basis although it is easy to see that for its implementation one
needs only the space gee = "II"g n ?rg' Normally, one could use the simple first
algorithm. However, if the resulting positions of the closed-loop poles is
unsatisfactory, then the second algorithm can be used as it has some freedom to
change the location of poles. 0

It should be noticed that if E = 0 then any sequence of stabilizing feedback
will do and the above constraints in the asymptotic locations of the closed-loop
eigenvalues need not be satisfied. On the other hand, if E is surjective then we
conjecture that any suboptimal sequence will satisfy the above constraints on the
asymptotic locations of the closed-loop eigenvalues. Unfortunately, we have not
been able to find a proof of this conjecture and we believe that this is a very
hard problem.

Remark 4.2: Another approach to generate suboptimal sequences is the asymp-
totic time-scale and eigenstructure assignment (ATEA) technique used in almost
disturbance-decoupling (see Saberi and Sannuti 1989, Ozcetin et al. 1990, 1991).
The ATEA approach has the advantage that, contrary to the approach pre-
sented in this paper, it can assign the time-scales of eigenvalues that go off to
infinity arbitrarily. Moreover, it is free of numerical problems related to stiffness
which are present in the perturbation methods. These properties yield large
improvements in the design of the suboptimal sequences. However, at this
moment the ATEA method cannot handle invariant zeros on the imaginary axis.
For more details on this alternative method, we refer to Saberi and Sannuti
1989, Ozcetin et al. 1990, 1991. 0

4.2. Full-order dynamic compensators

In this subsection we investigate full-order dynamic compensators. Since we
can always find a suboptimal sequence of strictly proper compensators and since
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the direct feedthrough matrix did not give us extra freedom in the asymptotic
pole locations, we only investigate strictly proper full-order compensators.

Lemma 4.2: Consider the system (2.1). Define l:ci to be the system (A, B, C2,
D2) and 2:di to be the system (A, E, Cb D1). Denote by K~pq the set of

s~fluences we get by applying the construction of Appendix E to the system
l:di and then transposing every element of the sequences thus obtained.

Let F(e) be a sequence in the set F~~q. Moreover, let K(e) be a sequence in
the set K~~q. We can then construct the following sequence of strictly proper
dynamic compensators

i =Ax + Bu + K(e)(y - CIX)

}u = - F( e)x

The class of sequences of dynamic compensators we thus obtain will be denoted
by c~~q. Any sequence in this set is a suboptimal sequence for the H 2 control
problem under investigation. Moreover, by choosing an appropriate sequence in
this set c~~q we have the following freedom and constraints in the asymptotic
behaviour of the closed-loop eigenvalues

(1) n;;(l:ci) + n;;(l:di) eigenvalues converge to the locations of the stable
invariant zeros of l:ci and l:di'

(2) n;(l:ci) + n;(l:di) eigenvalues converge to the locations of the mirror
images with respect to the imaginary axis of the invariant zeros of l:ci and
l:di in the open right half-plane.

(3) n~(l:ci) + n~(l:di) eigenvalues converge to the locations of the invariant
zeros of l:ci and l:di on the imaginary axis.

(4) nb(l:ci) + nc(l:di) eigenvalues converge to fixed locations in C- that
include the stable input decoupling zeros (but not invariant zeros) of l:ci
and the stable output decoupling zeros (but not invariant zeros) of l:di'

(5) nc(l:ci) + nb(l:di) eigenvalues can be assigned arbitrary asymptotic proper-
ties in C-.

(4.1)

(6) nJ..l:ci)+ nJ..l:di) eigenvalues go to infinity in the open left half-plane and
remain bounded away from the imaginary axis.

Here n;;(l:*), n;(l:*), n~(l:*), nb(l:*), nc(l:*) and nJ..l:*) are the constants n;;,
n;, n~, nb, nc and nf as defined in Appendix A when we transform l:* to the
special coordinate basis.

Proof: We first have to consider whether we can indeed obtain a suboptimal
sequence via this construction. If nc(l:cJ + nb(l:dJ = ° then the compensator in
(4.1) is an H2 optimal controller for the system:

i = Ax + Bu + (E eI O)w

l:£:l =

[
C~:

J

+

[
~21

J

O el)w

z = e: x + eOI u
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It is then easy to show via some classical continuity arguments that (4.1) yields a
suboptimal sequence for X. If nc(Xci) + nb(Xdi) > 0 then this argument needs to
be refined but remains basically the same.

The closed-loop eigenvalues are the sum of the eigenvalues of A - BF(E)
and A - K(E)C1. Therefore, the freedom and constraints in the asymptotic
behaviour can be found from the state feedback case as described in Lemma
4.1. D

Again, we would like to know whether any suboptimal sequence which is not
an element of c~~q, will satisfy the above constraints on the asymptotic
behaviour of the closed-loop eigenvalues. We conjecture that this is true if E is
surjective and Cz injective (which, in a certain way, is the worst case), but we
have not been able to find a proof of this conjecture.

If the systems Xci and Xdi do not have invariant zeros on the imaginary axis
we could, and probably should, use the algorithm based on the almost
disturbance decoupling mentioned earlier.

4.3. Reduced-order observer

We conclude our investigation of suboptimal design by investigating whether,
in suboptimal design as well, it is possible to reduce the order of the
compensators if we observe one or more states without noise. This is indeed
possible and we find the following result.

Lemma 4.3: Consider the system (2.1) with its corresponding XpQ partitioned as
in (3.14). Define Xci to be the system (A, B, Cz, Dz), Xdi to be the system (A,
E, Cb D1) and Xre to be the system defined by the quadruple (3.17). Denote by
F~~q the set of sequences defined in Lemma 4.1. Let K~~;r denote the set of
sequences which are the transposes of the elements of the set we obtain by
applying the construction of Appendix E to X;e.

Let F(E) and Kr(E) = [KrO(E), Kr1(E)] be arbitrary sequences from the sets
F~~q and K~~;r respectively. We then construct a sequence of reduced-order
observer based controllers as follows

v = [Azz - KrO(E)COz - Kr1(E)Au]v + [Bz - Kr1(E)Bdu

+ [KrO(E), AZ1 - Kr1(E)Au + (Azz - KrO(E)COz- Kr1(E)A12)Kr1(E)]Y

u = - F(E) [1 0 ]v - F(E)[~ 'Jt- (
mo

)]y
n-p+mo r1 E

(4.2)

The set of compensators we thus obtain will be denoted by C~~;r' Any element of
this set is a suboptimal sequence for the Hz control problem for the system X.
Moreover, by choosing an appropriate sequence in the set C~~;r we have the
following freedom and constraints in the asymptotic behaviour of the closed-loop
eigenvalues.

(1) n~(Xca + n~(Xdi) eigenvalues converge to the locations of the stable
invariant zeros of Xci and Xdi'

(2) n~(Xci) + n~(Xdi) eigenvalues converge to the invariant zeros of Xci and
Xdi on the imaginary axis.
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(3) n;(..l'ci) + n;(..l'd;) eigenvalues converge to the mirror images with respect
to the imaginary axis of the invariant zeros of .l'c; and .l'd; in the open
right half-plane.

(4) nb(.l'ci) + nc(.l'd;) eigenvalues converge to some fixed locations in C- that
include the stable input decoupling zeros which are not invariant zeros of
.l'ci and the stable output decoupling zeros which are not the invariant
zeros of .l'd;'

(5) nc(.l'ci) + nb(.l're) eigenvalues can be assigned arbitrarily in C- .
(6) nJ,..l'c;) + nJ,..l're)eigenvalues go to infinity in the open left half-plane and

remain bounded awayfrom the imaginaryaxis.

Here n~(.l'*), n;(.l'*), n~(.l'*), nb(.l'*), nc(.l'*)and nJ,..l'*)are the constants n~,
n;, n~, nb, nc and nf as defined in Appendix A when we transform .l'* to
the special coordinate basis. Also, note that nb(.l'd;)+ nJ,..l'd;)=
nb(.l're) + nJ,..l're) + p - mo.
Proof: We use the same arguments as in the proof of Lemma 4.2.

We first have to consider whether we can indeed obtain a suboptimal
sequence via this construction. If nc(.l'ci)+ nb(.l're) =0 then the compensator in
(4.2) is an H 2 optimal reduced-order observer based controller for the system

[~lJ
= [All A12

J [
X1

J
+ [B1

J upQ + [E1 0 0 El
J W

X2 A2l A22 X2 B2 E2 El 0 0

[yo
J

= [
0 Co2

J [
X1

J
+ + [Do 0 El O

J W

Y1 I p-mo 0 X2 0 0 0 0

ZPQ ~ [~}PQ + [J; }PO
It is then easy to show via some classical continuity arguments that (4.2) yields a
suboptimal sequence for .l'PQand therefore also a suboptimal sequence for .l'. If
nc(.l'ci) + nb(.l're) > 0 then this argument needs to be refined but remains
basically the same.

The closed-loop eigenvalues are the sum of the eigenvalues of A - BF(e)
and A - Kro(e)C02 - Kr1(e)A12' Therefore, the freedom and constraints in the
asymptotic behaviour can be found from the state feedback case as described in
Lemma 4.1. Note that K,(e) is an observer gain for the system .l're. We use
Lemma 3.7 and Lemma 3.1 to relate the system .l'rewith .l'd;' 0

This concludes the results for the suboptimal sequences. The main open
problem remains the necessity of the constraints on the asymptotic locations of
the closed-loop eigenvalues.

5. Conclusions

In this paper we have tried to give a fairly complete treatment of the H 2
control problem. We have given explicit characterizations of when we can attain
the infimum of the H2 norm. Moreover, we have shown how the freedom given
to us by the non-uniqueness of the optimal controller can be used up to a
certain level to manipulate the closed-loop eigenvalues. We also investigated
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minimizing sequences for the case when the infimum cannot be obtained, and in
that case as well, we investigated the freedom available in the asymptotic
locations of the closed-loop eigenvalues. We have considered both measurement
feedback and state feedback. We have also investigated reduced-order observer-
based measurement feedback.

If the infimum could be attained, we investigated three specific architectures
for the controller. In each case we show that 'in the worst case', namely where
we have certain subspace equalities, our constraints on the closed-loop eigen-
values are necessary and our characterizations of optimal solutions are complete.
However, in general- namely not just in the 'worst case' - the optimal solutions
obtained here are incomplete and constitute only a subclass of all possible
optimal solutions. It is an interesting problem to characterize all possible optimal
solutions for these three architectures of control laws and examine the freedom
and constraints on their closed-loop eigenvalues.

In suboptimal design we investigated three different architectures for the
controller. We give the freedom and constraints for the asymptotic locations of
the closed-loop eigenvalues. However, even in a 'worst case' we cannot prove
that these constraints are necessary. This remains an interesting yet very difficult
open problem.

The algorithm presented in Appendix E is numerically not very reliable.
However alternatives are available, as mentioned in §4. This alternative method
cannot treat invariant zeros on the imaginary axis. However, since our method
shows that invariant zeros on the imaginary axis result in suboptimal sequences
with eigenvalues converging to the imaginary axis, this is already-from a
practical point of view-a very undesirable situation.

Notwithstanding the above, it is our belief that this paper gives a fairly
complete picture of the Hz control problem in its full generality.

ACKNOWLEDGMENTS

The research of Dr A. A. Stoorvogel has been made possible by a fellowship
of the Royal Netherlands Academy of Sciences and Arts. The work of A. Saberi
and B. M. Chen is supported in part by Boeing Commercial Airplane Group
and in part by NASA Langley Research Center under grant contract
NAG-1-121O.

Appendix A

The special coordinate basis

In this section we will present the special coordinate basis introduced in
Sannuti and Saberi (1987) and Saberi and Sannuti (1990). Such a special
coordinate basis has a distinct feature of explicitly displaying the finite and
infinite zero structure of a given system. Consider the system characterized by
(A, B, C, D). We first choose a new basis in the input and output spaces such
that the direct feedthrough matrix gets a nice form

_
[1 O

J
- -

[Co
JD := UDV = aD ° ' B = [Bo,Bd := BV, C= C1 := UC

where U and V are non-singular matrices. In this way, we obtain the
transformed system (A, 13, C, 15). It follows from Sannuti and Saberi (1987)
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and Saberi and Sannuti (1990) that there exists new bases in the state, input and
output spaces represented by the base transformations rs, ri and ro respectively
such that the resulting matrices have a special form

Here Cf is chosen to be surjective. Note that we have decomposed the state
space into six parts: ~ = ~;;- E9~e E9~~ E9~~ E9~b E9~f' ~;;- is related to the
stable invariant zeros, i.e. the eigenvalues of A;;-aare exactly the stable invariant
zeros of l:. Similarly ~~ and ~~ are related to the invariant zeros of l: on the
imaginary axis and open right half-plane respectively. ~e is related to
left-invertibility, i.e the system is left-invertible if and only if ~e = {O}. Simi-
larly, ~b is related to right-invertibility, i.e. the system is right-invertible if and
only if ~b = {O}. Finally, ~f is related to zeros of l: at infinity. The space 'Vg(A,
B, C, D) introduced earlier in this paper is equal to ~;;-E9~e' On the other
hand, the space 5"g(A, B, C, D) which was also introduced earlier equals
~~ E9~~ E9 ~e E9~f'

We denote the dimensions of ~;;-, ~o ~~, ~~, ~b and ~f by n;;-, ne, n~, n~,
nb and nf respectively.

Appendix B

Proof of Lemma 3.2-Properties of~: Without loss of generality but for
simplicity of presentation, we assume that the system (A, B, C2, D2) is in the
form of the special coordinate basis as described by (A 1) to (A 4). Then, it is
straightforward to verify that (since Cf is surjective) the unique positive

A;;-a 0 0 0 L;;-bCb LCf

BeEa Ace
0 +

LabCb LefCfBeE ea BeE ea
0 0

0
0

0 0

r;l(A - BoCo)rs = I

Aaa LabCb L afCf
0 0 0 A+ LbCb LCfaa
0 0 0 0 Abb LbtCf

BfE fa BfEfe
0 +

BfEfb AfBfE fa BfE fa

(A 1)-
B;;-o 0 0

Beo 0 Be
0 0

0 I-l[ ] ,Bao (A 2)rs Bo, Bl rj = + 0Bao 0

Bbo 0 0

BfO Bf 0

rl [:Jr, [yo

COe
0

cta COb

CO!]

COa
0 0 0 0 Cf (A3)
0 0 0 Cb 0

and

r-1 [Imo °J [1m.

0

J
r = 0 0 (A 4)0 0 0 1

0 0
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semidefinite matrix P satisfying conditions (i) to (iii) of Lemma 3.1 is given by

P := [!!ll !!iI
JP2I P22

is the positive definite solution of the following ARE

[A;a L;bCb

J
T P + P[A;a L;bCb

J
+ [

0

0 Abb 0 Abb 0

[
+ +

J[
+ +

J
T

- P Bao Laf Bao Laf P = 0
Bbo Lbf Bbo Lbf

with

A{[ Ao;a

C?CbJ

L;f
J[

B;O
Lbf B bO

L 4
J T P

}
c c-

Lbf
L;bCb

J
-

[
B;o

Abb Bbo
We define

+

J
T

Laf P
Lbf

F := [Fio FbO
J

:=[B;o
F al FbI Bbo

It is simple to show that F( P) can be factorized as

[C~
JF(P) = D~ [Cp Dp]

where

Cp = [Cta

0
COa

0
COb + Fbo

FbI

C
+ +
Oa + FaO

F;I
COe

0

and

[Imo
Dp = 0

0
0 ~J

Next, let us define

- +-
A = A - BoCo - Bo[O 0 0 FaO Fbo 0], B =

and

C = [0 0 0 F;I FbI Cf]

COf
JCf

0
0
0
0
0

Bf

0
Be
0
0
0
0

(B 2)

0 0 0 0 0 0
0 0 0 0 0 0

P = 10 0 0 0 0
I (B 1)0 0 Pll

T0 P2I
0 0 0 P2I P22 0
0 0 0 0 0 0

where
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Then, using the same techniques as in Appendix B of Chen et al. (1992) and
using the properties of the special coordinate basis, it is easily shown that (..4,
ii, C, 0) has the followingproperties.

(1) (..4, ii, C, 0) is right invertible;
(2) (..4, ii, C, 0) has the same infinite zero structure as (A, B, C2, D2); and
(3) (..4, ii, C, 0) has invariant zeros at

0 *

]

AO *

oaa

[

A~a L~bCb

]

-
[

B~o L:r
][

B~o L:r
]

Tp
0 Abb Bbo Lbf Bbo Lbf

where * denotes matrices of not much interest.
f:~

It is trivial to verify that (A, B, Cp, Dp) satisfies the same properties (1) to (3)
which (..4, ii, C, 0) satisfies. Obviously, this implies that the stable and jw axis
invariant zeros of (A, B, C2, D2), i.e. A(A~) and A(A~), are also invariant
zeros of (A, B, Cp, Dp). The remaining invariant zeros of (A, B, Cp, Dp) are
given by

A{[ Ala
L~bCb

J
-

[
B~o

Abb Bbo
L:r

J[
B~O

Lbf B bO

L:r
J

Tp
}

CC-
Lbf

Let

[
- -T

]p-1:= ~11 ~21
S21 S22

Then, post-multiplying equation (B 2) by p-1, one obtains

P
{[

A~a L~bCb
J

-
[

B~o L~f
J[

B~o L~f
J

T P
}

p-1
0 Abb Bbo Lbf Bbo Lbf

[ (A + )T 0 ]- - aa T T- * -(Abb + CbCbS22)

Thus, the mirror images of the unstable invariant zeros of (A, B, C2, D2),
A(-A:a), are also contained among the invariant zeros of (A, B, Cp, Dp). The
remaining invariant zeros of (A, B, Cp, Dp) are at A(-Abb - S22CrCb) c C-. It
is worth noting that S22 is the unique positive definite solution of- T - - T- T T

S22Abb + AbbS22 + S22CbCbS22 - BbOBbO - LbfLbf = 0

In summary, the invariant zeros of (A, B, Cp, Dp) are at: A(A~) U A(A~a) U
A(-A~a) U A(-Abb - S22CrCb)' This completes the proof of the properties of
(A, B, Cp, Dp). The proof for the properties of (A, EQ, Cb DQ) follows from
the same arguments as above since the roles of (A, B, Cp, Dp) and (A, EQ,
Cb DQ) are dual. 0

Appendix C

Construction of Fop

In Lemma 3.2 we introduced the set Fop. We will now give a constructive
method of determining the elements of this set. Given a stabilizable system
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characterized by (A, B, C, D), the goal is to generate all the possible stabilizing
state feedback gains F such that (A - BF) is asymptotically stable and such that

the conditions of Definition 3.1 for "vg(A, B, Cp, Dp) are satisfied. The
following is a step-by-step description of an algorithm which accomplishes this
goal.

Step 1. Transform the given system (A, B, C, D) into the form of the special
coordinate basis as in (A 1) to (A 4).

Step 2.
(2.1) One of the properties of the special coordinate basis derived in Sannuti

and Saberi (1987) and Saberi and Sannuti (1990) guarantees that the
pair (Aee> Be) is controllable. Therefore, we can select a gain matrix
Fee such that the eigenvalues 0f A~e' where A~e := Aee - BeFcn are in
arbitrary desired locations in C- .

(2.2) Form matrices Ax and Bx as follows

l

0 0 0

j

Aaa 0 LabCb LafCf

Ax := 0 A;a L;bCb LtfCf ,
0 0 Abb LbfCf

BfE~a BfEt BfEfb Af l

0
Bao

+
Bao

Bx:= Bbo

BfO ~J
(C 1)

Another property of the special coordinate basis guarantees us that the
uncontrollable eigenvalues of (Ax, Bx) are exactly the uncontrollable
(stable) eigenvalues of (A, B) which are not invariant zeros of (A, B,
C, D) . We select a gain matrix Fx such that the eigenvalues of A ~,
where A~:= Ax - BxFx, are in arbitrary desired locations in C-
subject to the constraint that certain stable eigenvalues are uncontroll-
able. Next, we partition Fx compatible with the partitions of Ax and Bx
as

where F~, F~a' F:a, Feb and Fef in (C 3) are some arbitrary sub-matrices with
appropriate dimensions which do not affect the closed-loop eigenvalues.

We have the following lemma which can be proven by some simple algebra.

LemmaC.l: Let a system (A, B, C, D) be given which is written in the special
coordinate basis. A state feedback gain F is an element of the set Fop, i.e. F
satisfies the conditions of Definition 3.1 for "ViA, B, C, D) and is such that
(A - BF) is asymptotically stable, if and only if F can be written in the form
(C 3) where Feeand Fx (defined by (C 2)) are such that:

[0
F;o Fbo

FfO]

Fao
(C2)Fx = FO F;I Fc1 Fflal

Step 3. Let

[C

COe
0 0

cta + F;o COb + Fbo

Co, + Fto] -I

COa + FaO

F = V ri E Efe
0 +

FbIFal Fal Ffl rs
1<0 +

Fea Fee L ea Fea Feb Fef

(C3)
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(i) Ace - BeFeeis asymptotically stable, and

(ii) Ax - BxFx is asymptotically stable (Ax and Bx are defined by (C 1».

Remark: It is simple to see from (C 3) that Fopcontains only a single element
if and only if i!e= i!e;;.In case both [BT, DT] and [C, D] have full rank, this is
equivalent to the fact that (A, B, C, D) is of minimum-phase, invertible and
has no infinite zeros. Moreover, the only element of Fop is then F = D-IC. 0

The proofs of Lemmas 3.2 and 3.3 follow in a straightforward way by using
the properties of the special coordinate basis and Lemma c.1.

Appendix D

Proof of Lemma 4.8-Properties of Ere: Consider a given linear time-invariant
system characterized by

2:.
{
i = Ax + Bu

. y = Cx + Du

First, we note that without loss of generality, one can assume that the matrices
C and D are of the form

In the proof of Lemma 3.7 we need a modified version of the special
coordinate basis: we can choose the transformations Ts, Tj and To such that we
find the following decomposition

T-I [All A12 - BOl CO2]r.
s A21 A22 - B02C02 s

Aa Lab

0 Abll

0 Ab21

BeEea Leb

Efal Efbll
0 0

Bf2Efa2 Bf2Efb21

~JC = [~ CJ2J, D = [~
Thus, we can partition the given system (D 1) as

j

[~l] = [All A12

] [
Xl

]
+ [BOl Bll

] [
uo]2:: x2 A21 A22 x2 B02 B12 UI

[~~] = [~ CJ2] [~~]+ [~ ~] [~~]

0

Abl2
Ab22

0

E fbl2
0

Bf2E fb22

0
0
0

Ae

Efel
0

B f2E fe2

Lafl

Lbfll

Lbf21

Lefl

Afll

AfOl

Af21

LafO

LbflO

Lbf20

LefO

AflO

AfOO

Af20

(D 1)

(D2)

0
0
0
0

Afl2
Af02
Af22

(D3)

Bao 0 0 0
Bbol 0 0 0

B] I Bb02

0 0 0

r-l[ BOl B Tj = Beo
0 0 Be I (D4)

s B02
Bfol I 0 0

BfOO 0 0 0

Bf02 0 Bf2 0
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(D5)

(D6)

Here we have decomposed our state-space into seven parts: 2t'= 2t'aEf)
2t'blEf)2t'b2Ef)2t'eEf)2t'fl Ef)2t'fOEf)2t'f2' These spaces have a strong relationship to
the decomposition introduced in Appendix A: we have 2t'a= 2t'~ Ef)2t'~Ef)2t';;,
i.e. 2t'a is related to all finite invariant zeros of the system. We have
2t'b= 2t'blEf)2t'b2where 2t'b2= 2t'bn Ker (Cb). 2t'e is the same space as in Appen-
dix A. Finally we have 2t'f = 2t'fl Ef)2t'fOEf)2t'f2' Note that 2t'f was related to the
infinite zeros of the structure. This time we refine this: 2t'fl is related to infinite
zeros of order 1, 'l£fo is related to infinite zeros of order larger than 1, and 2t'f2is
2t'f n Ker (Cf)'

Our goal in this appendix is to prove Lemma 3.7. We note that

(A22'[B02'Bd, r[ ~%J ' r[ 101 :11J)

= (A22, [B02'B12],[A12 -C~01C02J, [~

where r is non-singular and is given by

r- [
1

- - B01 ~J

~lJ)

Hence, it is sufficient to prove Lemma 3.7 for the new reduced-order system
characterized by

(A22, [B02,B12],[A12 -C~01C02J ' [~ ~l])

Observer-based controller design for Hroptimization

lC&

0 COb2 COe 0 °

Tlr-l[O CO2J r: = 0

0 0 0 1 0
0 1 0 s 0 0 0 0 0 1

0 1 0 0 0 °

Jr, l

° °

l
r-l [1

0 0
0 0 0 0

0 0

From (D 3) to (D 6), we obtain

l A,

0 °

LlA22 - B02C02 = B i Ab22 0
0 Acec ea

Bf2Efa2 Bf2Eb22 B f2 E e2

lB

0 °

n
Bb020 0

[B02 Bd = B 0 0cO

Bf02 0 Bf2

lC&

COb2 COe

Co l
CO2 - Eal Ebl2 Eel Afl2

[Au - BOlC",]- 0 0 Af02
Ab12 0 0



It is interesting to observe from the above that

(Azz, [Boz, Bl2], [Al2 -C~01COZJ,[~ :11J)

is already in the form of special coordinate basis. Then all the properties listed
in Lemma 3.7 follows trivially from the properties of the special coordinate
~~. 0

Appendix E
An algorithm for suboptimal design of static-state feedbacks

In this appendix we will describe the algorithm which is instrumental in the
results derived in § 5. The algorithm is generally applicable, but because here we
do not have the freedom of assigning the time-scales of eigenvalues that go off
to infinity, the alternative mentioned briefly in § 5 might be preferable.
However, that algorithm is not generally applicable.

A well-known approach to treat the Hz control problem with state feedback
in case the direct feedthrough matrix from u to z is not injective is adding in the
output z a small extra weight on the input u (in case the system is strictly proper
this results in the so-called cheap control problem). For the cheap control
problem the following result can be derived.

Lemma E.1: Consider the system (2.1) with C1 = I, Dl = 0 and Dz = O. Define
:J:cito be the system (A, B, Cz, 0). For each £ > 0 there exists Pe ~ 0 such that

ATpe + PeA - £-zPeBBTpe + cIcz = 0

If we apply the feedback u = -£-z BBT Pe then the closed-loop system is
asymptotically stable and as £ ~ 0 the Hz norm of the closed.-Joop transfer matrix
decreases to y*.

Moreover, the closed-loop eigenvalues have the following asymptotic be-
haviour.

(1) n;;(:J:ci)eigenvalues converge to the locations of the stable invariant zeros
of :J:ci'

(2) n;(Xci) eigenvalues converge to the locations of the mirror images with
respect to the imaginary axis of the invariant zeros of :J:ciin the open right
half-plane.

(3) n~(:J:ci)eigenvalues converge to the invariant zeros on the imaginary axis.

(4) nb(:J:ci)+ nc(:J:ci) eigenvalues converge to fixed locations in C- which
include the stable input decoupling zeros and output decoupling zeros
which are not invariant zeros of :J:ci'

(5) ntC:J:ci)eigenvalues converge to infinity in the open left half-plane and
remain bounded away from the imaginary axis.

830 A. A. Stoorvogel et aI.

and

:'J lf

0 0

l
[

I 0
0 0
0 0



Observer-based controller design for Hroptimization 831

Here n;;(2:ci)' n;(2:ci)' n~(2:ci)' nb(2:ci), nc(2:ci) and nt<2:ci)are the constants n;;,
n;, n~, nb, nc and nf as defined in Appendix A when we transform 2:ci to the
special coordinate basis.

Proof: This result is given in Saberi and Sannuti (1987) for the case that 2:cihas
no invariant zeros on the imaginary axis. The result in that paper can be
extended to yield the above result. Unfortunately, a formal presentation is too
extensive to include in this paper. 0

The question is whether we can adapt the above lemma, to derive a general
perturbation approach which yields a sequence of stabilizing compensators for
which the H 2 norm of the closed-loop transfer matrix approaches y*. Moreover,
we would like to know the asymptotic behaviour of the closed-loop eigenvalues.

It should be noted that we can apply this kind of perturbation approach both
to 2: as well as to 2:PQ. Both systems have the same invariant zeros on the
imaginary axis and therefore this nasty behaviour arises in both cases.

We can now construct the set F~;q and prove its properties as given in
Lemma 4.1.

Let 2:ci= (A, B, C, D). Define the special coordinate basis of Appendix A
for the system 2:ci as given in (A 1)-(A 4). After a suitable preliminary feedback
the subspace 2rc becomes unobservable. We can then remove this unobservable
part and obtain the system fci = (A, E, C, 15)where

(E 1)

(E2)

(E 3)

-
[

I mo

D:= ~ gJ
(E4)

fci has the same finite and infinite zero structure as 2:ciand it can be shown that-- - 0- 0 +- + -
na (2:ci)= na (2:ci), na(2:ci) := ni2:ci), na (2:ci) = na (Xci), nb(2:ci) = nb(2:ci),

nc(fci) = 0 and nt<fci) = nt<2:ci)'
For all £ > 0 let Pe ;;,:0 be the solution of the following Riccati equation

,:pP + P A - P E(15T15 + £21)-1 ETP + CTC + £21 = 0e e e

A- 0 0 L;;bCb LCfaa
0 AO 0

0 0
aa LabCb L afCf

A:=I 0 0 A+ L;bCb L ;fCfaa
0 0 0 Abb LbfCf

BfE fa
0

BfEfa BfEfb AfBfE fa - -
B;;o 0

0 0Bao

- - - I +
0B := [Bo Bd:= Bao

Bbo 0

BfO Bf

C ,[

0 0 0

?J
0 0 0
0 0 Cb

and
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Write PEcompatible with the decomposition of the state space for 2ci

[

pn,E P12,E Pl3,E PI4,E PI5,E

]

PZ1,E PZZ,E PZ3,E PZ4,E PZ5,E

PE =: P31,E P3Z,E P33,E P34,E P35,E

P41,E P4Z,E P43,E P44,E P45,E

P51,E P5Z,E P53,E P54,E P55,E

Moreover, choose for every s > 0 a matrix Fc(s) such that the eigenvalues of
Ace - BcFc(E) are at some desired locations in the open left half-plane (remem-
ber that by the properties of the special coordinate basis the pair (Ace, Be) is
controllable). Let us partition

(iF15 + sZI)-ljjTpE = [
F~o(S)
Fal(S)

We then define

F~o(s)
F~I(E)

F;o(s)

F;I(E)

FbO(S)

Fbl(S)

FfO(S)

]Ff1(E)

where * are arbitrary matrices with appropriate dimensions. Then it is straight-
forward to show that if we apply the feedback u = - F( s)x to our system 1: then
the closed-loop system is asymptotically stable and the closed-loop eigenvalues
are the eigenvalues of

Act := A - B(15T15 + SZI)-I BTPE

and Ace - BcFc(E). Moreover, as E ! 0 the Hz norm of the closed-loop transfer
matrix decreases to y*. The latter can be shown by using that PEconverges to

[~

0
0
0
0
0

0
0

Pn
PZ1
0

0
0-T

PZ1
Pzz
0 ~]

By our choice of Fc(s) we can indeed place nc(1:ci) poles arbitrarily. It remains
to show the asymptotic behaviour of the eigenvalues of Act. We will use Lemma
E.!. It is well known that eigenvalues of Act are the stable eigenvalues of the
following Hamiltonian matrix

[
- Z 1- -T Z- -T

JH - A -(1 + s )- BoBo - s- B1B1- -CTC - sz] -AT

Let K E ;?; 0 be the solution of the following Riccati equation

AKE + KEAT - KE(CTC + SZ)KE + (1 + E2)-1B1BI= 0

Moreover define
-. - -T- 2
AE .= A - KEC C - S KE

[F;O(e)

0 Fo( s) F;o(s) Fbo(s)

FfiJ(e)]F(E):= F;;;S)
0 FI(S) F;I(E) Fbl(S) Ffl(S)
0 * * * *

[Co.

COc
0 +

COb

cn

COa COa
+ 0 Efc 0 0 0

0 Fc(E) 0 0 0
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We know that K" ~ Ko and ..4"~ ..40as e ~ O. H has the same eigenvalues as

ii := [~

[
- 2 - -T

J
A" -e- BIBI

= -T- 2 -T-c C - e I -A"

On the other hand, the asymptotic behaviour of the eigenvalues of ii is the
same as the asymptotic behaviour of the eigenvalues of

[
- 2 - -T

J
Ao -e- BIBI

-T- 2 -T
-C C - e I -Ao

However, this is a Hamiltonian matrix corresponding to the Riccati equation
given in Lemma E.1. Therefore, we know the asymptotic behaviour of the
eigenvalues. The proof is completed by noting that the finite and infinite zeros
of (..40, Bb C,O) are the same as the invariant zeros of (A, B, C2, D2). 0

~,,]{~ -f"]

~
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