
On properties of the special coordinate basis of linear systems

BEN M. CHEN²

In this paper, we provide, for the ® rst time in the literature, rigorous and complete
proofs to all the key properties of the special coordinate basis of linear time-
invariant systems. The special coordinate basis decomposition or technique devel-
oped by Sannuti and Saberi in 1987 has a distinct feature of explicitly displaying the
® nite and in® nite zero structures, the invertibility structures, as well as the invariant
and almost invariant geometric subspaces of a given system. The technique has
been extensively used in the literature to solve many system and control problems.
We believe that the result of this paper is a complement of the seminal work of
Sannuti and Saberi. It makes the theory of the special coordinate basis more
complete.

1. Introduction

The special coordinate basis of linear time-invariant systems was ® rst developed
in the seminal work of Sannuti and Saberi (1987). Such a special coordinate basis
decomposition or technique has a distinct feature of explicitly displaying the ® nite
and in® nite zero structures, the invertibility structures, as well as the invariant and
almost invariant geometric subspaces of a given system. The technique has been
extensively used in the literature to solve many system and control problems such
as the squaring down and decoupling of linear systems (see, e.g. Sannuti and Saberi
1987, Saberi and Sannuti 1990), linear system factorizations (see, e.g. Chen et al.
1992a, Lin et al. 1996), model order reductions (see, e.g. Ozcetin et al. 1990), block-
ing zeros and strong stabilizability (see, e.g. Chen et al. 1992b), nested structural
invariants (see, e.g. Saberi et al. 1992), zero placements (see, e.g. Chen and Zheng
1995), loop transfer recovery (see, e.g. Chen 1991, Saberi et al. 1993), H2 optimal
control (see, e.g. Chen et al. 1993, Saberi et al. 1995); H¥ optimal control (see, e.g.
Chen 1998); disturbance decoupling (see, e.g. Ozcetin et al. 1993a, 1993b, Chen
1997), and control with saturations (see, e.g. Lin 1994), to name a few. The list is
far from complete.

It is appropriate to trace a short history of the development of the technique of
the special coordinate basis. The genesis of the concept of utilizing a special coordi-
nate basis of a dynamic system ® rst arose when dealing with high gain and cheap
control problems (Sannuti 1983). At ® rst, by separating the ® nite and in® nite zero
structures of what are now known as uniform rank systems, Sannuti (1983) showed
the usefulness of utilizing the special coordinate basis in order to discuss the import-
ant features of high gain and cheap control problems. Then, Sannuti and Wason
(1983) extended the concept of the special coordinate basis to general invertible
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systems and showed its signi® cance in connection with multivariable root locus
theory. A slight variation of the technique developed in Sannuti and Wason
(1983) was used in Sannuti and Wason (1985) to bring into focus all the features
of cheap control problems for general invertible systems. In their seminal paper,
Sannuti and Saberi (1987) solidi® ed the concept of the special coordinate basis of
general linear strictly proper dynamic systems, and pointed out most of its important
properties including those that are related to certain subspaces encountered in the
geometric theory of linear systems. The required modi® cations in the development of
the technique for general linear, not necessarily strictly proper dynamic, systems are
given by Saberi and Sannuti (1990).

Unfortunately, all the properties of the special coordinate basis in the original
work of Sannuti and Saberi (1987) were reported without detailed proofs. For some
reason, their proofs are still missing in the literature. Although some of the proper-
ties of the special coordinate basis, e.g. controllability and observability, are quite
obvious, some of them, e.g. the interconnections between the geometric subspaces
and the subsystems of the special coordinate basis, are not transparent at all to
general readers or even to researchers who are familiar with the technique. The
goal of this paper is to give rigorous proofs to all the key properties of the special
coordinate basis of linear systems once and for all. We will also take this opportunity
to include some newly introduced properties. We believe that the results of this paper
will make the theory of the special coordinate basis more complete.

The outline of this paper is as follows: In §2, we recall the special coordinate basis
of linear systems and its properties. We should note that the original work of Sannuti
and Saberi (1987) focused on continuous-time systems. We unify the theory for both
continuous-time and discrete-time systems. Some ® ne tuning of the theory and new
properties are also introduced. Section 3 presents the main results of this paper, i.e.
the complete proofs of the key properties of the special coordinate basis. Finally,
concluding remarks are drawn in §4.

Throughout this paper, the following notation will also be used: XÂ denotes the
transpose of matrix X; I denotes an identity matrix with appropriate dimensions; R
is the set of all real numbers; C is the set of all complex numbers; C - , C 0 and C + are
respectively the left-half complex plane, the imaginary axis and the right-half com-
plex plane; C ( , C s and C Ä are respectively the open unit disc, the unit circle and the
set of complex numbers outside the unit circle; Ker (X) is the kernel of X; Im (X) is
the image of X; and, ® nally, ¸(X) is the set of eigenvalues of a real square matrix X.

2. The special coordinate basis

In this section, we will make an attempt to unify the theory of the special coor-
dinate basis of Sannuti and Saberi (1987) for both continuous-time and discrete-time
systems. We will also recall all its key properties, which have been extensively used in
the literature, and introduce some new ones. Let us consider a linear time-invariant
(LTI) system S *, which could be of either continuous-time or discrete-time, char-
acterized by a matrix quadruple (A*,B*,C*,D*) or in the state space form

S * :
d (x) =A*x + B*u

y =C*x + D*u
(1)

where d (x) = Çx(t) if S * is a continuous-time system, or d (x) =x(k + 1) if S * is a
discrete-time system. Similarly, x Î R n, u Î R m and y Î R p are the state, the input
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and the output of S *. They represent x(t) , u(t) and y(t) , respectively, if the given
system is of continuous-time, or represent x(k) , u(k) and y(k) , respectively, if S * is of
discrete-time. Without loss of any generality, we assume that both BÂ* DÂ* and
C* D*[ ] are of full rank. The transfer function of S * is then given by

H*( | ) =C*( | I - A*)
- 1B* + D* (2)

where | = s, the Laplace transform operator, if S * is of continuous-time, or | = z,
the z-transform operator, if S * is of discrete-time. It is simple to verify that there
exist non-singular transformations U and V such that

UD*V =
Im0 0

0 0
(3)

where m0 is the rank of matrix D*. In fact, U can be chosen as an orthogonal matrix.
Hence hereafter, without loss of generality, it is assumed that the matrix D* has the
form given on the right-hand side of (3). One can now rewrite system S * of (1) as

d (x) =A* x + B*,0 B*,1
u0

u1

y0

y1
=

C*,0

C*,1
x +

Im0 0

0 0

u0

u1

(4)

where the matrices B*,0, B*,1, C*,0 and C*,1 have appropriate dimensions. The follow-
ing theorem uni® es the result of Sannuti and Saberi (1987) for both continuous-time
and discrete-time systems.

Theorem 1 (SCB): Given the linear system S * of (1), there exist

(1) Coordinate free non-negative integers n-
a , n0

a, n+
a , nb, nc, nd, md £ m - m0 and

qi, i =1, . . . ,md, and
(2) Non-singular state, output and input transformations G s, G o and G i which take

the given S * into a special coordinate basis that displays explicitly both the
® nite and in® nite zero structures of S *.

The special coordinate basis is described by the following set of equations:

x = G s
~x, y = G o

~y, u = G i
~u (5)

~x =

xa

xb

xc

xd

, xa =
x-

a

x0
a

x+
a

, xd =

x1

x2

..

.

xmd

(6)

~y =

y0

yd

yb

, yd =

y1

y2

..

.

ymd

, ~u =

u0

ud

uc

, ud =

u1

u2

..

.

umd

(7)
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and

d (x-
a ) =A-

aax-
a + B-

0ay0 + L -
adyd + L -

abyb (8)

d (x0
a) =A0

aax
0
a + B0

0ay0 + L 0
adyd + L 0

abyb (9)

d (x+
a ) =A+

aax+
a + B+

0ay0 + L +
adyd + L +

abyb (10)

d (xb) =Abbxb + B0by0 + L bdyd, yb =Cbxb (11)

d (xc) =Accxc + B0cy0 + L cbyb + L cdyd + Bc E-
cax-

a + E0
ca + E+

cax
+
a + Bcuc (12)

y0 =C0cxc + C-
0ax-

a + C+
0ax

0
a + C+

0ax
+
a + C0dxd + C0bxb + u0 (13)

and, for each i = 1, . . . ,md

d (xi) =Aqixi + L i0y0 + L idyd + Bqi ui + Eiaxa + Eibxb + Eicxc +
md

j=1
Eijxj (14)

yi =Cqixi, yd =Cdxd (15)

Here the states x-
a , x0

a, x+
a , xb, xc and xd are respectively of dimensions n-

a , n0
a, n+

a , nb,
nc and nd = md

i=1 qi, while xi is of dimension qi for each i = 1,´´´,md. The control
vectors u0, ud and uc are respectively of dimensions m0, md and mc =m - m0 - md
whereas the output vectors y0, yd and yb are respectively of dimensions p0 =m0,
pd =md and pb =p - p0 - pd . The matrices Aqi , Bqi and Cqi have the following form:

Aqi =
0 Iqi- 1

0 0
, Bqi =

0

1
, Cqi = [1, 0, . . . , 0] (16)

Assuming that xi, i = 1,2, . . . ,md, are arranged such that qi £ qi+1, the matrix L id has
the particular form

L id = L i1 L i2 ´´´ L ii- 1 0 ´´´ 0[ ] (17)

Also, the last row of each L id is identically zero. Moreover,

(1) If S * is a continuous-time system, then

¸(A-
aa) Ì C - , ¸(A0

aa) Ì C 0, ¸(A+
aa) Ì C + (18)

(2) If S * is a discrete-time system, then

¸(A-
aa) Ì C ( , ¸(A0

aa) Ì C o, ¸(A+
aa) Ì C Ä (19)

Also, the pair (Acc,Bc) is controllable and the pair (Abb,Cb) is observable.

Proof: For strictly proper systems, using a modi® ed structural algorithm of
Silverman (1969), an explicit procedure for constructing the above special coordi-
nate basis is given in Sannuti and Saberi (1987). The required modi® cations for
non-strictly proper systems follow from Saberi and Sannuti (1990).

Here in Theorem 1, by another change of basis, the variable xa is further decom-
posed into x-

a , x0
a and x+

a . The software toolboxes that realize such a decomposition
can be found in LAS by Chen (1988) or in MATLAB by Lin (1989). h
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We can rewrite the special coordinate basis of the matrix quadruple
(A*,B*,C*,D*) given by Theorem 1 in a more compact form,

~A* = G - 1
s (A* - B*,0C*,0) G s =

A-
aa 0 0 L -

abCb 0 L -
adCd

0 A0
aa 0 L 0

abCb 0 L 0
adCd

0 0 A+
aa L +

abCb 0 L +
adCd

0 0 0 Abb 0 L bdCd

BcE-
ca BcE

0
ca BcE

+
ca L cbCb Acc L cdCd

BdE-
da BdE0

da BdE+
da BdEdb BdEdc Add

(20)

~B* = G - 1
s B*,0 B*,1 G i =

B-
0a 0 0

B0
0a 0 0

B+
0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0

(21)

~C* = G - 1
o

C*,0

C*,1
G s =

C-
0a C0

0a C+
0a C0b C0c C0d

0 0 0 0 0 Cd

0 0 0 Cb 0 0

(22)

and

~D* = G - 1
o D*G i =

Im0 0 0

0 0 0

0 0 0

(23)

In what follows, we state some key properties of the above special coordinate
basis which are extensively used in the literature. The proofs of these properties will
be given in the next section.

Property 1: The given system S * is observable (detectable) if and only if the pair
(Aobs,Cobs) is observable (detectable), where

Aobs :=
Aaa 0

BcEca Acc
, Cobs :=

C0a C0c

Eda Edc

(24)

and where
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Aaa :=

A-
aa 0 0

0 A0
aa 0

0 0 A+
aa

, C0a := C-
0a C0

0a C+
0a (25)

Eda := E-
da E0

da E+
da , Eca := E-

ca E0
ca E+

ca (26)

Also, de® ne

Acon :=
Aaa L abCb

0 Abb

, Bcon :=
B0a L ad

B0b L bd

(27)

B0a :=

B-
0a

B0
0a

B+
0a

, L ab :=

L -
ab

L 0
ab

L +
ab

, L ad :=

L -
ad

L 0
ad

L +
ad

(28)

Similarly, S * is controllable (stabilizable) if and only if the pair (Acon,Bcon) is con-
trollable (stabilizable).

The invariant zeros of a system S * characterized by (A*,B*,C*,D*) can be
de® ned via the Smith canonical form of the (Rosenbrock) system matrix (Rosen-
brock 1970) of S * de® ned as the polynomial matrix PS *

( | ) ,

PS *
( | ) :=

| I - A* - B*

C* D*
(29)

We have the following de® nition for the invariant zeros (see also MacFarlane and
Karcanias 1976).
De® nition 1 (invariant zeros): A complex scalar a Î C is said to be an invariant
zero of S * if

rank {PS *
( a )} < n + normrankH*( | )} (30)

where normrank{H*( | )} denotes the normal rank of H*( | ) , which is de® ned as its
rank over the ® eld of rational functions of | with real coe� cients.

The special coordinate basis of Theorem 1 shows explicitly the invariant zeros
and the normal rank of S *. To be more speci® c, we have the following properties.

Property 2:

(1) The normal rank of H*( | ) is equal to m0 + md.
(2) Invariant zeros of S * are the eigenvalues of Aaa, which are the unions of the

eigenvalues of A-
aa, A0

aa and A+
aa. Moreover, the given system S * is of mini-

mum phase if and only if Aaa has only stable eigenvalues, marginal minimum
phase if and only if Aaa has no unstable eigenvalue but has at least one
marginally stable eigenvalue, and non-minimum phase if and only if Aaa
has at least one unstable eigenvalue.
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In order to display various multiplicities of invariant zeros, let Xa be a non-
singular transformation matrix such that Aaa can be transformed into a Jordan
canonical form, i.e.

X- 1
a AaaXa =J =blkdiag {J1,J2, . . . ,Jk} (31)

where Ji, i = 1,2, . . . ,k, are some ni ´ ni Jordan blocks:

Ji =diag{a i, a i, . . . , a i}+
0 Ini- 1

0 0
(32)

For any given a Î ¸(Aaa) , let there be ¿a Jordan blocks of Aaa associated with a . Let
na ,1, na ,2, . . . , na ,¿a be the dimensions of the corresponding Jordan blocks. Then we
say a is an invariant zero of S * with multiplicity structure S w

a ( S *) (see also Saberi et
al. 1991)

S w
a ( S *) ={na ,1,na ,2, . . . ,na ,¿a } (33)

The geometric multiplicity of a is then simply given by ¿a , and the algebraic multi-
plicity of a is given by ¿a

i=1 na ,i. Here we should note that the invariant zeros,
together with their structures of S *, are related to the structural invariant indices
list I 1 ( S *) of Morse (1973).

The special coordinate basis can also reveal the in® nite zero structure of S *. We
note that the in® nite zero structure of S * can be de® ned either in association with
root-locus theory or as Smith± McMillan zeros of the transfer function at in® nity.
For the sake of simplicity, we consider the in® nite zeros only from the point of view
of Smith± McMillan theory here. To de® ne the zero structure of H*( | ) at in® nity, one
can use the familiar Smith± McMillan description of the zero structure at ® nite
frequencies of a general, not necessarily square but strictly proper, transfer function
matrix H*( | ) . Namely, a rational matrix H*( | ) possesses an in® nite zero of order k
when H*(1/z) has a ® nite zero of precisely that order at z =0 (see Rosenbrock 1970,
Verghese 1978, Pugh and Ratcli� e 1979, Commault and Dion 1982). The number of
zeros at in® nity together with their orders indeed de® nes an in® nite zero structure.
Owens (1978) related the orders of the in® nite zeros of the root-loci of a square
system with a non-singular transfer function matrix to C* structural invariant indices;
see list I 4 of Morse (1973). This connection reveals that even for general, not necess-
arily strictly proper, systems, the structure at in® nity is in fact the topology of inherent
integrations between the input and the output variables. The special coordinate basis of
Theorem 1 explicitly shows this topology of inherent integrations. The following
property pinpoints this.

Property 3: S * has m0 = rank (D*) in® nite zeros of order 0. The in® nite zero
structure (of order greater than 0) of S * is given by

S w
¥ ( S *) ={q1,q2, . . . ,qmd} (34)

That is, each qi corresponds to an in® nite zero of S * of order qi. Note that for a
single-input± single-output system S *, we have S w

¥ ( S *) ={q1}, where q1 is the rela-
tive degree of S *.

The special coordinate basis can also exhibit the invertibility structure of a given
system S *. The formal de® nitions of right invertibility and left invertibility of a linear
system can be found in Moylan (1977). Basically, for the usual case when BÂ* DÂ*
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and C* D*[ ] are of maximal rank, the system S * or equivalently H*( | ) is said to be
left invertible if there exists a rational matrix function, say L *( | ) , such that

L *( | )H*( | ) = Im (35)

S * or H*( | ) is said to be right invertible if there exists a rational matrix function, say
R*( | ) , such that

H*( | ) R*( | ) = Ip (36)

S * is invertible if it is both left and right invertible, and S * is degenerate if it is neither
left nor right invertible.

Property 4: The given system S * is right invertible if and only if xb (and hence
yb) are non-existent, left invertible if and only if xc (and hence uc) are non-exist-
ent, and invertible if and only if both xb and xc are non-existent. Moreover, S * is
degenerate if and only if both xb and xc are present.

The special coordinate basis can also be modi® ed to obtain the structural invar-
iant indices lists I 2 and I 3 of Morse (1973) for the given system S *. In order to
display I 2( S *) , we let Xc and Xi be non-singular matrices such that the controllable
pair (Acc,Bc) is transformed into Brunovsky canonical form, i.e.

X- 1
c AccXc =

0 I°1- 1 ´´´ 0 0

w w ´´´ w w

..

. ..
. . .

. ..
. ..

.

0 0 ´´´ 0 I°mc- 1

w w ´´´ w w

, X- 1
c BcXi =

0 ´´´ 0

1 ´´´ 0

..

. . .
. ..

.

0 ´´´ 0

0 ´´´ 1

(37)

where w s denote constant scalars or row vectors. Then we have

I 2 ( S *) ={°1,´´´,°mc} (38)

which is also called the controllability index of (Acc,Bc) . Similarly, we have

I 3 ( S *) ={¹1,´´´,¹pb} (39)

where {¹1,´´´,¹pb} is the controllability index of the controllable pair (AÂbb,CÂb) .By now it is clear that the special coordinate basis decomposes the state-space
into several distinct parts. In fact, the state-space X is decomposed as

X =X -
a % X 0

a % X +
a % X b % X c % X d (40)

Here X -
a is related to the stable invariant zeros, i.e. the eigenvalues of A-

aa are the
stable invariant zeros of S *. Similarly, X 0

a and X +
a are respectively related to the in-

variant zeros of S * located in the marginally stable and unstable regions. On the
other hand, X b is related to the right invertibility, i.e. the system is right invertible if
and only if X b ={0}, whereas X c is related to left invertibility, i.e. the system is left
invertible if and only if X c ={0}. Finally, X d is related to zeros of S * at in® nity.

There are interconnections between the special coordinate basis and various
invariant geometric subspaces. To show these interconnections, we introduce the
following geometric subspaces:
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De® nition 2 (geometric subspaces VX and S X): The weakly unobservable sub-
spaces of S *, VX, and the strongly controllable subspaces of S *, S X, are de® ned
as follows:

(1) VX ( S *) is the maximal subspace of R n which is (A* + B*F*)-invariant and
contained in Ker (C* + D*F*) such that the eigenvalues of (A* + B*F*)|VX

are contained in C X Í C for some constant matrix F*.
(2) S X ( S *) is the minimal (A* + K*C*)-invariant subspace of R n containing

Im (B* + K*D*) such that the eigenvalues of the map which is induced by
(A* + K*C*) on the factor space R n /S X are contained in C X Í C for some
constant matrix K*.

Furthermore, we let V- = VX and S - = S X, if C X = C - Ä C 0; V+ = VX and
S + = S X, if C X = C + ; V( =VX and S ( = S X, if C X = C ( Ä C s ; VÄ =VX and
S Ä = S X, if C X = C Ä ; and ® nally V* =VX and S * = S X, if C X = C .

Various components of the state vector of the special coordinate basis have the
following geometrical interpretations.

Property 5:

(1) X -
a % X 0

a % X c spans
V- ( S *) if S * is of continuous-time,

V( ( S *) if S * is of discrete-time.

(2) X +
a % X c spans

V+ ( S *) if S * is of continuous-time,

VÄ ( S *) if S * is of discrete-time.

(3) X -
a % X 0

a % X +
a % X c spans V*( S *) .

(4) X +
a % X c % X d spans

S - ( S *) if S * is of continuous-time,

S ( ( S *) if S * is of discrete-time.

(5) X -
a % X 0

a % X c % X d spans
S + ( S *) if S * is of continuous-time,

S Ä ( S *) if S * is of discrete-time.

(6) X c % X d spans S *( S *) .

Finally, we introduce two more subspaces of S *. The original de® nitions of these
subspaces were given by Scherer (1992).
De® nition 3 (Geometric Subspaces V¸ and S ¸): For any ¸ Î C - , we de® ne

V¸ ( S *) := z Î C n $ x Î C m
: 0 =

A*- ¸I B*

C* D*

z
x

(41)

and

S ¸ ( S *) := z Î C n $ x Î C n+m
:

z
0

=
A* - I̧ B*

C* D*
x (42)

V¸( S *) and S ¸ ( S *) are associated with the so-called state zero directions of S * if ¸ is
an invariant zero of S *.
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These subspaces S ¸ ( S *) and V¸ ( S *) can also be easily obtained using the special
coordinate basis. We have the following new property of the special coordinate basis,
which has not been reported in any previous work.

Property 6:

S ¸ ( S *) = Im G s

¸I - Aaa 0 0 0

0 Yb¸ 0 0

0 0 Inc 0

0 0 0 Ind

(43)

where

Im{Yb¸} =Ker [Cb (Abb + KbCb - ¸I)- 1] (44)

and where Kb is any appropriately dimensional matrix subject to the constraint that
Abb + KbCb has no eigenvalue at .̧ We note that such a Kb always exists as (Abb,Cb)
is completely observable.

V¸ ( S *) = Im G s

Xa¸ 0

0 0

0 Xc¸

0 0

(45)

where Xa¸ is a matrix whose columns form a basis for the subspace

{z a Î C na | (¸I - Aaa) z a = 0} (46)

and

Xc¸ := (Acc + BcFc - I̧)- 1Bc (47)

with Fc being any appropriately dimensional matrix subject to the constraint that
Acc + BcFc has no eigenvalue at .̧ Again, we note that the existence of such an Fc is
guaranteed by the controllability of (Acc,Bc) .

Clearly, if ¸ /Î ¸(Aaa) , then we have

V¸ ( S *) Í VX ( S *) (48)

and

S ¸ ( S *) Ê S X ( S *) (49)

Next, we would like to note that the subspaces VX ( S *) and S X ( S *) are dual in the
sense that VX ( S w

*) = S X ( S *)
^ , where S w

* is characterized by the quadruple
(AÂ*,CÂ*,BÂ*,DÂ*) . Also, S ¸ ( S *) =V¸ ( S w

*)
^ .

3. Proofs of properties of the special coordinate basis

In this section, we provide detailed proofs for all the properties of the special
coordinate basis listed in the previous section. We recall the following two lemmas
whose results are quite well-known in the literature. The ® rst lemma is about the
e� ects of state feedback laws.
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Lemma 1: Consider a given system S * characterized by (A*,B*,C*,D*) or in the
state space form of (1). Also, consider a constant state feedback gain matrix
F* Î R m ´ n. Then, S *F as characterized by the quadruple (A* + B*F*,B*,
C* + D*F*,D*) has the following properties:

(1) S *F is controllable (stabilizable) if and only if S * is a controllable (stabiliz-
able);

(2) the normal rank of S *F is equal to that of S *;
(3) the invariant zero structure of S *F is the same as that of S *;
(4) the in® nite zero structure of S *F is the same as that of S *;
(5) S *F is (left- or right- or non-) invertible if and only if S * is (left- or right- or

non-) invertible;
(6) VX ( S F) =VX ( S *) and S X ( S *F) = S X ( S *); and
(7) V¸ ( S *F)=V¸ ( S *) and S ¸ (S *F) = S ¸ ( S *) .

Proof: Item 1 is obvious. Items 3, 4 and 5 are well known since all the lists of
Morse, i.e. I 1 to I 4, are invariant under any state feedback laws. Furthermore,
items 2 and 5 can be seen from the following simple manipulations:

H*F( | ) :=C* + D*F*) ( | I - A* - B*F*)
- 1B* + D*

= (C* + D*F*) ( | I - A*)
- 1[I - B*F*( | I - A*)

- 1]- 1B* + D*

= (C* + D*F*) ( | I - A*)
- 1B*[I - F*( | I - A*)

- 1B*]- 1 + D*

= [C*( | I - A*)
- 1B* + D*][I - F*( | I - A*)

- 1B*]- 1

=H*(| )[I - F*( | I - A*)
- 1B*]- 1 (50)

Since [I - F*( | I - A*)
- 1B*]- 1 is well de® ned almost everywhere on the complex

plane, the results of items 2 and 5 follow.
For item 6, it is obvious from the de® nition of VX that it is invariant under

any state feedback laws. Next, for any subspace S that satis® es the following
conditions:

(A* + K*C*)S Í S (51)

Im (B* + K*D*) Í S (52)

we have

(A* + K*C* + B*F* + K*D*F*)S = (A* + K*C*)S + (B* + K*D*)F*S Í S

Thus, S X is also invariant under any state feedback laws.
Let us now prove item 7. Recalling the de® nition of V¸, we have

V¸( S *F) = z Î C n $ x Î C m
: 0 =

A* + B*F* - ¸I B*

C* + D*F* D*

z
x

Then, for any z Î V¸ ( S *F) , there exists an x Î C m such that
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0 =
A* + B*F* - ¸I B*

C* + D*F* D*

z
x

=
A* - ¸I B*

C* D*

I 0

F* I

z
x

or

0 =
A* - ¸I B*

C* D*

z
~x

where ~x =F*z + x . Thus, z Î V¸ ( S *) and hence V¸( S *F) Í V¸ ( S *) . Similarly, one
can show that V¸( S *) Í V¸( S *F) , and hence V¸( S *) = V¸( S *F) . The result that
S ¸( S *F) = S ¸ ( S *) can be shown using similar arguments. h

The following lemma is about the e� ects of output injection laws.

Lemma 2: Consider a given system S * characterized by (A*,B*,C*,D*) or in the
state space form of (1). Also, consider a constant output injection gain matrix
K* Î R ń p. Then, S *K as characterized by the quadruple (A* + K*C*,B*+
K*D*,C*,D*) has the following properties:

(1) S *K is observable (detectable) if and only if S * is an observable (detectable);
(2) the normal rank of S *K is equal to that of S *;
(3) the invariant zero structure of S *K is the same as that of S *;
(4) the in® nite zero structure of S *K is the same as that of S *;
(5) S *K is (left- or right- or non-) invertible if and only if S * is (left- or right- or

non-) invertible;
(6) VX ( S *K) =VX (S *) and S X ( S *K) = S X ( S *); and
(7) V¸ ( S *K) =V¸ ( S *) and S ¸ ( S *K) = S ¸( S *) .

Proof. It is the dual version of Lemma 1. h

Now, we are ready to prove the properties of the special coordinate basis.
Without loss of any generality but for simplicity of presentation, we assume through-
out the rest of this section that the given system S * has already been transformed
into the special coordinate basis of Theorem 1 or into the compact form of
(20) ± (23), i.e.

A* =

Aaa L abCb 0 L adCd

0 Abb 0 L bdCd

BcEca L cbCb Acc L cdCd

BdEda BdEdb BdEdc A*
dd + BdEdd + L ddCd

+ B*,0C*,0 (53)

B* = B*,0 B*,1 =

B0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0

(54)

and

992 B. M. Chen



C* =
C*,0

C*,1
=

C0a C0b C0c C0d

0 0 0 Cd

0 Cb 0 0

, D* =

Im0 0 0

0 0 0

0 0 0

(55)

We further note that A*
dd , Bd and Cd have the following forms:

A*
dd =blkdiag{Aq1,´´´,Aqmd

} (56)

and

Bd =blkdiag{Bq1,´´´,Bqmd
}, Cd =blkdiag{Cq1,´´´,Cqmd

} (57)

where Aqi , Bqi and Cqi , i = 1,2,´´´,md , are de® ned as in (16).

Proof of Property 1: Let us de® ne a state feedback gain matrix F* as follows:

F* = -
C0a C0b C0c C0d

Eda Edb Edc Edd

Eca 0 0 0

(58)

Then, we have

A* + B*F* =

Aaa L abCb 0 L adCd

0 Abb 0 L bdCd

0 L cbCb Acc L cdCd

0 0 0 A*
dd + L ddCd

(59)

Noting that (Acc,Bc) is completely controllable, we have for any ¸ Î C ,

rank [A* + B*F* - ¸I B* ]

= rank

Aaa- ¸I L abCb 0 L adCd B0a 0 0

0 Abb- ¸I 0 L bdCd B0b 0 0

0 L cbCb Acc- ¸I L cdCd B0c 0 Bc

0 0 0 A*
dd + L ddCd- ¸I B0d Bd 0

= rank

Aaa- ¸I L abCb 0 L adCd B0a 0 0

0 Abb- ¸I 0 L bdCd B0b 0 0

0 0 Acc- ¸I 0 0 0 Bc

0 0 0 A*
dd + L ddCd- ¸I B0d Bd 0

= rank

Acon- ¸I 0 Bcon1Cd Bcon0 0 0

0 Acc- ¸I 0 0 0 Bc

0 0 A*
dd + L ddCd- I̧ B0d Bd 0

(60)

where
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Acon =
Aaa L abCb

0 Abb
, Bcon = Bcon0 Bcon1[ ]=

B0a L ad

B0b L bd

(61)

Also, noting the special structure of (A*
dd,Bd,Cd) , it is simple to verify that

A*+B*F*- ¸I B*[ ] is of maximal rank if and only if Acon- ¸I Bcon[ ] is of max-
imal rank. By Lemma 1, we have that (A,B) is controllable (stabilizable) if and only
if (Acon,Bcon) is controllable (stabilizable).

Similarly, one can show that (A,C) is observable (detectable) if and only if
(Aobs,Cobs) is observable (detectable). h

Proof of Property 2: Let us de® ne a state feedback gain matrix F* as in (58) and
an output injection gain matrix K* as follows:

K* = -

B0a L ad L ab

B0b L bd 0

B0c L cd L cb

B0d L dd 0

(62)

We have

ÏA* =A* + B*F* + K*C* + K*D*F* =

Aaa 0 0 0

0 Abb 0 0

0 0 Acc 0

0 0 0 A*
dd

(63)

ÏB* =B* + K*D* =

0 0 0

0 0 0

0 0 Bc

0 Bd 0

(64)

ÏC* =C* + D*F* =

0 0 0 0

0 0 0 Cd

0 Cb 0 0

(65)

and

ÏD* =D* =

Im0 0 0

0 0 0

0 0 0

(66)

Let ÏS * be characterized by the quadruple ( ÏA*, ÏB *, ÏC *, ÏD*) . It is simple to verify that
the transfer function of ÏS * is given by
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ÏH*( | ) = ÏC*( | I - ÏA*)
- 1 ÏB* + ÏD* =

Im0 0 0

0 Cd ( | I - A*
dd )- 1Bd 0

0 0 0

(67)

Furthermore, we can show that

Cd ( | I - A*
dd) - 1Bd =

1
| q1

. .
.

1
|
qmd

(68)

By Lemmas 1 and 2, we have

normrank{H*( | )} =normrank{ ÏH*( | )} =m0 + md (69)

Next, it follows from Lemmas 1 and 2 that the invariant zeros of S * and ÏS * are
equivalent. By the de® nition of the invariant zeros of a linear system, i.e. a complex
scalar a is an invariant zero of ÏS * if

rank
ÏA* - a I ÏB*

ÏC* ÏD*
< n + normrank{ ÏH*( | )} = n + m0 + md (70)

and also noting the special structure of (A*
dd,Bd,Cd) and the facts that (Abb,Cb) is

observable, and (Acc,Bc) is controllable, we have

rank{P ÏS *
( a )} = rank

ÏA*- a I ÏB*

ÏC* ÏD*

= rank

Aaa- a I 0 0 0 0 0 0

0 Abb- a I 0 0 0 0 0

0 0 Acc- a I 0 0 0 Bc

0 0 0 A*
dd- a I 0 Bd 0

0 0 0 0 Im0 0 0

0 0 0 Cd 0 0 0

0 Cb 0 0 0 0 0

= nb + nc + nd + m0 + md + rank{Aaa- a I}. (71)

Clearly, the rank of P ÏS *
( a ) drops below n + m0 + md if and only if a Î ¸(Aaa) .

Hence, the invariant zeros of ÏS *, or equivalently the invariant zeros of S *, are
given by the eigenvalues of Aaa, which are the union of ¸(A-

aa) , ¸(A0
aa) , and

¸(A+
aa) . This completes the proof of Property 2. h

Proof of Property 3: It follows from Lemmas 1 and 2 that the in® nite zeros of
S * and ÏS * are equivalent. It is clear to see from (74) and (75) that the in® nite
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zeros of ÏS *, or equivalently the in® nite zeros of S *, of order higher than 0, are
given by

S w
¥ ( S *) =S w

¥ ( ÏS *) ={q1,q2,´´´,qmd} (72)

Furthermore, ÏS * or S * has m0 in® nite zeros of order 0. h

Proof of Property 4: Again, it follows from Lemmas 1 and 2 that S * or H*( | ) is
(left- or right- or non-) invertible if and only if ÏS * or ÏH*( | ) is (left- or right- or
non-) invertible. The results of Property 4 can be seen from the transfer function
ÏH*( | ) in (67). h

Proof of Property 5: We will prove only the geometric subspace V*( S *) , i.e.

V*( S *) =X a % X c = Im G s

Ina 0

0 0

0 Inc

0 0

(73)

Here G s = In since the given system S * is assumed to be already in the form of the
special coordinate basis. It follows from Lemma 2 that V* is invariant under any
output injection laws. Let us choose an output injection gain matrix K* as in (69).
Then, we have

^A* =A* + K*C* =

Aaa 0 0 0

0 Abb 0 0

BcEca 0 Acc 0

BdEda BdEdb BdEdc A*
dd + BdEdd

(74)

and

^B* =B* + K*D* = ÏB* =

0 0 0

0 0 0

0 0 Bc

0 Bd 0

(75)

Let ^S * be a system characterized by ( ^A*,B̂*,C*,D*) . Then it is su� cient to show the
property of V*( S *) by showing that

V*( ^S *) = Im

Ina 0

0 0

0 Inc

0 0

(76)

First, let us choose a matrix F* as given in (58). Then, we have
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^A* + ^B*F* =

Aaa 0 0 0

0 Abb 0 0

0 0 Acc 0

0 0 0 A*
dd

(77)

and

C* + D*F* =

0 0 0 0

0 0 0 Cd

0 Cb 0 0

(78)

It is now simple to see that for any

z Î X a % X c = Im

Ina 0

0 0

0 Inc

0 0

(79)

we have

z =

z a

0

z c

0

(80)

and

( ^A* + ^B*F*) z =

Aaa z a

0

Acc z c

0

Î Im

Ina 0

0 0

0 Inc

0 0

=X a % X c (81)

and

(C* + D*F*) z = 0 (82)

Clearly, X a % X c is an ( ^A* + ^B*F*) -invariant subspace of R n and is contained in Ker
(C* + D*F*) . By the de® nition of V*, we have

X a % X c Í V*( ^S *) (83)

Conversely, for any z Î V*(̂ S *) , by De® nition 2, there exists a gain matrix ^F* Î R ḿ n

such that

( ^A* + ^B*
^F*) z Î V*( ^S *) (84)

and

(C* + D*
^F*) z = 0 (85)

(84) and (85) imply that for any z Î V*(̂ S *)
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(C* + D*
^F*) (

^A* + ^B*
^F*)

k z = 0, k = 0,1, . . . ,n - 1 (86)

Thus, (83) and (86) imply that

(C* + D*
^F*) (

^A* + ^B*
^F*)

k

Ina 0

0 0

0 Inc

0 0

=0, k =0,1, . . . ,n - 1 (87)

Next, let us partition this ^F* as follows:

^F* =

Fa0 - C0a Fb0 - C0b Fc0 - C0c Fd0 - C0d

Fad - Eda Fbd - Edb Fcd - Edc Fdd - Edd

Fac - Eca Fbc Fcc Fdc

(88)

We have

C* + D*
^F* =

Fa0 Fb0 Fc0 Fd0

0 0 0 Cd

0 Cb 0 0

(89)

and

^A* + B̂*F̂* =

Aaa 0 0 0

0 Abb 0 0

BcFac BcFbc Acc+BcFcc BcFdc

BdFad BdFbd BdFcd A**
dd

(90)

where A**
dd =A*

dd + BdFdd . Then, using (87) with k = 0, we have

(C* + D*F̂*)

Ina 0

0 0

0 Inc

0 0

= 0 (91)

which implies

Fa0 =0, Fc0 = 0 (92)

and

C* + D*
^F* =

0 w 0 w

0 0 0 Cd

0 Cb 0 0

(93)

where w are some matrices of not much interest. Using (87) with k = 1 together with
(93), we have

CdBdFad = 0, CdBdFcd =0 (94)
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and

(C* + D*F̂*) (
^A* + B̂*F̂*) =

0 w 0 w

0 CdBdFbd 0 CdA**
dd

0 CbAbb 0 0

(95)

In general, one can show that for any positive integer k

Cd (A**
dd)k- 1BdFad = 0, Cd (A**

dd)k- 1BdFcd = 0 (96)

and

(C* + D*F̂*) (
^A* + B̂*F̂*)

k =

0 w 0 w

0 w 0 Cd (A**
dd )k

0 Cb(Abb)
k 0 0

(97)

As a by-product, we can easily show that Fad = 0 and Fcd = 0, because of the fact
that (A**

dd,Bd,Cd) is controllable, observable, invertible and is free of invariant zeros.
Now, for any

z =

z a

z b

z c

z d

Î V*( ^S *) (98)

it follows from (86) and (97) that

Cb (Abb)
k z b = 0, k =0,1, . . . ,n - 1 (99)

which implies z b = 0 because (Abb,Cb) is completely observable, and

Cd (A**
dd)k z d + w ´ z b =Cd (A**

dd )k z d = 0, k = 0,1, . . . ,n - 1 (100)

which implies z d = 0 because (A**
dd,Cd) is also completely observable. Hence,

z =

z a

0

z c

0

Î Im

Ina 0

0 0

0 Inc

0 0

= X a % X c (100)

and

V*( ^S *) Í X a % X c (102)

Obviously, (83) and (102) imply the result.
Similarly, one can follow the same procedure as in the above to show the proper-

ties of the other subspaces in Property 5. h

Proof of Property 6: Let us prove the property of V¸ ( S *) . It follows from
Lemmas 1 and 2 that V¸ is invariant under any state feedback and output injec-
tion laws. Thus, it is su� cient to prove the property of V¸( S *) by showing that
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V¸ ( ÏS *) = Im

Xa¸ 0

0 0

0 Xc¸

0 0

(103)

where ÏS * is as de® ned in the proof of Property 2, Xa¸ is a matrix whose columns
form a basis for the subspace

{z a Î C na|(¸I - Aaa) z a =0} (104)

and

Xc¸ = (Acc + BcFc - ¸I)- 1Bc (105)

with Fc being an appropriately dimensional matrix such that Acc + BcFc - ¸I is
invertible.

For any z Î V¸ ( ÏS *) , by De® nition 3, there exists a vector x Î C m such that

ÏA* - I̧ ÏB*
ÏC* ÏD*

z
x

= 0 (106)

or, equivalently,

Aaa- ¸I 0 0 0 0 0 0

0 Abb - ¸I 0 0 0 0 0

0 0 Acc- ¸I 0 0 0 Bc

0 0 0 A*
dd- ¸I 0 Bd 0

0 0 0 0 Im0 0 0

0 0 0 Cd 0 0 0

0 Cb 0 0 0 0 0

z a

z b

z c

z d

x 0

x d

x c

= 0 (107)

Hence, we have

(Aaa - ¸I) z a =0 (108)

which implies that z a Î Im{Xa¸}
Abb - ¸I

Cb
z b = 0 (109)

which implies that z b = 0 since (Abb,Cb) is completely observable, and

A*
dd - I̧ Bd

Cd 0

z d

x d
=0 (110)

which implies that z d =0 and x d = 0 since (A*
dd,Bd,Cd) is square invertible and free

of invariant zeros. We also have

(Acc - ¸I) z c + Bcx c =0 (111)

which implies that
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(Acc + BcFc - ¸I) z c + Bc (x c - Fc z c) =0 (112)

or

z c = (Acc + BcFc - ¸I)- 1Bc (Fc z c - x c) =Xc¸(Fc z c - x c) (113)

Hence z c Î Im{Xc¸}. Clearly

z Î Im

Xa¸ 0

0 0

0 Xc¸

0 0

=Þ V¸ ( ÏS *) Í Im

Xa¸ 0

0 0

0 Xc¸

0 0

(114)

Conversely, for any

z =

z a

z b

z c

z d

Î Im

Xa¸ 0

0 0

0 Xc¸

0 0

(115)

we have z b = 0, z d = 0, z a Î Im{Xa¸}, which implies that ( I̧ - Aaa) z a =0, and
z c Î Im{Xc¸}, which implies that there exists a vector ~x c such that

z c =Xc¸
~x c = (Acc + BcFc - ¸I)- 1Bc ~x c (116)

Thus, we have

(Acc + BcFc - ¸I) z c =Bc ~x c (117)

or

(Acc - ¸I) z c + Bc (Fc z c - ~x c) = 0 (118)

Let

x =

x 0

x d

x c

=

0

0

Fc z c - ~x c

(119)

It is now straightforward to verify, using (107), that

ÏA* - I̧ ÏB*
ÏC* ÏD*

z
x

= 0 (120)

By De® nition 3, we have

z Î V¸( ÏS *) =Þ Im

Xa¸ 0

0 0

0 Xc¸

0 0

Í V¸ ( ÏS *) (121)

Finally, (114) and (121) imply the result.
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The proof of S ¸ ( S *) follows from the same lines of reasoning. This concludes all
the proofs to the properties of the special coordinate basis. h

4. Conclusion

We have presented in this paper rigorous and complete proofs to all the key
properties of the special coordinate basis of linear time-invariant systems, developed
by Sannuti and Saberi (1987). The results of this paper complement the work of
Sannuti and Saberi and make the theory of Sannuti and Saberi more complete.
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