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On properties of the special coordinate basis of linear systems
BEN M. CHENf

In this paper, we provide, for the first time in the literature, rigorous and complete
proofs to all the key properties of the special coordinate basis of linear time-
invariant systems. The special coordinate basis decomposition or technique devel-
oped by Sannuti and Saberi in 1987 has a distinct feature of explicitly displaying the
finite and infinite zero structures, the invertibility structures, as well as the invariant
and almost invariant geometric subspaces of a given system. The technique has
been extensively used in the literature to solve many system and control problems.
We believe that the result of this paper is a complement of the seminal work of
Sannuti and Saberi. It makes the theory of the special coordinate basis more
complete.

1. Introduction

The special coordinate basis of linear time-invariant systems was first developed
in the seminal work of Sannuti and Saberi (1987). Such a special coordinate basis
decomposition or technique has a distinct feature of explicitly displaying the finite
and infinite zero structures, the invertibility structures, as well as the invariant and
almost invariant geometric subspaces of a given system. The technique has been
extensively used in the literature to solve many system and control problems such
as the squaring down and decoupling of linear systems (see, e.g. Sannuti and Saberi
1987, Saberi and Sannuti 1990), linear system factorizations (see, e.g. Chen et al.
1992a, Lin et al. 1996), model order reductions (see, e.g. Ozcetin ef al. 1990), block-
ing zeros and strong stabilizability (see, e.g. Chen et al. 1992b), nested structural
invariants (see, e.g. Saberi et al. 1992), zero placements (see, e.g. Chen and Zheng
1995), loop transfer recovery (see, e.g. Chen 1991, Saberi e al. 1993), H, optimal
control (see, e.g. Chen et al. 1993, Saberi et al. 1995); Hy, optimal control (see, e.g.
Chen 1998); disturbance decoupling (see, e.g. Ozcetin et al. 1993a, 1993b, Chen
1997), and control with saturations (see, e.g. Lin 1994), to name a few. The list is
far from complete.

It is appropriate to trace a short history of the development of the technique of
the special coordinate basis. The genesis of the concept of utilizing a special coordi-
nate basis of a dynamic system first arose when dealing with high gain and cheap
control problems (Sannuti 1983). At first, by separating the finite and infinite zero
structures of what are now known as uniform rank systems, Sannuti (1983) showed
the usefulness of utilizing the special coordinate basis in order to discuss the import-
ant features of high gain and cheap control problems. Then, Sannuti and Wason
(1983) extended the concept of the special coordinate basis to general invertible
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systems and showed its significance in connection with multivariable root locus
theory. A slight variation of the technique developed in Sannuti and Wason
(1983) was used in Sannuti and Wason (1985) to bring into focus all the features
of cheap control problems for general invertible systems. In their seminal paper,
Sannuti and Saberi (1987) solidified the concept of the special coordinate basis of
general linear strictly proper dynamic systems, and pointed out most of its important
properties including those that are related to certain subspaces encountered in the
geometric theory of linear systems. The required modifications in the development of
the technique for general linear, not necessarily strictly proper dynamic, systems are
given by Saberi and Sannuti (1990).

Unfortunately, all the properties of the special coordinate basis in the original
work of Sannuti and Saberi (1987) were reported without detailed proofs. For some
reason, their proofs are still missing in the literature. Although some of the proper-
ties of the special coordinate basis, e.g. controllability and observability, are quite
obvious, some of them, e.g. the interconnections between the geometric subspaces
and the subsystems of the special coordinate basis, are not transparent at all to
general readers or even to researchers who are familiar with the technique. The
goal of this paper is to give rigorous proofs to all the key properties of the special
coordinate basis of linear systems once and for all. We will also take this opportunity
to include some newly introduced properties. We believe that the results of this paper
will make the theory of the special coordinate basis more complete.

The outline of this paper is as follows: In §2, we recall the special coordinate basis
of linear systems and its properties. We should note that the original work of Sannuti
and Saberi (1987) focused on continuous-time systems. We unify the theory for both
continuous-time and discrete-time systems. Some fine tuning of the theory and new
properties are also introduced. Section 3 presents the main results of this paper, i.c.
the complete proofs of the key properties of the special coordinate basis. Finally,
concluding remarks are drawn in §4.

Throughout this paper, the following notation will also be used: X~ denotes the
transpose of matrix X; I denotes an identity matrix with appropriate d1mens1ons R
is the set of all real numbers; C is the set of all complex numbers; €, €* and C* are
respectively the left half complex plane, the imaginary axis and the r1ght half com-
plex plane; C -, C" and C®are respectively the open unit disc, the unit circle and the
set of complex numbers outside the unit circle; Ker (X) is the kernel of X; Im (X) is
the image of X; and, finally, A(X) is the set of eigenvalues of a real square matrix X.

2. The special coordinate basis

In this section, we will make an attempt to unify the theory of the special coor-
dinate basis of Sannuti and Saberi (1987) for both continuous-time and discrete-time
systems. We will also recall all its key properties, which have been extensively used in
the literature, and introduce some new ones. Let us consider a linear time-invariant
(LTT) system 2, which could be of either continuous-time or discrete-time, char-
acterized by a matrix quadruple (4x, B+, Cx, D+) or in the state space form

5(x) = Asx + Bsu
D (1)
y = Csx+ Dsu

where §(x) = X(¢) if 2« is a continuous-time system, or &(x) =x(k+ 1) if 2« is a
discrete-time system. Similarly, x €R", u €R" and y €R” are the state, the input
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and the output of X« They represent x(7), u(1) and y(z), respectively, if the given
system is of continuous-time, or represent x(k), u(k) and y(k), respectively, if 23 is of
discrete-time. Without loss of any generality, we assume that both [ B¢ D¢] and
[C* D*] are of full rank. The transfer function of X is then given by

Hi(c) = Cx(cI - A%)” "B+ D+ (2)

where ¢ =, the Laplace transform operator, if 2« is of continuous-time, or ¢ =z,
the z-transform operator, if 2 is of discrete-time. It is simple to verify that there
exist non-singular transformations U and V such that

I 0] 3)
0 0

UD«V =

where my is the rank of matrix D+ In fact, U can be chosen as an orthogonal matrix.
Hence hereafter, without loss of generality, it is assumed that the matrix D« has the
form given on the right-hand side of (3). One can now rewrite system > of (1) as

5(x) = Ax x+ [B*,o B*,l] <u0>

u
N C*,l

4)

Ly, 0 ] <u0>
0 O Uy

where the matrices Bxp, Bx 1, Cxo and Cx have appropriate dimensions. The follow-
ing theorem unifies the result of Sannuti and Saberi (1987) for both continuous-time
and discrete-time systems.

Theorem 1 (SCB):  Given the linear system Xx of (1), there exist
(1) Coordinate free non-negative integers ny ng, ny, np, e, N, Mg < m- mo and
gi, i =1,...,mq, and
(2) Non-singular state, output and input transformations I, 1, and I; which take

the given Xx into a special coordinate basis that displays explicitly both the
finite and infinite zero structures of Y.

The special coordinate basis is described by the following set of equations:

x=I% y=I1y, u=Iiu (5)
Xa _ X1
Xa
X2
~ Xb 0
X = s Xa = | Xa |y Xa = . (6)
Xe + :
Xa
Xd Xmg
B4 Ui
u
o 2 0 u
y=\yval, va=| |, i=|u|, wa=| (7)
Vb ) Ue

Yma Umy
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and
8(xa) = AaaXa + Boayo + Lagya + Lavyp (8)
5(x0) = Agaxy + Blayo + Loaya + Lapys 9)
5(xa) = AaaXa + Bouyo + Lagya + Ly (10)
8(xp) = Awxp + Bopyo + Lyava, vp = Cpxp (11)

5(xc) =Aeexe+ Bocyo + Lepyy + Leaya + Be [Ec-'axz-z + E?'a + E:-;,XZ] + B.uc (12)
90 = CoexXe + Couxg + Couxo + Couxa + Coaxa + CopXp + Uy (13)

and, for eachi=1,...,my
m,
8(xi) = Agxi + Lioyo + Liaya + By |ui + EiuXa + Eppxp + EieXe + 2 Ejx;
J=1

(14)

Vi = CyXiy va = Caxq (15)

Here the states x,, xg, Xa, Xp, X, and xg are respectively of dimensions ng, ng, ny, np,
ne and ng = Z:n:’ll gi, while x; is of dimension q; for each i =1, ,mq. The control
vectors uy, ug and u. are respectively of dimensions mo, mg and m. =m- my - my
whereas the output vectors yo, vq and y, are respectively of dimensions py = my,
pa =mg and p, =p - po = pa. The matrices A, By, and C,, have the following form.

_ 0 Iy _ 0 _
Aq,.— 0 0 ’ qu‘_ 1 ) qu‘_[laoa"'ao] (16)

Assuming that x;, i =1,2,... ,mg, are arranged such that q; < g;+\, the matrix Lig has
the particular form

La=[Ln Lo = L 0 - 0] (17)
Also, the last row of each Liq is identically zero. Moreover,

(1) If 2 is a continuous-time system, then

Mda) €€, Aldad) =C°, Aldz) =€ (18)
(2) If 2« is a discrete-time system, then

AMdz) <€) AL €O, A(4)) <c® (19)
Also, the pair (Acc, B.) is controllable and the pair (A, Cy) is observable.

Proof: For strictly proper systems, using a modified structural algorithm of
Silverman (1969), an explicit procedure for constructing the above special coordi-
nate basis is given in Sannuti and Saberi (1987). The required modifications for
non-strictly proper systems follow from Saberi and Sannuti (1990).

Here in Theorem 1, by another change of basis, the variable x, is further decom-
posed into x,, xg and x, . The software toolboxes that realize such a decomposition
can be found in LAS by Chen (1988) or in MATLAB by Lin (1989). L]
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We can rewrite the special coordinate basis of the matrix quadruple
(A%, Bx, Cx, Dx) given by Theorem 1 in a more compact form,

[ A 0 0 L Cy 0 LaCal
0 A, 0 LYG 0 LYC
_ 0 0 Ay LyG, 0 LGy
Ax=T; ! (A% - B*,()C*,())E =
0 0 0 App 0 LyaCy
BCEL-‘a BCE?'a BcEctz L Cb Acc Lea Cd
L BiEi, BaiEd. BiEj, BiEws BiEs  Ad A

(20)
(B, 0 0]
B, 0 0
- 1 B, 0 0
B«=13 [B*,o B*,l]l_;z (21)
By 0 0
BOC 0 Bc
LBys By 04
C C(;a C(())a Ca—a COb COC COd
~ *0
c*:rj,ll ]E: 0o 0 0 0 0 ¢ (22)
Cx
0o 0 0 G 0 0
and
Iy, 00
D«=T'D:=]0 0 0 (23)
0 00

In what follows, we state some key properties of the above special coordinate
basis which are extensively used in the literature. The proofs of these properties will
be given in the next section.

Property 1: The given system 2 is observable (detectable) if and only if the pair
(Aobs, Cobs) is observable (detectable), where

A O ~
BEw Ao’ T

G Coc
Eda Edc

Aops : = (24)

and where
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Ay O 0

Aa=| 0 A 0|, G=lG. & &l (25)
0 0 A

Eu:=|Ey Ey Epl, Eu.:=|E., E. E] (26)

Also, define

(A4, LG Bou La

Acon 1= 5 Beon:= ] (27)
L 0 Ay By Lpa
[ Bi Lap Laa

Bou:=|B |, La:=|L0%|, Liu:=|Ld (28)
| Bo Lay Lag

Similarly, 2 is controllable (stabilizable) if and only if the pair (Acon,Bcon) 1S con-
trollable (stabilizable).

The invariant zeros of a system X characterized by (A4x, Bx,Cx,D+) can be
defined via the Smith canonical form of the (Rosenbrock) system matrix (Rosen-
brock 1970) of 2 defined as the polynomial matrix Ps, (),

¢l - A+ - Bx

(29)
Cx D+

Ps.(c) := l

We have the following definition for the invariant zeros (see also MacFarlane and
Karcanias 1976).

Definition 1 (invariant zeros): A complex scalar o0 €C is said to be an invariant
zero of Xx if

rank {sz ((x)} <n+ normrankH*(g)} (30)

where normrank {H*(g)} denotes the normal rank of Hx(c), which is defined as its
rank over the field of rational functions of ¢ with real coefficients.

The special coordinate basis of Theorem 1 shows explicitly the invariant zeros
and the normal rank of > To be more specific, we have the following properties.

Property 2:

(1) The normal rank of Hx(g) is equal to nygy + m.

(2) Invariant zeros of X are the eigenvalues of A,,, which are the unions of the
eigenvalues of A, Agu and A,. Moreover, the given system X is of mini-
mum phase if and only if 4,, has only stable eigenvalues, marginal minimum
phase if and only if A4, has no unstable eigenvalue but has at least one
marginally stable eigenvalue, and non-minimum phase if and only if A,
has at least one unstable eigenvalue.
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In order to display various multiplicities of invariant zeros, let X, be a non-
singular transformation matrix such that 4,, can be transformed into a Jordan
canonical form, i.e.

X;'AuX, = J =blkdiag {J1,s,..., )i} (31)
where J;, i =1,2,... k, are some n; X n; Jordan blocks:
. 0 Ly-1
J; =diag {oy, 0,... 00} + L) nO ] (32)

For any given o0 €A(A44,), let there be Ty Jordan blocks of 4,, associated with o, Let
Mols Nos - -« Moty be the dimensions of the corresponding J ordan blocks. Then we
say oLis an 1nvar1ant zero of 2% with multiplicity structure SH(Zw) (see also Saberi et
al. 1991)

S;(z}k) = {n%lan%za ce 9”0@1} (33)

The geometric multiplicity of ovis then simply given by T, and the algebraic multi-
plicity of ais given by 2%, ng;. Here we should note that the invariant zeros,
together with their structures of X, are related to the structural invariant indices
list 7 1(2x) of Morse (1973).

The special coordinate basis can also reveal the infinite zero structure of 2 We
note that the infinite zero structure of >x can be defined either in association with
root-locus theory or as Smith-McMillan zeros of the transfer function at infinity.
For the sake of simplicity, we consider the infinite zeros only from the point of view
of Smith-McMillan theory here. To define the zero structure of Hx(¢) at infinity, one
can use the familiar Smith-McMillan description of the zero structure at finite
frequencies of a general, not necessarily square but strictly proper, transfer function
matrix Hx(g). Namely, a rational matrix H«(g) possesses an infinite zero of order k
when Hx(1/z) has a finite zero of precisely that order at z = 0 (see Rosenbrock 1970,
Verghese 1978, Pugh and Ratcliffe 1979, Commault and Dion 1982). The number of
zeros at infinity together with their orders indeed defines an infinite zero structure.
Owens (1978) related the orders of the infinite zeros of the root-loci of a square
system with a non-singular transfer function matrix to c* structural invariant indices;
see list 7 4 of Morse (1973). This connection reveals that even for general, not necess-
arily strictly proper, systems, the structure at infinity is in fact the topology of inherent
integrations between the input and the output variables. The special coordinate basis of
Theorem 1 explicitly shows this topology of inherent integrations. The following
property pinpoints this.

Property 3: >x has mo = rank (D+) infinite zeros of order 0. The infinite zero
structure (of order greater than 0) of > is given by

S = 4{a1,025- s Gon, } (34)

That is, each ¢; corresponds to an infinite zero of 2 of order ¢;. Note that for a
single-input-single-output system Y we have SH(XH) = {ql}, where ¢ is the rela-
tive degree of 2.

The special coordinate basis can also exhibit the invertibility structure of a given
system Y. The formal definitions of right invertibility and left invertibility of a linear
system can be found in Moylan (1977). Basically, for the usual case when [B¢ Ds]
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and [ G« Dx | are of maximal rank, the system 2 or equivalently Hx(g) is said to be
left invertiblé if there exists a rational matrix function, say Lx(g), such that

Lx(c) Hi() = Ly (35)

2 or Hx(c) is said to be right invertible if there exists a rational matrix function, say
R«(¢), such that

Hi(o) Reo) =1, (36)

2« is invertible if it is both left and right invertible, and X« is degenerate if it is neither
left nor right invertible.

Property 4: The given system Xx is right invertible if and only if x5 (and hence
y») are non-existent, left invertible if and only if x. (and hence u.) are non-exist-
ent, and invertible if and only if both x5 and x. are non-existent. Moreover, X is
degenerate if and only if both x; and x. are present.

The special coordinate basis can also be modified to obtain the structural invar-
iant indices lists 7, and I3 of Morse (1973) for the given system 2% In order to
display I 5(2), we let X, and X; be non-singular matrices such that the controllable
pair (ACL‘,BC) is transformed into Brunovsky canonical form, i.e.

0 Iy-1 =+ 0 0 0 - 0
*x Kk ok %k 1
Xl deXe= |10 0 |, XBX=| (37)
0 0 - 0 I 0 - 0
A * - K Kk Lo -+ 1l
where % denote constant scalars or row vectors. Then we have
15(2) = {31,‘ “,&n(} (38)
which is also called the controllability index of (ACL‘,BC). Similarly, we have
13(5) = {u1, 1y, } (39)

where {ul,' LM pb} is the controllability index of the controllable pair (Agb, Cp).
By now it is clear that the special coordinate basis decomposes the state-space
into several distinct parts. In fact, the state-space X is decomposed as

X =x, Bx0bxt dx, dx,.Exy, (40)

Here X, is related to the stable invariant zeros, i.e. the eigenvalues of A4, are the
stable invariant zeros of 2. Similarly, x % and x are respectively related to the in-
variant zeros of 2x located in the marginally stable and unstable regions. On the
other hand, X 4 is related to the right invertibility, i.e. the system is right invertible if
and only if X, = {0}, whereas X . is related to left invertibility, i.e. the system is left
invertible if and only if X . = {0} Finally, x , is related to zeros of X at infinity.

There are interconnections between the special coordinate basis and various
invariant geometric subspaces. To show these interconnections, we introduce the
following geometric subspaces:
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Definition 2 (geometric subspaces Y and s ) The weakly unobservable sub-
spaces of X, VX, and the strongly controllable subspaces of Y, %, are defined
as follows:

(1) VX () is the maximal subspace of R” which is (4« + BsF)-invariant and
contained in Ker (C* + D«Fx) such that the eigenvalues of (A4x+ B«Fx |VX
are contained in CX c C for some constant matrix Fx.

(2) sX(3%) is the minimal (A« + K«Cx)-invariant subspace of R” containing
Im (B« + K«D+) such that the elgenvalues of the map Wthh is induced by
(A% + K«Cx) on the factor space R”" /S are contained in CX cC for some
constant matrix Kx.

Furthermore we let vV =7 and S-“_SX’ if ¢*=¢c" U(]:0 V' = and
S —S,1f(]:X (]:'V—W/Xands ,1f(]:X—(]: U(]: - W=7 and
s®=sX if ¢* =C% and finally V' —VXandS =sX ifc¥=¢

Various components of the state vector of the special coordinate basis have the
following geometrical interpretations.

Property 5:
vV (2x) if 2xis of continuous-time,

V(Zx) if Dk is of discrete-time.
V' (%) if X« is of continuous-time,
V(T if D is of discrete-time.

*

(3) x5 ®x9®xy Bx, spans V().
(3 if Xk is of continuous-time,
)

(2
{ s*(Z%)  if Xk is of continuous-time,
s®(3%) if Yk is of discrete-time.

(1) xz Exex, spans {

(2) x, #x . spans {

(4) x4 X, %X, spans {
if D is of discrete-time.

(5) x5 ®x9%x, Bx4spans

(6) X . %X 4 spans S ().

Finally, we introduce two more subspaces of 2. The original definitions of these
subspaces were given by Scherer (1992).

Definition 3 (Geometric Subspaces Va and Sa): For any A €C”, we define

Ax=- Al Bx C
() :=1CeC"|TJo eC™: 0= (41)
Cx D« 10}
and
. C Ax= Al Bsx
saZx):=49CelC"|Jo eC"": = a) (42)
0 Cx D

Va(Xx) and s (Zx) are associated with the so-called state zero directions of Yx if A is
an invariant zero of Xx.
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These subspaces S A(2x) and Va(2x) can also be easily obtained using the special
coordinate basis. We have the following new property of the special coordinate basis,
which has not been reported in any previous work.

Property 6:
Al- 4, 0 0 0
0 Ya 0 O
sa(Ze) =Im{ I3 (43)
0 I, O
0 0 0 1,
where
Im { Yia } = Ker [Cy(Ap + KpCp = AD™'] (44)

and where K is any appropriately dimensional matrix subject to the constraint that
Ap, + K, Cp, has no eigenvalue at A. We note that such a Kj, always exists as (A, R Gy)
is completely observable.

Xa O
0 0
W (Zx) =Im | I5 (45)
0 Xa
0 0
where X, is a matrix whose columns form a basis for the subspace
& eC™ | (A1 - 44)G =0} (46)
and
= (Ae + BF. - A 'B, (47)

with F, being any appropriately dimensional matrix subject to the constraint that
Aq. + B.F, has no eigenvalue at A. Again, we note that the existence of such an F, is
guaranteed by the controllability of (A, B.).

Clearly, if A €A(A,,), then we have
W (T =V () (48)

and

s o™ () (49)

Next, we would like to note that the subs aces VX )and s (Ek) are dual in the
sense that VX(Z}‘) =s X(EK)J_’ where 1S characterlzed by the quadruple
(A%, C¢, B2, D%). Also, sa(2x) = V/\(Et) .

3. Proofs of properties of the special coordinate basis

In this section, we provide detailed proofs for all the properties of the special
coordinate basis listed in the previous section. We recall the following two lemmas
whose results are quite well-known in the literature. The first lemma is about the
effects of state feedback laws.
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Lemma 1:  Consider a given system 2x characterized by (Ax,Bx,Cx, D%) or in the
state space form of (1). Also, consider a constant state feedback gain matrix
Fx €R™". Then, X as characterized by the quadruple (Ax+ BxFs Bx,
Cx+ D«Fx, D+) has the following properties:

(1) 2 is controllable (stabilizable) if and only if 2 is a controllable (stabiliz-
able);

(2) the normal rank of 2 is equal to that of 2

(3) the invariant zero structure of 2sp is the same as that of 2

(4) the infinite zero structure of 2 is the same as that of 2

(5) 2 is (left- or right- or non-) invertible if and only if 2 is (left- or right- or
non-) invertible;

(6) V¥ (Zp) =V (Ze) and s*(Sp) = s*(Z); and
(7) W(p)=n () and s A (xr) = sa(2x).

Proof: Item 1 is obvious. Items 3, 4 and 5 are well known since all the lists of
Morse, i.e. I | to I4, are invariant under any state feedback laws. Furthermore,
items 2 and 5 can be seen from the following simple manipulations:

Hsp(c) := Cx+ DuFx) (gl = Ax - BxF+)™ 'Bi+ D+
= (Ce+ Ds+Fs) (gl = As)” 1[1 = BuFsl(cl - Ax) 1]‘ "B+ D
= (Cx+ DsF)(cl = As)” IB*[I - Felcl - A+ 113*]'1 + D«
= [C*(gl- Ax)"'Be+ D*][I- Fl(cl - A*)'IB*]'I
=H*(g)[1- Fl(dI - A*)'IB*]'I (50)

Since [[I- Filcl - A+) lBaj'l is well defined almost everywhere on the complex
plane, the results of items 2 and 5 follow.

For item 6, it is obvious from the definition of VX that it is invariant under
any state feedback laws. Next, for any subspace S that satisfies the following
conditions:

(A + KxCx)s (51)
Im (B« + K«Dx) S (52)
we have
(Ax + KxCx+ BsFx+ KsDxFx)S = (A + K«Cx)S + (Bx + KxD+)Fxs S

Thus, s* is also invariant under any state feedback laws.
Let us now prove item 7. Recalling the definition of Vj, we have

A« + B:«Fx=- Al B« <C>}
Cx + Dx«Fx D=« 0]

V,\(Ek]:) = {Ce(]:" Jo Eq:m : 0= l

Then, for any € Va (3#), there exists an @ €C” such that
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<C> _ lA*- Al Bx
0} Cx D«

(o

where &= Fx(+ . Thus, § € Va(2+) and hence Va(2) < Va(Zx). Similarly, one
can show that VA(2x) < Va(Zs), and hence Va(2x) = Va(Zsr). The result that
Sa(Zxr) =5 () can be shown using similar arguments. L]

I 0

0_[A*+B*F*-AI B«
F« 1

Cs + DxFx D«

2

or
[A*- Al  Bx
0=
Cx D=«

The following lemma is about the effects of output injection laws.

Lemma 2:  Consider a given system 2x characterized by (Ax,Bx,Cx, D+) or in the
state space form of (1). Also, consider a constant output injection gain matrix
K« R Then, Y as characterized by the quadruple (Ax+ K«Cx, Bx+
K«Dx, Cx, Dx) has the following properties:

5
(1) 2k is observable (detectable) if and only if Y« is an observable (detectable);
(2) the normal rank of 2 is equal to that of Dx;
(3) the invariant zero structure of 2k is the same as that of 2x;
(4) the infinite zero structure of Y is the same as that of 2
(5) 2k is (left- or right- or non-) invertible if and only if 2x is (left- or right- or
non-) invertible;
(6) V¥ (Z) = V¥ () and s* (Zx) =5 *(Z); and
(7) Va(Zx) = Va(Zx) and s A (Z) = 5 ().

Proof. It is the dual version of Lemma 1. L]

Now, we are ready to prove the properties of the special coordinate basis.
Without loss of any generality but for simplicity of presentation, we assume through-
out the rest of this section that the given system Xx has already been transformed
into the special coordinate basis of Theorem 1 or into the compact form of
(20)23), i.e.

Aua Lab Cb 0 Lad Cd
0 A bb 0 Lpa Cd

Ax = + B*,()C*,o (53)
BcEca ch Cb Acc Lcd Cd

BiEy BiEp BiEs A+ BiEsy+ LaiCy

By, 0 0
By 0 O
Be=[By Byl=|" (54)
BOC 0 Bc
By B; O

and
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Cu G Coc Coa Ly, 0 0

Cxp
C*ZlC*’I]Z 0o 0 0 G|, Ds=| 0 00 (55)
’ 0o G 0 0 0 00
We further note that At*u, B; and C; have the following forms:
Ags = blkdiag {4,,, ", 4,, } (56)
and
By =blkdiag{B,,, ", B,, }, Cs=blkdiag{C,,",C,, } (57)

where Ay, B, and G, i =1,2,-* myg, are defined as in (16).
Proof of Property 1: Let us define a state feedback gain matrix Fx as follows:
Coa G Coc Coa
Fs=-|Eun Ep Ei Eu (58)
E, 0 0 O
Then, we have
Aw LaCy 0 LaaCa
st Bopa=| 0 A0 G (59)
0 LpCy Ae LaCy
0 0 0 Au+ LuGCy
Noting that (AL.(‘,BC) is completely controllable, we have for any A €C,
rank [As+ BsFi- Al Bx]

[ A= A LG 0 L.uCy By, 0 0]
0 App= Al 0 LyiCy By 0 O
=rank
0 LopyCy A= Al LaCy By 0 B
L0 0 0  Ayu+LyuCs-A By By 0
[ A= Al LGy 0 LaCy By 0 0]
0 App- AT 0 LyaCy By 0 O
=rank
0 0 A= AT 0 0 0 B,
L 0 0 0 At*u +LyuCy-AI By B; 0]
Acon - Al 0 Bconl Cd BconO 0 0
=rank 0 A= Al 0 0 0 B.| (60
0 0 Aj;d +LyuCy-AI By By O

where
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Aua Lub Cb
Acon = [
0 App

BOu Lud]
By Lpa

], Bcon = [BconO Bconl ] = (61)

As+ BxFx= Al Bx | is of maximal rank if and only if [ Acon= Al  Beon | is of max-
imal rank. By Lemmia 1, we have that (4, B) is controllable (stabilizable) if and only
if (Acon, Beon) is controllable (stabilizable).

Similarly, one can show that (4,C) is observable (detectable) if and only if

(Aobs, Cobs) is observable (detectable). L]

Proof of Property 2: Let us define a state feedback gain matrix Fx as in (58) and
an output injection gain matrix Kx as follows:

Also, noting the srjecial structure of (AZd,Bd, Cy), it is simple to verify that

Bow Lui  La
By L O
We have
(A 0 0 0
v 0 Apw O 0
Ax = As + BsFs + KiCx + KsDsFx = (63)
0 0 A, 0
Lo 0 0 Ay
0 0 0
5 0 0 0
B+ = Bs+ KxDx = (64)
0 0 B
L0 B; 0
0 0 0 0
Ce=Cx+DsFx= [0 0 0 Cy (65)
0 G, 0 0
and
L, 00
D«=D«=1|0 0 0 (66)
0 00

Let 3 be characterized by the quadruple (/;l*,lv? *,é‘ *,lv)*). It is simple to verify that
the transfer function of X is given by
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In, 0 0
Hi(o) =Culel = A9 'Bet De=1| 0  CylcI- A3) "By 0 (67)
0 0 0
Furthermore, we can show that
@
Calel - Ad)™'Bs = (68)
1
gl
By Lemmas 1 and 2, we have
normrank {H*(g)} = normrank {I:I*(g)} =my + my (69)

Next, it follows from Lemmas 1 and 2 that the invariant zeros of Yx and i}k are
equivalent. By the definition of the invariant zeros of a linear system, i.e. a complex
scalar ais an invariant zero of X if

As- ol B .
rank [ *é V* < n + normrank {H*(g)} =n+my+my (70)
£ D*

and also noting the special structure of (Aj}d, By, Cy) and the facts that (A4, Cy) is
observable, and (4., B.) is controllable, we have

rank {sz((x)} = rank A*: o lj*
L Cx D+
Aw-al 0 0 0 0 0 0]
0 Ap=-od 0 0 0O 0 0
0 0 A~ 0 0 0 B
=rank 0 0 0 Ay-od O B; O
0 0 0 0 I, 0 0
0 0 0 Cy 0O 0 0
L 0 G 0 0 0 0 0
=np + n, + ng + my + my + rank {Auﬂ- O(I} (71)

Clearly, the rank of Ps, (o) drops below n+ mg+ my if and only if o €A(Aa).
Hence, the invariant zeros of X, or equivalently the invariant zeros of X, are
given by the eigenvalues of A,, which are the union of A(4), A(4%,), and
A(Ag,). This completes the proof of Property 2. U]

Proof of Property 3: It follows from Lemmas 1 and 2 that the infinite zeros of
2 and 2x are equivalent. It is clear to see from (74) and (75) that the infinite
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zeros of i}k, or equivalently the infinite zeros of X, of order higher than 0, are
given by

S5 =S = {q1,92, " Gy } (72)

Furthermore, S« or Tk has myo infinite zeros of order 0. L]

Proof of Property 4: Again, it follows from Lemmas 1 and 2 that 2+ or Hx(c) is

(left- or right- or non-) invertible if and only if S or Hx(o) is (left- or right- or
non-) invertible. The results of Property 4 can be seen from the transfer function
Hx(g) in (67). L]

Proof of Property 5: We will prove only the geometric subspace V' (2x), i.c.

L, O

\ 0 0
V() =x,%x.=ImI; (73)

0 I,

0 0

Here [; = I, since the given system X is assumed to be already in the form of the
special coordinate basis. It follows from Lemma 2 that V" is invariant under any
output injection laws. Let us choose an output injection gain matrix Kx as in (69).
Then, we have

Auw 0 0 0

A 0 App 0 0
Ax = Ax + KiCx = (74)

B.E, 0 Ace 0

BiEy BiEsp BiEs Ajs+ BiFEu

and

é* = Bi+ KiDs = Bx = (75)

o o o o
o o o
o & o o

By

Let ﬁ‘ﬁ be a system characterized by (A* B* Cx, D+). Then it is sufficient to show the
property of V() by showing that

L, 0
0 0

V(E) =Im (76)
0 I,
0 0

First, let us choose a matrix Fx as given in (58). Then, we have
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Aw 0 0 0

A A 0 Abb 0 0
Asx+ BsxFsx = (77)

0 0 4. O

0 0 0 Ay

and
0 0 0 O
C«i+D«Fx= |0 0 0 (y (78)
0 G 0 0
It is now simple to see that for any
(1, 0
ex,$x.=Im 090 (79)
0 I,
LO O
we have
&
-7 0
e
0
and
Awly L, O
A oA 0 0 0 .
(Ax+ BxFy)C= e clm 0 1 =x,%bx, (81)
0 0 0
and
(Cx+ D«F)C=0 (82)

Clearly, x , £ X .isan (A/[\* + é*F*) —igvariant subspace of R" and is contained in Ker
(Cx + D«Fx). By the definition of V', we have

X o HBx . V(S (83)

Conversely, for any € € V*(Zx), by Definition 2, there exists a gain matrix Fx eR™"
such that

(/i\* + é*ﬁ*)g EV*(ﬁ}k) (84)
and
(Cs+ D*ﬁ*)gzo (85)

(84) and (85) imply that for any ( € V(T



998 B. M. Chen

(Cs+ D*ﬁ*)(ﬁ* + é*ﬁ*)kgz O, k= O, 1,. N (S 1
Thus, (83) and (86) imply that

L, 0
A A A A 0 0

(Cx + D) (Ax + BuF)* =0, k=0,1,...,n- 1
0 I,
0 0

Next, let us partition this F as follows:
Fo- Cu Fo- Con Fo- Coe Fao- Co
Fe=|Fau-Eu Fa-Ep Fa- Ei Fu- Eu

Fue - Eq Fye Fe Fa
We have
Fo Fo Fo Fao
CG+Dss=[0 0 0 ¢
0o ¢ 0 0
and
Aua 0 0 0
0 App 0 0

1;1\* + B\*ﬁ * =
BCF ac BCF bc ACL‘+ Bchc BCF de
BiFuy BiFy  BiFe A

where Aj;; = AZd + B,F,,. Then, using (87) with k =0, we have

L, O
A 0 0
(Cs + D«F%) =0
0 I,
0 0

which implies
Fao =0, Fo=0

and
0 * 0 *
Cs+D:Fx=10 0 0 C4
0G 0 0

(90)

(93)

where %are some matrices of not much interest. Using (87) with k = 1 together with

(93), we have
CdBdFu = O, CdBchd =0

(94)
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and
0 * 0 *
(Co+ DuF)(As + BeFs) = |0 CuByFrg 0 Cydigy (95)
0 Gdw O 0
In general, one can show that for any positive integer k
Ca(Ad)" ' BaFur =0, Ca(Aia) ' BaFea =0 (%)
and
0 * 0 *
(Co+ DuB) (At BeF)F =10 % 0 Cola) (97)
0 Gldw) 0 0

As a b};;product, we can easily show that F,; =0 and F.; =0, because of the fact
that (Add,Bd, C,) is controllable, observable, invertible and is free of invariant zeros.
Now, for any

&

¢= 3 evisy (98)
”
&
it follows from (86) and (97) that
Coldw) G =0, k=0,1,...,n- 1 (99)
which implies @ =0 because (Abb, Cp) is completely observable, and
CalAi) G+ % G = Caldp) G =0, k=0,1,...,n- 1 (100)

which implies C;/ = ( because (AZ;, Cy) is also completely observable. Hence,

G L, 0

0 0 0
= Q elm 0 I =x,%bx. (100)
0 0 0
and
V(S oxa#x, (102)

Obviously, (83) and (102) imply the result.
Similarly, one can follow the same procedure as in the above to show the proper-
ties of the other subspaces in Property 5.

Proof of Property 6: Let us prove the property of Va(Xx). It follows from
Lemmas 1 and 2 that V, is invariant under any state feedback and output injec-
tion laws. Thus, it is sufficient to prove the property of Va(2x) by showing that
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Xa O
Y 0 0
Y2 (2x) =Im (103)
0 Xa
0 0

where 3 is as defined in the proof of Property 2, X, is a matrix whose columns
form a basis for the subspace

& eC”|(A1 - 4G =0} (104)
and
Xoa = (Aee + B.F.- AI)"'B, (105)

with F, being an appropriately dimensional matrix such that 4. + B.F.- Al is
invertible. .
For any £ €Va (23+), by Definition 3, there exists a vector @ €C" such that

Aes M B <§> =0 (106)
Cx D+l \o
or, equivalently,
[ Aw=AI 0 0 0 0 0 0]/&
0 Aw-AI 0 0 0 0 0 G
0 0 A.-AI 0 0 0 B G
0 0 0 Ay-M 0 By 0| & |[=0 (107
0 0 0 0 I, 0 O o))
0 0 0 Cy 0 0 0 Wy
L O Gy 0 0 0 0 0]\
Hence, we have
(Awa - ADG =0 (108)
which implies that {, €Im {Xa,\}
App = Al
¢ | G=0 (109)
which implies that @ =0 since (Abb, Cp) is completely observable, and
. -
A= M B <@>:0 (110)
Cy 0 \awy

which implies that Q =0 and w; = 0 since (AZd,Bd, C,) is square invertible and free
of invariant zeros. We also have

(Aec - ADG + Baw. =0 (111)
which implies that
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(Aec + BoFe = ADG + Bla. - F.G) =0 (112)
or
G = (e + BoFo = M) 'BAFG - o) = Xa(FG - @) (113)
Hence & eIm{ c,\}. Clearly
Xa O Xa O
0 o0 . 0 o0
Celm 0 X =W (2 cIm 0 X (114)
0 0 0 0
Conversely, for any
G Xa O
C= 4 €lm 00 (115)
G 0  Xa
G 0 o0

we have G =0, § =0, § eIm{ }, which implies that (Al - A.,)§ =0, and
C; eIm{ L,\}, which implies that there exists a vector @, such that

& =Xad®. = (Aee + BF, - AN 'B&, (116)
Thus, we have
(Aee + BF. - AIG = B, (117)
or
(A = G+ BAFG - @) =0 (118)
Let
wy 0
o=|ao; | = 0 (119)

It is now straightforward to verify, using (107), that

A«- AI B
T <€> =0 (120)
Cx D« \ow
By Definition 3, we have
Xa O
“ 0 0 “
Cen(x) ==Im a2 (121)
0 Xa
0 0

Finally, (114) and (121) imply the result.
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The proof of s (2x) follows from the same lines of reasoning. This concludes all
the proofs to the properties of the special coordinate basis. U]

4. Conclusion

We have presented in this paper rigorous and complete proofs to all the key
properties of the special coordinate basis of linear time-invariant systems, developed
by Sannuti and Saberi (1987). The results of this paper complement the work of
Sannuti and Saberi and make the theory of Sannuti and Saberi more complete.
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