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Null controllability of planar bimodal piecewise linear systems
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This article investigates the null controllability of planar bimodal piecewise linear systems, which consist of two
second order LTI systems separated by a line crossing through the origin. It is interesting to note that even when
both subsystems are controllable in the classical sense, the whole piecewise linear system may be not null
controllable. On the other hand, a piecewise linear system could be null controllable even when it has
uncontrollable subsystems. First, the evolution directions from any non-origin state are studied from the
geometric point of view, and it turns out that the directions usually span an open half space. Then, we derive an
explicit and easily verifiable necessary and sufficient condition for a planar bimodal piecewise linear system to be
null controllable. Finally, the article concludes with several numerical examples and discussions on the results
and future work.
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1. Introduction

Piecewise linear systems refer to a subclass of hybrid

systems that the whole state space is partitioned into

polyhedral regions and a linear dynamics is active on

each of these regions. A large class of nonlinear

systems (Rantzer and Johansson 2000; Johansson

2003) and lots of practical systems can be modelled

as piecewise linear systems (Sontag 1981; Khalil 2002).

For example, in Rantzer and Johansson (2000), it was

proven that piecewise linear systems can be used to

analyse smooth nonlinear dynamics with arbitrary

accuracy. In Khalil (2002), the tunnel diode circuit was

teated using framework of piecewise linear systems.

Besides, piecewise linear systems can serve as an

alternative system for the study of a particular hybrid

system as indicated in Heemels, Schutter, and

Bemporad (2001), where equivalences among five

classes of hybrid systems including piecewise linear

systems were established. Due to their theoretical and

practical importance, piecewise linear systems have

drawn considerable attention these years (see Hu and

Lin 2000; Imura and Schaft 2000; Hu and Lin 2001;

Feng 2002; Ferrari-Trecate, Cuzzola, Migone, and

Morari 2002; Imura 2003, 2004).
Bemporad, Ferrari-Trecate, and Morari (2000)

pointed out that observability and controllability
properties of piecewise linear systems cannot be
easily deduced from those of the component linear

subsystems. Even if every subsystem is controllable,

the whole piecewise linear system cannot always be

controllable. For example, consider the following

bimodal piecewise linear system:

_x1 ¼
x2 if x2 � 0,

�x2 if x2 � 0,

�

_x2 ¼ u:

Each subsystem is controllable in the classical sense.

However, the overall system is uncontrollable as the

derivative of x1 is always non-negative. Conversely,

even if some subsystem is uncontrollable, the whole

piecewise linear system can still be controllable. For

example, consider the following bimodal piecewise

linear system:

_x1 ¼
u1 if x2 � 0,

0 if x2 � 0,

�

_x2 ¼ u2:

The subsystem in x2� 0 is controllable and the

subsystem in x2� 0 is uncontrollable because the

derivative of x1 is always 0. After simple observation,

we can see that the whole system is controllable.

Actually, due to the hybrid nature of piecewise linear

systems, the controllability issues are far from being

trivial as was pointed out in Blondel and Tsitsklis

(1999), where it was shown that even for simple classes
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of piecewise linear systems, the controllability problem

turns out to be undecidable. Although it is difficult to

obtain explicit conditions for controllability of general

piecewise linear systems, it is still possible to get some

explicit necessary and/or sufficient conditions for some

special subclasses of piecewise linear systems. In Veliov

and Krasranov (1986), the authors investigated the

controllability property of bimodal systems and a

small-time local controllability condition was given.

Geometric control method was adopted in this article,

which may face difficulties in deriving good global

controllability results of general bimodal or

multi-modal PWL systems. In Camlibel, Heemels,

and Schumacher (2003), Camlibel, Heemels, and

Schumacher (2004) and Heemels and Brogliato

(2003), bimodal systems with continuous dynamics

on the switching surface were considered. For example,

in Camlibel et al. (2003), the authors proposed a

necessary and sufficient condition for the controll-

ability of planar bimodal linear complementarity

systems, which can be treated as a special class of

piecewise linear systems. The controllability problem

of conewise linear systems with dynamics continuous

on the switching surface was studied in Camlibel,

Heemels, and Schumacher (2008). The continuity

assumption in the above work guarantees the

well-posedness of PWL systems and plays a key role

in the derivation of results in these work. Equivalence

between the controllability of a special class of bimodal
systems and that of open-loop switching systems using

non-negative control was established in Bokor, Szabo,

and Balas (2006), for which the general controllability

problem for latter system turns out to be challenging.

References Xie, Wang, Xun, and Zhao (2003) and Xu

and Xie (2005) discussed the null controllability of

discrete-time bimodal piecewise linear systems, in

which some results that need to be checked case by

case, were proposed.
In this article, attention is paid to the continuous-

time bimodal piecewise linear systems. In particular,

the null controllability problem is investigated and

discontinuous systems are treated here. A self-

contained geometric analysis method is introduced in

this article. Specifically, first, the evolution directions

from any non-origin state are studied from the

geometric point of view, and it turns out that the

directions usually span an open half space. After that,

the whole state space is segmented into several spacial

regions using the switching surface together with

several new proposed dividing lines. Furthermore,

using the classification discussion method according

to the geometric position relation of system matrices,

switching surface and the new proposed dividing lines,

an explicit and easily verifiable geometric necessary

and sufficient condition for the null controllability of
planar bimodal piecewise linear systems is proposed.

The rest of this article is organised as follows:
in Section 2, we introduce the class of systems to be
studied, followed by null controllability study in
Section 3, where one geometric necessary and sufficient
condition, together with some necessary or sufficient
conditions, for the null controllability is given. In
Section 4, some examples are presented to illustrate the
theoretical results. Finally, some concluding remarks
are drawn in this article and some proofs are put into
the Appendix.

2. Problem formulation

Consider the planar bimodal piecewise linear system
with the following mathematical model:

_xðtÞ ¼ A1xðtÞ þ buðtÞ cTx � 0,
_xðtÞ ¼ A2xðtÞ þ buðtÞ cTx � 0,

�
ð1Þ

where x2R
2 is the state, u2R is the control, A1, A2

and b (b ¼
�
b1
b2

�
) are constant matrices with appro-

priate dimensions. c is a vector in R
2. The whole state

space is divided into two parts: S1¼ {x2R
2; cTx� 0}

and S2¼ {x2R
2; cTx� 0}, with one system active in

each spacial part. Besides, on the switching surface
cTx¼ 0, each of the two subsystems is possible to be
active.

In the sequel, we will adopt the following definition
of a trajectory of system (1).

Definition 2.1: An absolutely continuous function
x(�) : [0,T ]!R2 is called (admissible) trajectory of
system (1) if there exist a finite number of points
0¼ t05t15� � �5tp¼T and integers i1, i2, . . . , ip2 {1, 2}
such that for every k2 {1, . . . , p},

(i) xðtÞ 2 Sik for all t2 [tk�1, tk];
(ii) there exists a piecewise continuous function

u(�) such that _xðtÞ ¼ AikxðtÞ þ buðtÞ for almost
everywhere t2 [tk�1, tk].

What follows is the definition of null controllability
of system (1).

Definition 2.2 (Null controllability): A non-zero state
x of system (1) is called controllable, if there exists a
trajectory x(�) of (1) such that x(0)¼x and x(tf)¼ 0 for
some tf40. System (1) is said to be null controllable if
any non-zero state x is controllable.

Remark 1: Since the switching sequences at switch-
ing surface together with the control input are the
control signals that we can design, for any specific
control input u and initial state, there exists a unique
solution of system (1). We only concern when there
exist control signals (including switching control at
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the switching surfaces) such that all initial states can be
driven to the origin. Hence, our controllability check-
ing can be applied to PWL systems that are not
well-posed.

Our aim here is to find out under which condition,
it is possible to drive any non-zero state in (1) to the
origin with suitable choice of control input, namely
that the continuous-time planar bimodal piecewise
linear system (1) is null controllable.

3. Null controllability

3.1 Evolution directions

A question arises naturally when people study the
trajectory of some system dynamics: which directions
can the state evolve at specific point x0, i.e. what are
the directions of tangent vectors or derivatives of
state x0?

Before answering this question, we need to
introduce some notations first: in system (1), the line
consisting of vectors b and �b and crossing zero is
defined as dTx¼ 0, where d ¼

�
�b2
b1

�
.

The line consisting of vectors b and �b and crossing
some point p is dTx¼ dTp. For notational convenience,
this line will be represented by dTx( p) in the rest of this
article. Let us use X0 to represent the set of evolution
directions or derivative vectors at point x0. It turns out
that all the possible evolution directions of x0 at a
non-origin state x0 usually span an open half space.

To answer the above question, what we need is to
consider the coordinate centred at the point x0 in a
linear system. Then we can easily get the following
lemma:

Lemma 3.1:

(i) X0¼ {xjdTx¼ 0} if Ax0 is linearly dependent
with b;

(ii) X0¼ {xjdTx40} or {xjdTx50} if Ax0 is
linearly independent of b.

Proof: For condition (i), since Ax0 is linearly
dependent with b, Ax0þ bu, u2R can be any vector
that belongs to the line consisting of b and �b and
crossing 0, i.e. dTx(0). For condition (ii), because Ax0 is
linearly independent of b, every vector f can be
expressed as f¼ �1Ax0þ �2b. If dTf40, definitely, �1
is always positive (negative). Meanwhile, if another
vector f 0 ¼ �01Ax0 þ �

0
2b satisfies dTf 050, definitely,

�01 is always negative (positive). Now consider arbitrary
vectors f and f 0 satisfying dT f4and dT f 050, respec-
tively. Suppose that �140 and �01 5 0. Then we have
f/�1¼Ax0þ �2/�1b and �f 0=j�01j ¼ Ax0 þ �

0
2=�
0
1b.

Consequently, Ax0þ bu, u2R can and only be vector
that satisfies dT(Ax0þ bu)40. Suppose that �150 and

�01 4 0. Ax0þ bu, u2R can and only be vector that
satisfies dT(Ax0þ bu)50. Since Ax0 is linearly inde-
pendent of b, Ax0 6¼ 0. Therefore Ax0þ bu, u2R
cannot be any vector along the direction of b or �b.
A graphical illustration is shown in Figure 1. œ

Define another vector Ei¼ [Ei1,Ei2]¼ dTAi=
½
�b2
b1

�T
Ai, i¼ {1, 2}. The vector ei which belongs to

Eix¼ 0 is ei ¼ ½
�Ei2

Ei1

�
or ½ Ei2

�Ei1

�
. e1 and e2 need to be

chosen in the way that cTe1� 0, cTe2� 0, because
subsystem 1 is only active when cTx� 0 and subsystem
2 is only active when cTx� 0. Now for each of the two
subsystems, in the whole state space, we have the
following lemma.

Lemma 3.2:

(i) X0¼ {xjdTx¼ dTx0} if Eix0¼ 0;
(ii) X0¼ {xjdTx4dTx0}(or {xjdTx5dTx0}) if

Eix040. Meanwhile, X0¼ {xjdTx5dTx0}(or
{xjdTx4dTx0}) if Eix050.

Proof: This lemma is a direct corollary of
Lemma 3.1. œ

3.2 Null controllability

The following lemma presents a necessary condition
for system (1) to be null controllable:

Lemma 3.3: If both subsystems (A1, b) and (A2 b) are
uncontrollable in the classical sense, the piecewise linear
system (1) is not null controllable.

Proof: Suppose that both subsystems are uncontrol-
lable. For any subsystem (Ai, b), i¼ 1 or 2, the
controllability matrix is [b,Aib]. Since (Ai, b) is not
controllable, the controllability matrix now has rank 1
and is of the form [b]. For a linear system, the range
space of controllability matrix, i.e. �b here, is actually
the reachability and controllability spaces, i.e. the
largest set of states that can be driven to zero.
This implies that any state that does not belong to

x10

0

x2

x10

0

x2

Figure 1. Graphical illustration of Lemma 3.1.
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�ib is not controllable and cannot be driven to zero
under this linear dynamics. For the whole piecewise
linear system (1), suppose that cTb 6¼ 0, i.e. neither of

the controllability spaces of two subsystems coincides
with line cTx¼ 0 as depicted in Figure 2. Consider an

arbitrary state point p in cTx� 0 but not in �1b. Since
(A1, b) is not controllable, p cannot reach zero in

cTx� 0. If there exists a trajectory starting from
p, crossing the line cTx¼ 0 and reaching zero as
depicted in the figure, there must exist another state

p0 of this trajectory included in cTx� 0 but not in �2b.
Besides, the trajectory starting from p0 and reaching

zero stays entirely in cTx� 0. This conflicts with the
assumption that system (A2, b) is not controllable and

its controllable space is limited in �2b. Therefore p
cannot be driven to zero and the piecewise linear
system (1) is not null controllable under this case. If

cTb¼ 0 as depicted in Figure 2(right), consider an
arbitrary state p in cTx50. The reachable set of

subsystem (A2, b) is now the line cTx¼ 0 and there is no
control input that can drive state p to zero or any point

on cTx¼ 0. Consequently, the piecewise linear system
(1) is not null controllable. œ

Remark 2: The necessary condition in this lemma

can be applied to a more general model as follows:

_xðtÞ ¼ A1xðtÞ þ B1uðtÞ, cTx � 0,
_xðtÞ ¼ A2xðtÞ þ B2uðtÞ, cTx � 0:

�
ð2Þ

Compared with system (1), this planar bimodal
piecewise linear system has different B matrices in the

two subsystems and the control input u may not be
scalar now. Besides, it is also a necessary condition for

system (2) to be completely controllable.

Lemma 3.4: The linear system _x ¼ Aixþ bu, i¼ 1 or
2, is controllable if and only if Eib 6¼ 0.

Proof: If b¼ 0, the result follows directly. We assume
that b ¼

�
b1
b2

�
6¼ 0. If the system (Ai, b) is not con-

trollable, the controllability matrix [b,Aib] has rank 1,

which means that column vector Aib is linearly

dependent with b, i.e.Aib¼ �b. Furthermore,

Ei ¼
�
�b2
b1

�T
Ai as defined. Therefore, Eib ¼�

�b2
b1

�T
Aib ¼ �

�
�b2
b1

�T� b1
b2

�
¼ 0. On the other hand, if

Eib¼ 0, we have
�
�b2
b1

�T
½b,Aib� ¼

��
�b2
b1

�T
b,�

�b2
b1

�T
Aib

�
¼ ½0,Eib� ¼ 0. Since b 6¼ 0, b1 6¼ 0 or

b2 6¼ 0. Therefore, the controllability matrix has rank

less than 2 and the linear system (Ai, b) is uncontrol-

lable. This completes the proof. œ

Before proceeding further, we need to introduce the

following definition for system (1).

Definition 3.5: Define the convex cone formed by e1
and e2 as V: specifically, V is defined as an open convex

cone if e1 6¼ �e2, �40 and we say that a vector v2V if

there exist positive scalars �1 and �2 such that

v¼ �1e1þ �2e2; When e1¼ �e2, �40, we say that a

vector v2V if there exists positive scalar �i such that

v¼ �i * ei. Moreover, the condition that state x is

outside V means that vector x =2V and vector x 6¼ �1e1
and x 6¼ �2e2, �140, �240.

With the previous lemmas and definitions,

we are in the position to present the main result of

this article.

Theorem 3.6: The bimodal piecewise linear system (1)

is null controllable if and only if:

(i) there exist i2 {1, 2} a scalar u, and a vector x

outside V such that Aixþ bu2V;
(ii) the corresponding subsystem (Ai, b) is

controllable.

Remark 3: If cTei 6¼ 0, definitely we have an unique

ei. Otherwise, when cTei¼ 0, both ei and �ei satisfy the

requirement that cTei ^ 0(cTei % 0). Consequently,

there are several convex cones formed by e1 and e2
(including �ei). To satisfy conditions in Theorem 3.6,

we should make sure for every cone, the two conditions

should be satisfied.

If the matrix c has the form c ¼
�
c1
c2

�
, the following

sufficient condition for system (1) to be null con-

trollable can be given:

Corollary 3.7: If the system matrices satisfy the

following conditions:

(i)
�
�b2
b1

�T
A1

�
�c2
c1

�
6¼ 0 and

�
�b2
b1

�T
A2

�
�c2
c1

�
6¼ 0 and

(ii) b¼ �3e1þ �4e2, for some �3, �4 that �3�440,

then the bimodal piecewise linear system (1) is null

controllable.

Proof: This is actually a special case of the main

theorem. For detailed proof, please refer to the

Case A3 in the Appendix. œ

x10

x2

x10

1

x2

2

P

P` 1

2

P

Figure 2. Graphical illustration of Lemma 3.3.
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Besides, we can get the following
sufficient condition for system (1) to be not null
controllable:

Corollary 3.8: If the system matrices satisfy the
following conditions:

(i)
�
�b2
b1

�T
A1

�
�c2
c1

�
¼ 0 or

�
�b2
b1

�T
A2

�
�c2
c1

�
¼ 0 and

(ii)
�
�b2
b1

�T
A1b ¼ 0 or

�
�b2
b1

�T
A2b ¼ 0,

then the bimodal piecewise linear system (1) is not null
controllable.

Proof: This is actually a combination of several cases
of the main theorem. For detailed proof, please refer to
the cases B1, B2 and C2 in the Appendix. œ

4. Numerical examples

Example 4.1: Consider the system dynamics
described in the following equations:

_x1ðtÞ
_x2ðtÞ

� �
¼

1 2
1 1

� �
xðtÞþ

1
1

� �
uðtÞ �x1þx2� 0,

_x1ðtÞ
_x2ðtÞ

� �
¼

2 2
1 0

� �
xðtÞþ

1
1

� �
uðtÞ �x1þx2� 0:

8>>><
>>>:

ð3Þ

The system matrices are as follows:

A1¼
1 2

1 1

� �
, A2¼

2 2

1 0

� �
, b¼

1

1

� �
, c¼

�1

1

� �
:

After a simple calculation, it can be seen that: d ¼
�

1
�1

�
or
�
�1
1

�
and furthermore, we can get the two dividing

lines:

E1 ¼ dT1A1 ¼ ½1 �1�
1 2

1 1

� �
¼ ½0 1�,

E1x ¼ 0, x2 ¼ 0;

E2 ¼ dT2A2 ¼ ½�1 1�
2 2

1 0

� �
¼ ½�1 �2�,

E2x ¼ 0, x1 þ 2x2 ¼ 0:

The refinement of the whole state space according to
the dividing lines is shown in Figure 3. We can easily
see that for the cone V, there exists some vector
A1xþ bu, i.e. derivative vector of state x,2V, when x is
in area A outside V and also the subsystem (A1, b) is
controllable. According to Theorem 3.6, the system (3)
is null controllable. Also, we can see that the
conditions in Corollary 3.7 are also satisfied, with
e1 ¼

�
�1
0

�
, e2 ¼

�
2
�1

�
, �3¼�3 and �4¼�1. Next, some

simulation results are presented to illustrate the
null controllability. Here, we choose two typical

states, design suitable control input and drive them

to zero.
Starting from state (�2,�1), we can drive the

system state towards (�3,�1) and when the trajectory

crosses E1x¼ 0, we will drive it along a line trajectory

to zero. The simulation result is shown in Figure 4.
Starting from state (1, �1), designing suitable u can

ensure the system trajectory be driven along a line

trajectory to zero. The simulation result is shown in

Figure 5.

Example 4.2: Consider another system dynamics

described in the following equations:

_x1ðtÞ
_x2ðtÞ

� �
¼

1 2
2 1

� �
xðtÞþ

1
1

� �
uðtÞ, �x1þx2� 0,

_x1ðtÞ
_x2ðtÞ

� �
¼

1 1
0 2

� �
xðtÞþ

1
1

� �
uðtÞ, �x1þx2� 0:

8>>><
>>>:

ð4Þ

The system matrices are as follows:

A1¼
1 2

2 1

� �
, A2¼

1 1

0 2

� �
, b¼

1

1

� �
, c¼

�1

1

� �
:

x10

x2

x1

(1,–1)

(–2,–1)

V

1

2

Figure 3. Refinement of state space of system (3).

0 50 100 150
−3

−2

−1

0

1

2

3

4
x1
x2
u

Figure 4. Trajectory and control input of driving (�2,�1) to
0 in system (3).
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Simple calculation yields that: d ¼
�

1
�1

�
or
�
�1
1

�
and

furthermore, we can get the two dividing lines:

E1 ¼ dT1A1 ¼ ½1 �1�
1 2

2 1

� �
¼ ½�1 1�,

E1x ¼ 0, �x1 þ x2 ¼ 0;

E2 ¼ dT2A2 ¼ ½�1 1�
1 1

0 2

� �
¼ ½�1 1�,

E2x ¼ 0, �x1 þ x2 ¼ 0:

The refinement of the whole state space according to

the dividing lines is depicted in Figure 6. It can be

easily seen that for the cone V, there is no vector

Aixþ bu, i.e. derivative vector of state x,2V, where x is

outside V (here is area A). According to Theorem 3.6

or Corollary 3.8, the system (4) is not null controllable.

Actually, we can see that with such set of possible

evolution directions as depicted in the figure for all

states in area A, arbitrary state in this area cannot be
driven to zero.

5. Conclusions

In this article, we have investigated the null controll-
ability of planar bimodal piecewise linear systems.
An explicit and easily verifiable necessary and suffi-
cient condition has been proposed in terms of the
system parameters, followed by several necessary or
sufficient conditions. The method of analysing the
evolution directions of system states and the subse-
quent state space division brings us a deep insight of
the relation between system trajectory and its controll-
ability. We believe that using this kind of geometric
analysis method, certain controllability of more gen-
eral piecewise linear systems can also be considered,
such as, high-order, multi-modal and complete con-
trollability. Specifically, in general, the presented
geometric analysis can be extended to multi-modal
PWL systems. In multi-modal case, the analysis of
evolution directions of systems states would be same as
that in this article. The difference lies in the refinement
of whole state space due to active area change of each
mode. The procedure of state space division and the
following trajectory or controllability study would be
similar. However, the increase of system modes will
make the classification more complex and would
require a more complicated trajectory analysis under
each case although it is doable. Considering extension
to high-order PWL systems, our idea of evolution
directions analysis of systems states and the following
state space division can also be adopted. However,
great difficulty results from that the trajectory analysis
method used in this article would not work in
high-order case because we use the planar aspect.
What we need is to find a more efficient way to study
the system trajectories within one cone or crossing the
cones after space division. This is beyond our scope
here and is the future research topic we will work on.
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Appendix A. Proof of Theorem 1

Proof: The basic idea here is to enumerate all the possible
cases that there exists a vector Aixþ bu2V when x is outside
V and (Ai, b) is controllable, and then prove that every
non-zero state can be driven to zero. Conversely, all the
possible cases that at least one of the two conditions stated in
the theorem cannot be satisfied will be presented and proven
that there exists some non-zero states that cannot be driven
to zero. For simplicity, in all the following figures, let’s use
c, e1 and e2 to represent the lines cTx¼ 0, E1x¼ 0 and
E2x¼ 0, respectively. The derivative vectors or evolution
directions of every state are depicted using the solid line with
arrow. Besides, the dashed line with arrow represents the
extreme derivative direction which cannot be achieved, which
actually is the direction of vectors b and �b.

Case A: cTe1 6¼ 0, cTe2 6¼ 0.

As stated in Lemma 3.2, the evolving direction of one state p
is actually along the line consisting of b and �b and crossing
p, i.e. dTx( p), or the right (left) open half plane divided by
this line. Consequently, the geometric position relation of
vector b and the cone V will clarify whether there exists
vector Aixþ bu that belongs to the cone V:

Case A1: b¼ �1e1 or b¼ �2e2.

This is actually the case that the line consisting of b and �b is
parallel to or coincides with the boundary of V. All the
possible situations are shown in Figure A.1.

(a) Consider the case depicted in Figure A.1(a). It can be
easily seen that there is no vector Aixþ bu2V when x is
outside V. Furthermore, consider one point p in area A. We
will show that starting from p, the system cannot reach any
point in the right half space of line dTx( p). Suppose that
there is a point q, who is reachable from p, in the right half
space of line dTx( p) and outside the cone V. If the system
trajectory starting from p and reaching q crosses V as
depicted using the dashed line, we can always find another
point q0 with the system trajectory from p to q0 staying
entirely outside the cone V. Thus, we can assume that the
trajectory reaching q stays entirely outside the cone, which is
represented by the solid line in the figure. Obviously, the
trajectory must cross the line dTx( p) if it can reach the point
q. We use p0 to represent the crossing point. Consider another
point that is infinitely close to p0 in the right half space of the
line dTx( p). The secant connecting these two points of this
trajectory curve is the tangent which represents the derivative
vector of p0 when the two points are infinitely close. This
implies that there is derivative vector of some point outside
the cone V whose direction belongs to the right half plane of
line dTx( p). However, this is impossible since there is no such
derivative vector of any point outside the cone V as shown in
the figure. Consequently p cannot be driven to zero which
implies that the system under this case is not null
controllable.
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(b) Consider the case depicted in Figure A.1(b). After
simple observation, it can be seen that there are four types of
points (states) according to the geometric position, indicated
by ABCD, respectively in Figure A.1(b) (the states belonging
to the dividing lines and cTx¼ 0 are not included. The
analysis for these states is relatively easy, so we put it to the
end of this case). For any point in area B and C, obviously,
there exists some vector A2xþ bu2V. Besides, subsystem
(A2, b) is controllable according to Lemma 3.4. For an
arbitrary point p1 in area A p1 is connected with zero using
the solid line. Since the line is entirely contained in cone V,
each point on this line can have its derivative vector along the
direction of �p1 with suitable choice of u. Therefore, we can
design the control input u and make the system dynamics as

_xðtÞ ¼ A2xðtÞ þ buðtÞ ¼ ��ðtÞ p1, �ðtÞ4 0:

Solving this equation yields that the trajectory of this
system is

xðtÞ ¼ �p1

Z t

0

�ðtÞdtþ x0:

The system (A2, b) is controllable and vector b is not parallel
with e2, which implies that the derivative vector of system
states with direction orthogonal to E2x¼ 0 can be chosen to
be non-zero. Therefore, noting that �(t) is always positive
scalar, suitable t can be chosen and the integral can be made
equal to 1 since �(t) will not converge to zero now. Clearly x0
equals to p1 here. Hence, x(T )¼ 0 for some T, which implies
that any state p1 in area A can be driven to zero. Using the
similar analysis, it is easy to show that any point p2 in area B

can be driven to zero and the possible trajectory is also
depicted using solid line in the figure. Consider an arbitrary
point p3 in area C. As shown above, there always exist some
vector Aixþ bu2V for any point in area C. Choosing a
derivative vector in the open cone V, the corresponding line
consisting of this derivative vector and p3 surely intersects
E2x¼ 0, which is the boundary of V, at some point p0. As the
part of line between p3 and p0 is entirely outside V, all the
points in this part have the same possible evolution
directions. Consequently, we can design the control u and

x1

x2

x10

0

x2

x2

x2

x1

x1

0

0

Figure A.1. Case A1 of b¼ �1e1 or b¼ �2e2.
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x10

4

1

3

2

Figure A.1(b) Case (b) of b¼ �1e1 or b¼ �2e2.

x10

x2

1

Figure A.1(a) Case (a) of b¼ �1e1 or b¼ �2e2.
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make every state in this part have derivative direction of
vector p0 � p3. The system dynamics now become

_xðtÞ ¼ A2xðtÞ þ buðtÞ ¼ �ðtÞð p0 � p3Þ, �ðtÞ4 0:

Solving this equation, we can get the trajectory of this
system as

xðtÞ ¼ ð p0 � p3Þ

Z t

0

�ðtÞdtþ x0:

With similar reason as above, some suitable t can be chosen
and the integral can be made equal to 1. Besides x0 equals to
p3 here. Thus, x(T )¼ p0 for some T. Furthermore, there are
two reasons that the system dynamics cannot stay on E2x¼ 0
or go back to the outside of V. One is that on E2x¼ 0, we can
choose the u to let the derivative direction still point to the
inside of cone V (b or �b direction). The other is, actually,
the dynamical equations of system do not have description
about second derivative of the state. Therefore, sudden
change, (here inverse change) of evolution trajectory
of system state is not possible. Due to these two reasons,
the system dynamics will not stay at the point p0 or go back.
The system trajectory will reach some point in area A and
using the former control design strategy, the system
trajectory can be driven to zero. Finally, any state p3 in
area C has been proven that it can be driven to zero and is
controllable. Area D is defined as the area cTx40 except the
dividing line E1x¼ 0. Consider an arbitrary point p4 in area
D. According to Lemma 3.4, subsystem (A1, b) is not
controllable and its controllability space is limited in line
E1x¼ 0. Therefore p4 cannot be driven to zero if its trajectory
is only under linear dynamics _x ¼ A1xþ bu (even though it
seems that we can drive p4 directly to zero along a line
trajectory, it is actually not possible because the derivative
vector orthogonal to E1x¼ 0 and the parameter �(t) will
converge to zero due to the geometric relation of b and
E1x¼ 0, which means the integral of �(t) can reach 1 only
when t towards infinity). Fortunately, similar to the
discussion about the states in area C, we can design control
u and let p4 be driven to some point p00 and then into area B

(A for the states in right half of area D) and finally to zero.
For the points on E1x¼ 0 or E2x¼ 0, using similar control
trajectory as discussed above, as shown in the figure,
designing suitable control u can ensure the points on
E1x¼ 0 be driven to zero along the boundary of V and the
points on E2x¼ 0 be driven into area A and then driven to
zero. The states on cTx¼ 0 can be treated as states in area A

or B because we assume that any subsystem can be active
on cTx¼ 0. All the states here can be driven to zero and
therefore, the system is null controllable in this case.
(c) Consider the case depicted in Figure A.1(c). The
analysis for this case is similar with the above case and the
system is null controllable. The corresponding trajectory for
every state driven to zero is shown in the figure (proof details
omitted due to length limit of article).
(d) Consider the case depicted in Figure A.1(d). It can be
easily seen that even though there exists some vector
A1xþ bu2V when x is in area B, the subsystem (A1, b) is
not controllable. The conditions in the theorem are not
satisfied. Furthermore, consider an arbitrary point p in area
A in Figure A.1(d) (note that the long dashed line is the line
consisting of b and �b and crossing 0. Points in area A are
the points in the left open half plane of this line and in
cTx50). Using the same analysis as Case A1(a), it can be
shown that starting from p, the system trajectory cannot
reach any point in the right half space of line dTx( p) under
linear dynamics _x ¼ A2xþ bu. The corresponding trajectory

starting from pmay enter area B. Consider an arbitrary point
p0 in area B. Similar to the analysis about the states in area D

of Case A1(b), it can be shown that starting from p0, the
system cannot reach any point on the line E1x¼ 0 under
linear dynamics _x ¼ A1xþ bu. The corresponding trajectory
may go into area A. If the trajectory reaches the dividing line
of area A and B, i.e. the left open segment of line cTx¼ 0, any
one of the two subsystems maybe active. However, no matter
which system is active, the corresponding trajectory still
cannot reach zero according to the trajectory analysis for
states in areas A and B. Consequently, any state p in area A

and any state p0 in area B cannot be driven to
zero point which implies that the system is not null
controllable.

Remark 4: All the proofs and graphical illustrations are
based on b¼ �1e1. For the case that b¼ �2e2, the analysis
method and result are similar. As a result, in this article, we
will only give detailed analysis on b¼ �1e1 to stand for the
analysis of the case that b¼ �1e1 or b¼ �2e2 if without leading
to confusion.

Case A2: b and� b are outside V.
All the possible situations are shown in Figure A.2.
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Figure A.1(d). Case (d) of b¼ �1e1 or b¼ �2e2.
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Figure A.1(c). Case (c) of b¼ �1e1 or b¼ �2e2.
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Figure A.2. Case A2. b and �b are outside V.
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Figure A.2(a). Case (a) of b and �b are outside V.
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Figure A.2(b). Case (b) of b and �b are outside V.
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Figure A.2(c). Case (c) of b and �b are outside V.
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Figure A.2(d). Case (d) of b and �b are outside V.
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(a) Consider the case depicted in Figure A.2(a). It can be
easily seen that there is no vector Aixþ bu2V when x is
outside V. Furthermore, consider one point p in area A in
Figure A.2(a) (note that the long dashed line is the line
consisting of b and �b and crossing 0. Points in area A are
the points in the left open half plane of this line). Using the
same analysis as Case A1(a), it can be shown that starting
from p, the system trajectory cannot reach any point in the
right half space of line dTx( p). Consequently p cannot be
driven to zero which implies that the system under this case is
not null controllable.
(b) Consider the case depicted in Figure A.2(b). After
simple observation, it is clear that there are four types of
points according to the geometric position, indicated by
ABCD, respectively, in Figure A.2(b). For any point in area
A, C and D, obviously, there exists some vector Aixþ bu2V
and (Ai, b) is controllable. Using the same analysis as Case
A.1(b), it can be found that the points in AB can be driven
directly to zero along a line trajectory. Besides, the points in
area C(D) can be driven by a line trajectory to some point
p0( p00) and then into area B(B) and finally driven to zero.
The points on E1x¼ 0E2 x¼ 0 or cTx¼ 0 can easily be shown

to be controllable too. All the states here can be driven to
zero and therefore, the system is null controllable in this case.
(c) and (d) Consider the cases depicted in Figures A.2(c)
and A.2(d). The analysis for these cases are similar as the
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0

Figure A.3. Case A3. b or �b is in V.
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Figure A.3(a). Case (a) of b or �b is in V.
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Figure A.3(c). Case (c) of b or �b is in V.
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Figure A.3(b). Case (b) of b or �b is in V.
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above case and the system is null controllable. The
corresponding trajectory for every state driven to zero is
shown in the figures (proof details omitted due to length limit
of article).

Case A.3: b or �b is in V:
All the possible situations are shown in Figure A.3.

(a), (b), (c) and (d) Consider the cases depicted in
Figures A.3(a), A.3(b), A.3(c) and A.3(d) Figure A.3(a–d).
The analysis for these cases are similar as Case A.2(b). There
exists some vector Aixþ bu2V, when x is outside V and
(Ai, b) is controllable. The corresponding trajectory for every
state driven to zero is shown in the figures. All the states can
be driven to zero and therefore the system is null controllable
in these cases.

Remark 5: A special case contained in this case is that e1
and e2 are linearly dependent, which represents that line
E1x¼ 0 coincides with E2x¼ 0. The proof for this special case
is actually the same as the general case we presented above.

Appendix B. Case B: cTe1 6¼ 0 cTe2¼ 0.

Remark 6: We can also assume that cTe1¼ 0, cTe2 6¼ 0. All
the following proof would be the same, so we only prove this
case with cTe1 6¼ 0, cTe2¼ 0.

Remark 7: As stated in Remark 3, from cTe2¼ 0, we have
e2 and �e2. It is necessary to consider simultaneously the
convex cone formed by e1 and e2 and the convex cone e1 and
�e2 when we verify the conditions stated in Theorem 3.6. For
simplicity, we refer to the cone on the right side as cone V1
and the left one as V2.

Case B1: b¼ �2e2.

This is actually the case that dTx( p) is parallel to or
coincides with cTx¼ 0. All the possible situations are shown
in Figure B.1.
(a) Consider the case depicted in Figure B.1(a). Considering
cone V1, for any point in area C, obviously, there exists some
vector A1xþ bu2V1 and (A1, b) is controllable. However, for
cone V2, even though for any point in area A, there exists
some vector A2xþ bu2V2, (A2, b) is uncontrollable.
Therefore, the conditions in the theorem are not satisfied.
For any state p in area A, since subsystem (A2, b) is
uncontrollable, using the similar analysis about the states
in area D of case A.1(b), it can be shown that starting from
p, the system cannot reach any point on the line E2x¼ 0

(also cTx¼ 0 here) under linear dynamics _x ¼ A2xþ bu.
Consequently, state p cannot be driven to zero and the
system is not null controllable.

(b), (c), and (d) Consider the cases depicted in
Figures B.1(b), B.2(c) and B.2(d). These cases are similar as
the above case. In Case B.1(b), considering cone V1, for any
point in area A, there exists some vector A2xþ bu2V1, but
(A2, b) is uncontrollable. In Case B.1(c), for cone V2, the area
outside V2 is now consisting of A, C and their dividing line.
Obviously, there is no point with a derivative vector, i.e. a
vector Aixþ bu, that is in the open cone V2. In Case B.1(d),
for cone V1, the area outside V1 is now consisting of A, B and
their dividing line. Clearly, there is no point with a derivative
vector, i.e. a vector Aixþ bu, that is in the open cone V1. The
conditions in the theorem are not satisfied in all these cases.
For the same reason as in the above case or Case A.1(a), one
state p in area A cannot reach zero. Therefore, the
piecewise linear systems in these cases are not null
controllable.

Case B2: b¼ �1e1.

This is actually the case that dTx( p) is parallel to or coincides
with E1x¼ 0. All the possible situations are shown in
Figure B.2.
(a) Consider the case depicted in Figure B.1(a). Considering
cone V1, for any point in area A, obviously, there exists some
vector Aixþ bu2V1. However, for cone V2, the area outside
V2 is now consisting of A, C and their dividing line.
Obviously, there is no point with a derivative vector, i.e. a
vector Aixþ bu, that is in the open cone V2. Furthermore,
similar to Case A1(a), any point p in area C cannot reach any
point q in the left half space of line dTx( p) in area C and A.
Therefore p cannot be driven to zero which implies that the
system is not null controllable.
(b) Consider the case depicted in Figure B.2(b). This case is
almost the same as the above case. The only difference is that
under this case, it is that for cone V1 rather than cone V2,
there is no desired vector Aixþ bu2V1 (proof details omitted
due to length limit of article).
(c) Consider the case depicted in Figure B.2(c). Considering
cone V1, for any point in area A, clearly, there exists some
vector A2xþ bu2V1 and (A2, b) is controllable. However,
considering cone V2, for any point in area B, there exists
some vector A1xþ bu2V1, but (A1, b) is uncontrollable.
Therefore, the conditions in the theorem are not satisfied.
Furthermore, similar to Case A.1(d), although any state p in
area A can reach some states in area B or dividing line of
areas A and B and any state p0 in area B can reach some
states in area A or dividing line of areas A and B, no state in
area A, area B and their dividing line can be driven
to zero. Thus, the system under this case is not null
controllable.
(d) Consider the case depicted in Figure B.2(d). The
analysis for this case is similar to the above case. Easily we
can see for cone V1, even though for any point in area B,
there exists some vector A1xþ bu2V1, (A1, b) is uncontrol-
lable. System (1) is not null controllable in this case (proof
details omitted due to length limit of article).

Case B3: b or �b is in V2.

Remark 8: We can also assume that b or �b is in V1. All the
following proof would be the same, so we only prove this
case with b or �b2V2.

All the possible situations are shown in Figure B.3.
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Figure A.3(d). Case (d) of b or �b is in V.

International Journal of Control 777

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
i
o
n
a
l
 
U
n
i
v
e
r
s
i
t
y
 
O
f
 
S
i
n
g
a
p
o
r
e
]
 
A
t
:
 
0
8
:
2
9
 
1
4
 
J
u
n
e
 
2
0
1
1



x1

x2

0 x1

x2

0

x1

x2

0 x1

x2

0

Figure B.1. Case B1. b¼ �2e2.
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Figure B.1(d). Case (iv) of b¼ �2e2.
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Figure B.1(a). Case (a) of b¼ �2e2.

x1

x2

0

3

1

2

Figure B.1(b). Case (b) of b¼ �2e2.
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Figure B.1(c). Case (c) of b¼ �2e2.
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Figure B.2. Case B2. b¼ �1e1.
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Figure B.2(a). Case (a) of b¼ �1e1.
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Figure B.2(b). Case (b) of b¼ �1e1.
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Figure B.2(c). Case (c) of b¼ �1e1.
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Figure B.2(d). Case (d) of b¼ �1e1.
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(a) Consider the case depicted in Figure B.3(a). Considering
cone V2, for any point in area A, obviously, there exists some
vector A2xþ bu2V2 and (A2, b) is controllable. However, for
cone V1, the area outside V1 is now consisting of A, C and
their dividing line. Clearly, there is no point with a derivation
vector, i.e. a vector Aixþ bu, that is in the open cone V1.
Furthermore, similar to Case A.1(a), some point p in area A

cannot reach any point q in the right half space of line dTx( p)
in area A and C. Consequently p cannot be driven to zero
point which implies that the system under this case is not null
controllable.
(b), (c), and (d) Consider the cases depicted in
Figure B.3(b–d). Easily we can see for both cone V1 and
cone V2, there exists the desired vector and the corresponding
subsystem is controllable. The system (1) is null controllable
under these cases. The corresponding trajectory for every
state driven to zero is shown in the figures (proof details
omitted due to length limit of article).

Appendix C. Case C: cTe1¼ cTe2¼ 0.
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Figure B.3. Case B3. b or �b is in V2.
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Figure B.3(b). Case (b) of b or �b is in V2.
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Figure B.3(c). Case (c) of b or �b is in V2.
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Figure B.3(a). Case (a) of b or �b is in V2.
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Remark 9: As stated in Remark 3, from cTe1¼ cTe2¼ 0, it
follows that e1, �e1, e2 and �e2 all satisfy the equation
cTe1� 0 and cTe2� 0. Then we should consider simulta-
neously the convex cone formed by e1 and e2, the convex
cone formed by�e1 and e2, convex cone formed by e1 and
�e2 and convex cone formed by �e1 and �e2 when we verify
the conditions stated in Theorem 3.6. According to
Definition 3.5, V is defined as the open convex cone if
e1 6¼ �e2, �40 and we say a vector v2V if v¼ �1e1þ �2e2,
�140, �240. When e1¼ �e2, �40, we say a vector v2V if
v¼ �i � ei, �i40. For simplicity, in the following proof, we
denote the open cone opening up as cone V1 and the open
cone opening down as V2. For e1¼ �e2, �40, we refer to the
right side cone as V3 and the left side cone as V4.

Case C1: b 6¼ �1e1.

This is actually the case that dTx( p) is not parallel to or
coincides with cTx¼ 0. All the possible situations are shown
in Figure C.1.
(a) Consider the case depicted in Figure C.1(a). There are
four types of points according to the geometric position,
indicated by ABCD, respectively, in Figure C.1(a). First,
considering cone V1 (the left open half plane of cTx¼ 0 here),
for any point in area B and C, clearly, there exists some
vector A2xþ bu2V1 and (A2, b) is controllable. Second,
considering cone V2 (the right open half plane of cTx¼ 0
here), for any point in area A and D, clearly, there exists some
vector A1xþ bu2V2 and (A1, b) is controllable. Third,
considering cone V3 (the right half segment of line cTx¼ 0),

for any point in area A and D, clearly, there exists some
vector A1xþ bu2V3 and (A1, b) is controllable. Finally,
considering cone V4 (the left half segment of line cTx¼ 0), for
any point in area B and C, clearly, there exists some vector
A2xþ bu2V4 and (A2, b) is controllable. The conditions in
Theorem 3.6 are satisfied. Similarly, it can be shown that the
points in AB can be driven directly to zero along a line
trajectory. Besides, the points in area C and D can be driven
by a line trajectory to some point p0 and p00 and then into area
A and B, respectively, and finally driven to zero. The points
on cTx¼ 0 can be shown that they can be driven to area A or
B or C or D. Consequently, all the states here can be driven
to zero and therefore the system is null controllable in this
case.
(b) Consider the case depicted in Figure C.1(b). For cone
V4, the area outside V4 is now consisting of all the areas
except the left half of line cTx¼ 0. Obviously, there is no state
with a derivative vector, i.e. a vector Aixþ bu, that is in the
cone V4. Furthermore, similar to Case A.1(a), any point p at
area A cannot reach any point q on the left half space of line
dTx( p). Therefore p cannot be driven to zero which implies
that the system under this case is not null controllable. All
the possible situations are shown in Figure C.2.

Case C2: b¼ �1e1.

This is actually the case that dTx( p) is parallel to or
coincides with cTx¼ 0. All the possible situations are shown
in Figure C.2.
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Figure C.1(b). Case (b) of b 6¼ �1e1.
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Figure B.3(d). Case (d) of b or �b is in V2.
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Figure C.1(a). Case (a) of b 6¼ �1e1.
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Figure C.1. Case C1: b 6¼ �1e1.
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(a) Consider the case depicted in Figure C.2(a). For cone
V1, although for any point in area A, there exists some vector
A2xþ bu2V1, the subsystem (A2, b) is uncontrollable.
Therefore, the conditions in the theorem are not satisfied.
Furthermore, similar to the discussion analysis about the
states in area D of Case A.1(b), it can be shown that starting
from arbitrary state p in area A, the system cannot reach any
point on the line E2x¼ 0 (also cTx¼ 0 here) under linear
dynamics _x ¼ A2xþ bu. Hence p cannot be driven to zero
which implies that the system under this case is not null
controllable.

(b), (c), and (d) Consider the cases depicted in
Figures C.2(b–d). These cases are similar with the above
case. In Case C.2(b), for cone V1, the area outside V1 is now
area A. Clearly, there is no state with a derivative vector, i.e.
a vector A2xþ bu, that is in the open cone V1. In Case C.2(c),
for cone V1, the area outside V1 is now area A. It is easy to see
that there is no state with a derivative vector, i.e. a vector
A2xþ bu, that is in the open cone V1. In Case C.2(d), for cone
V2, the area outside V2 is now area A. It is clear that there is
no state with a derivative vector, i.e. a vector A1xþ bu, that is
in the open cone V2. The conditions in the theorem are not
satisfied in all these cases. For the same reason as in the
above case or Case A.1(a), one state p in area A cannot reach

zero. Consequently, the piecewise linear systems in these
cases are not null controllable.

In conclusion, all the cases that there exists a vector
Aixþ bu2V when x is outside V and the corresponding
subsystem (Ai, b) is controllable, are proven to be null
controllable. Besides, all the possible cases that at least one of
the two conditions cannot be satisfied are proven that there
always exists some non-zero state that cannot be driven to
zero and the system (1) is not null controllable.
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Figure C.2. Case C2. b¼ �1e1.
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Figure C.2(a). Case (a) of b¼ �1e1.
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Figure C.2(c). Case (c) of b¼ �1e1.
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Figure C.2(b). Case (b) of b¼ �1e1.
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Figure C.2(d). Case (d) of b¼ �1e1.
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