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Theory of LTR for non-minimumphase systems, recoverable
target loops, and recovery in a subspace

Part 2. Design

A. SABERlt, B. M. CHENt and P. SANNUTIt

This Part focuses on the design of full order observer based controllers for the
recovery of target loop transfer function or sensitivity and complimentary sensitiv-
ity functions when the given system is not necessarily left invertible and not
necessarily of minimum phase. Four design tasks are considered. The first task
concerns with arbitrarily specified target loop transfer functions and develops an
observer design which has the capability to shape the inevitable recovery error
according to the designer's needs whenever they are feasible. The second task
considers observer design for exactly recoverable target loop transfer functions.
The third task is similar to the second one in that it makes use of the specific
properties of the target loop transfer function, but it considers observer design for
asymptotically recoverable target loop transfer functions. The fourth task can be
thought of as a generalization of the second and third tasks, and it considers
observer design so that the achieved and target sensitivity and complimentary
sensitivity functions match each other either exactly or asymptotically over a given
subspace of the control space whenever it is possible. For all these tasks, observer
design constraints and the available design freedom are reviewed. In view of the
available freedom, possible specifications on the time-scale and/or eigenstructure
of the observer dynamic matrix are formulated. In the case of first task, the
conventional approach of designing observer based controllers by Kalman filter
formalism which requires solving algebraic Riccati equations, is shown to have
several fundamental limitations. A method of design based on asymptotic time-
scale and eigenstructure assignment (ATEA) developed here overcomes these
limitations. For the other tasks, no design methods other than the ones developed
here are available in the literature. All the developed design methods are imple-
mented in a 'Matlab' software package. A bank of examples illustrate that the
proposed methods of design are capable of directly exploiting all the available
freedom so as to achieve the desired results.

1. Introductionand problemstatement
As is well known and as discussed earlier in Part 1 (Saberi et at. 1991) the basic

loop transfer recovery problem is concerned with analysing and possibly designing
an observer based controller which can achieve the same robustness properties as
those of a state feedback controller. To be specific, consider a plant ~

i = Ax + Bu, y=Cx (1.1)
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where the state vector x E 9ln, output vector y E 9lP and input vector ii E 9lm.
Without loss of generality, assume that Band C are of maximal rank. Let us also
assume that! is stabilizableand detectable. Let the state feedbackcontrol law

ii = - Fx ( 1.2)

be such that:

(a) the dosed-loop system is asymptotically stable, i.e. eigenvalues of A- BFlie
in the left half s-plane; and

(b) the open-loop transfer function when the loop is broken at the input point
of the plant meets the given frequency dependent specifications.

Then L(s), S(s) and T(s), the target loop transfer function, sensitivity and compli-
mentary sensitivity functions are

L(s) = FcDB

S(s) = [1m+ L(s)] -1

and

T(s) = 1m- S(s) = [1m+ L(s)] -1 L(s) ( 1.3)

where cD= (sl - A) -I and 1mdenotes an identity matrix of dimension m x m. On
the other hand, let

u= -Fx,

i = (A --cKC - BF)x + Ky (1.4)

be a full order observer based control law where j( is an observer gain. Thus Lo(s),
So(s) and To(s), the obtainable loop transfer function and sensitivity and compli-
mentary sensitivity functions are given by

Lo(s) = C(s)P(s), pes) = CcDB

So(s) = [1m+ LO(S)]-I

and

To(s) = 1m- So(s) = [1m+ Lo(s)]-I La(s)

where C(s) is the observer based controller transfer function,

( 1.5)

C(s) = F[sln - A + KC + BF] -Ij( ( 1.6)

Thus the goal of loop transfer recovery problem is to design a K such that the
mismatch function E(jw) with E(s) defined as

E(s) = L(s) - Lo(s) (1.7)

is either exactly zero or in some sense approximately zero over the frequency range
of interest. More precisely, we say exact LTR (ELTR) is achieved if

C(s)P(s) = L(s) for all s.

Achieving ELTR is in general not possible. In an attempt to achieve 'approximate'
LTR, one normally parameterizes C(s) as a function of a tuning parameter (1. In
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observer based controllers, the gain K is the only free design variable and thus
parameterizing it as a function of (J, a family of controllers C(s, (J) are obtained

C(s, (J)= F[sIn- A + K«(J)C+ BF] -IK«(J)

We say asymptotic LTR (ALTR) is achieved if

C(s, (J)P(s)-+L(s) pointwise in s

( 1.8)

as (J-+ 00, or equivalently £(s, (J)-+0 pointwise in s as (J-+ 00. Achievability of
ALTR enables the designer to choose a member of the family of controllers that
corresponds to a particular value of (J which achieves a desired level of recovery.

In Part 1 (Saberi et al. 1991), we considered general not necessarily invertible
and not necessarily of minimum phase plants and analysed the mechanism of
ELTR and ALTR via a full order observer based controller. The analysis there,
while showing that neither ELTR nor ALTR can in general be achieved, focuses on
three fundamental issues. The first issue is concerned with what can and what
cannot be achieved for a given system and for an arbitrarily specified target loop
transfer function, while the second issue is concerned with the development of
necessary or/and sufficient conditions a target loop has to satisfy so that it can
either exactly or asymptotically be recovered for the given system. The third issue
deals with the development of method(s) to test whether recovery is possible in a
given subspace of the control space or not, i.e. to test whether projections of target
and achievable sensitivity and complimentary sensitivity functions onto a given
subspace match each other or not. Thus the third issue generalizes the traditional
notion of LTR. All this analysis shows some fundamental limitations of the given
system as a consequence of its structural properties, namely finite and infinite zero
structure and invertibility. It also discovers a multitude of ways in which freedom
exists to shape the recovery error in a desired way. Thus it helps to set meaningful
design goals at the onset of design. In this part of the paper, we develop design
methods for all the issues identified and analysed earlier in Part 1. These methods
are capable of utilizing in a direct and user friendly way all the available freedom
discovered in Part 1. Four different design tasks are considered. The first one
concerns with arbitrarily specified target loop transfer functions and develops an
observer design which has the capability to shape the inevitable recovery error
according to the designer's needs whenever they are feasible. In this case, the design
does not exploit any specific characteristics of the target loop except using it as a
goal for the design. Why should one consider an observer design for an arbitrary
target loop transfer function? Well, it is traditional to do so. Separation principle
which lets us to separate the state feedback and observer designs into two distinct
and decoupled tasks, is rooted deeply in modern control theory. This hidden
philosophy of using separation principle has been the heart of LQG/L TR and as
such development of an observer design method for recovery of an arbitrarily
specified target loop transfer function is a consequence of this philosophy. Next we
like to move away from this traditional design philosophy and consider design
schemes where in properties of the given loop transfer function could be taken into
account. The analysis carried out in Part 1 facilitates such a task. More specifically,
the analysis of Part 1clearly points out the necessary and sufficient conditions under
which a loop transfer function is either exactly or asymptotically recoverable. This
analysis helps the designer to set meaningful goals at the onset of design. That is,
although the actual physical tasks of first designing a target loop and then designing
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an observer based controller are separable, one can bridge or link these two tasks
philosophically at the onset of design. In view of this, it is natural then to seek
design schemes for exact or asymptotic recovery of a given loop transfer function
whenever it is feasible to do so. Thus our second and third design problems are
concerned with the development of design procedures respectively for exact and
asymptotic recovery. After developing design schemes for either arbitrarily specified
or exactly recoverable or asymptotically recoverable target loops, we move on next
to generalization of these schemes. In particular, as revealed by our analysis in Part
1, recovery in all control loops as desired by the designer in general is not feasible
in MIMO systems which are not necessarily left invertible and are of non-minimum
phase. Thus one may seek to recover sensitivity and complimentary sensitivity
functions (or some generalized recovery as will be clear from the context) over only
a subspace of the control space. Again the analysis carried out in Part I shows the
conditions under which recovery in a given subspace is feasible or not. Thus our
fourth design problem is concerned with the development of design procedures for
either exact or asymptotic recovery in a given subspace whenever it is feasible.

Any time when one deals with asymptotic recovery, one first considers a family
of controllers C(s,O") parameterized with a tuning parameter 0"and then selects a
particular controller in the family which meets a desired level of recovery. On the
other hand, for exact recovery whenever it is feasible, no such parameterization is
necessary. Also, as is well known and as is discussed in Part I (Saberi et al. 1991),
when asymptotic recovery is considered, the observer gain K(O")tends to infinity as
0" ~ 00. This implies that some of the eigenvalues of the observer dynamic matrix,
Ao= A - K(O")C,tend to finite values while the rest tend to infinity at different rates
along some asymptotes as 0"~ 00. In other words, whenever asymptotic recovery is
considered, design of K(O")involves both multiple time-scale structure assignment
and finite eigenstructure assignment to Ao. Where as whenever exact recovery is
considered, design of K involves only finite eigenstructure assignment to Ao.

Observer design for LTR in the existing literature is mostly focused on left
invertible and minimum phase plants and that too in connection with the first
design task outlined earlier. There exists three methods of determining the required
observer gain for left invertible and minimum phase plants. These methods are, (1)
Kalman filter formalism (Doyle and Stein 1979), (2) direct eigenstructure placement
method (Sogaard-Andersen 1989) and (3) asymptotic eigenstructure and time-scale
structure assignment (ATEA) method (Saberi and Sannuti 1990). Kalman filter
formalism has been well studied and well understood for left invertible and
minimum phase plants. In it, the observer eigenstructure is controlled by varying
the intensity of the input process noise, i.e. the tuning parameter 0"is the intensity
of the input process noise. Here an appropriate high gain is obtained by solving a
parameter dependent algebraic Riccati equation (ARE) and hence such a design
can be referred to as ARE based design. In direct eigenstructure placement method,
some of the eigenvalues of the observer are placed at the plant finite (invariant)
zeros while the rest of them are placed far away in the negative half s-plane.
However, there is a fundamental difficulty in placing the far away eigenvalues. One
has to make sure that the residues associated with the far away eigenvalues remain
uniformly bounded as these eigenvalues are pushed to infinity. There is no direct
way of assuring this. In ATEA method, observer gain is parameterized directly in
terms of 0"rather than being done indirectly via a parameter dependent ARE. The
parameter 0"comes into play only in changing the degree of fastness of various
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time-scales. In connection with general non-minimum phase plants, since no direct
design method is yet available it has been suggested in the literature that ARE
based design be used for non-minimum phase plants as well and accept the
consequent recovery error as being imminent. Such an approach necessitates a
careful study of what ARE based design does to the recovery error. Realizing this,
Zhang and Freudenberg (1987, 1990) recently for the first time developed expres-
sions for the resulting asymptotic behavior of loop transfer and sensitivity functions
when ARE based design is used. More recently, Niemann and Jannerup (1990)
have expanded further on the results of Zhang and Freudenberg (1987, 1990).

In this paper for general systems we present new design methods dealing with all
the four problems outlined earlier. Before we present a new design method for
asymptotic recovery of arbitrarily specified target loop transfer functions (i.e. the
first design problem), we need to motivate and justify the rationale behind develop-
ing an alternative design procedure to that of ARE based, especially in view of the
simplicity of use and general availability of software for ARE based designs. For
this purpose, we provide an in depth analysis of ARE based design regarding the
achievable asymptotic limit of loop transfer recovery error, the way it is shaped, the
amount of gain required for a chosen level of recovery and finally the resulting
asymptotic behaviour of observer eigenstructure. Our study compliments and
extends the results of Zhang and Freudenberg (1987, 1990). It reveals several
serious limitations as listed below of ARE based design.

(1) Our analysis in Part 1 discovers a multitude of ways in which freedom exists
to shape the loops or equivalently the recovery error. ARE based design
chooses to shape the loops in a particular way among an array of such
available choices. For left invertible and minimum phase plants, since
ALTR is always possible, the particular way ARE based approach accom-
plishes the design does not playa critical role although it results in an
unnecessarily high controller gain and band-width. However, for general
systems, ability to utilize all the available design freedom is of paramount
importance. The path taken by ARE based design to shape the loop is not
necessarily the best path and hence one needs to explore all the available
design freedom; especially exploring such a freedom in the subspace in
which complete recovery is not possible is a dire necessity.

(2) The time-scale structure assigned to the observer dynamics by ARE based
design is fixed by the infinite zero structure of the given system. This lack of
freedom to assign any chosen time-scale structure results in a high gain
consequently in a higher than the minimum necessary controller band-
width.

(3) In ARE based design, due to the implicit parameterization of gain, a
non-linear algebraic Riccati equation has to be solved repeatedly. Such a
solution is numerically cumbersome and becomes 'stiff', especially for large
a owing to the interaction of several slow and fast time-scales. This can be
brushed off as being a numerical problem. Nevertheless, it is an important
limitation in practice.

Besides the above enumerated limitations, ARE based design is basically an
asymptotic recovery scheme. Contrary to this, the scope of various design schemes
proposed in this paper is much broader. Our aim here is to develop design schemes
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for all the four design problems outlined earlier. For exact LTR design, except the
scheme given by Chen et al. (1990 a) for left invertible and minimum phase systems,
no methods other than the ones given in this paper are available in the literature for
general systems. In connection with asymptotic recovery design either for arbitrarily
specified or asymptotically recoverable target loops, the design presented here is an
extension and generalization of our earlier ATEA design scheme (Saberi and
Sannuti 1990). It overcomes all the limitations of ARE based design. Moreover,
observer gain in ATEA method is parameterized directly in terms of u. Also, the
design equations can be solved without explicitly requiring a value for u. When the
observer is implemented either by soft or hard ware, the value for u can be adjusted
on line. Since the effect of such a 'knob' on the performance and robustness of a
given plant is straightforward, it should be very appealing from a practical point of
view. Also, the required feedback gain matrix can be calculated in a decentralized
manner using subsystems of a given system. Such a decentralized method, obviously
reduces the computational complexity of designing a large scale system. By adopt-
ing a standard method of design for each subsystem, the mechanics of performing
the design are simplified. Since the necessary design in each time-scale is done
separately, it alleviates the stiffness problems that arise due to interaction of
different time-scales. Furthermore, the computations required in ATEA design do
not involve arbitrarily small or large numbers. Since ATEA design algorithm is
more sophisticated than ARE based design and as < it offers more flexibility and
freedom to shape the recovery error as well as the asymptotically finite and infinite
eigenstructure of the observer dynamic matrix, it is somewhat complex than ARE
based algorithm. However, it is straightforward and easy to implement it. In fact,
we have already implemented it into a 'Matlab' software package.

This paper is organized as follows. Section 2 deals with the first design task, i.e.
developing an appropriate design when specified target loops are arbitrary. In
particular, at first § 2.1 discusses observer design constraints and specifications.
Next, § 2.2 examines and illustrates systematically various limitations of ARE based
design. To overcome all these existing limitations, § 2.3 develops an asymptotic
time-scale structure and eigenstructure assignment (ATEA) method. Sections 3 and
4 respectively deal with the design for exactly and asymptotically recoverable target
loop transfer functions. Section 5 deals with the design to recover sensitivity and
complimentary sensitivity functions in a given subspace whenever such a recovery
is possible. All the design methods presented here are implemented in a 'Matlab'
software package. Section 6 draws conclusions of our work.

As in Part 1, throughout this paper, A' denotes the transpose of A, AH denotes
the complex conjugate transpose of A, I denotes an identity matrix while Ik denotes
the identity matrix of dimension k x k. A(A) and Re [A(A)] respectively denote the
set of eigenvalues and real parts of eigenvalues of A. Similarly, umax[A]and umin[A]
respectively denote the maximum and minimum singular values of A. Ker [V] and
1m [V] denote respectively the kernel and the image of V. The open left and closed
right half s-planes are respectively denoted by C(j- and C(j+.

2. Design for arbitrary target loops
In this section, we consider observer design for arbitrarily specified target loop

transfer functions. As explained earlier, in this case we deal with a family of
parameterized controllers C(s, u). The parameterization of any controller must be
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done in such a way that C(s, 0) has certain asymptotic properties. Both the
asymptotically finite and infinite eigenstructures of the observer dynamic matrix
Ao= A - K(a)C must satisfy certain properties in order to have appropriate recov-
ery. However, there exists also an abundant amount of freedom in assigning certain
parts of either asymptotically finite or infinite eigenstructure to Ao. Let us next
briefly review the LTR mechanism as analysed in Part 1 so as to familiarize
ourselves with the necessary design constraints and the available design freedom.
We recall that E(s, a), the mismatch function between the target loop transfer
function L(s) and the achievable one Lo(s), is given by

E(s, a) = M(s, a)[Im+ M(s, a)]-1(Im + F<DB) (2.1)

where

M(s, a) = F[sIn - A + K(a)C] -IB (2.2)

As indicated in Lemma 3.1 of Part 1, E(jw, a) = 0 iff M(jw,O) = O. Also, as
indicated by (3.6)-(3.9) of Part 1, we can expand M(s, a) dyadically

M(s, a) = f Ri(a)
i~1

(2.3)

where the residue Ri(a) is given by

Ri(a) = FWi(a)V[l(a)B (2.4)

Here Wi(a) and Vi(a) are respectively the right and left eigenvectors associated
with an eigenvalue Ai(a) of Ao and they are scaled so that W(a)VH(a) =
VH(a)W(a) = In where

W(a) = [WI(a) W2(a) ... WAa)] and V(a) = [VI(a) V2(a) ... Vn(a)]

(2.5)

As is evident from (2.3) and (2.4), for an arbitrary F, M(s, a) can be rendered zero
asymptotically by rendering either BVi(a) zero or by pushing Aito infinity while
keeping Wi(a)V[l(a)B uniformly bounded. To develop guide lines when and how
this can be done, let us partition M(s, a) into four parts

M(s, a) = M - (s, a) + Mb(s, a) + Moo(s, a) + Me(s, a) (2.6)

where

n-

M_(s, a) = f Ri(a)
i~ I S - Ai(a.

Mb(s,a)= nainb RJa)
i = na- + I

M
na + nb + n R

oo(s,a)= L J ~
i = na- + nb + I S - Ai (a)

and

Me(s, a) = f Ri(a)
i=n-na- -nb-nf+ IS - Ai (a)
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Let A- (a), Ab(a), Aoo(a) and Ae(a) be the sets of eigenvalues of Ao associated
respectively with the parts M - (s, a), Mb(s, a), Moo(s, a) and Me(s, a). Similarly, to
correspond with this partition of eigenvalues, partition the right and left eigenvec-
tors of Ao into sets W - (a), Wb(a), Woo(a), We(a), V- (a), Vb(a), V00(a) and Ve(a).
Also, let us use an over bar on a certain variable to denote its limit whenever it
exists as a --+00. For example, MAs) and We denote respectively the limits of
Me(s, a) and We(a) as a --+00.

2.1. Design constraints and specifications

As analysed in Part 1, various parts of M(s, a) as given in (2.6) reveal several
design constraints and the available design freedom. Let us enumerate them one at
a time.

(1) The set of n;; eigenvalues A- (a) and the corresponding set of left eigenvec-
tors V- (a) of Aomust be selected so that their asymptotic limits A- and V-
coincide respectively with the set of plant minimum phase invariant zeros and
the corresponding left state zero directions of~. Such a choice of eigenvalues
and eigenvectors renders M - (s) zero. Also, if one prefers, A- (a) and V - (a)
can be designed to be independent of a, i.e. A- (a) == A- and V - (a) == V-
for all a. Such a choice is some times beneficial and renders M - (s, a) ==O.

(2) The set of nb eigenvalues Ab(a) can be assigned arbitrarily either at
asymptotically finite or infinite locations in rr5-, whiler the corresponding set
of left eigenvectors Vb(a) of Ao must be such that their asymptotic limit Vb
is in the null space of matrix B' so as to render Mb(S) zero. In order to
conserve the controller band-width, it will be assumed that elements of Ab
are assigned to finite locations. Also, if one prefers, Ab(a) and Vb(a) can be
designed to be independent of a, i.e. Ab(a) ==Ab and Vb(a) ==Vbfor all a. In
this case, Mb(s, a) ==O.

(3) The set of n;; + nc eigenvalues Ae(a) can be assigned arbitrarily at any
(either asymptotically finite or infinite) locations in rr5- subject to the
condition that any unobservable but stable eigenvalues of the given system
must be included among Ae(a). Also, there exists a complete freedom
consistent with the results of Moore (1976) in assigning the right and left
eigenvector sets We(a) and VAa) and hence We and Ve. But in general Ae,
We and Vecannot be assigned such that Me(s) is zero. However, there exists
a multitude of ways to assign Ae and We (and hence Ve) so that the recovery
error Me(s) can be shaped to have certain desired directional properties or
it is as small as it could be. Although theoretically there exists complete
freedom in assigning Ae(a) to either asymptotically finite or infinite loca-
tions, however as will be demonstrated by means of an example later on,
Me( jw, a) can be unbounded as a --+00 whenever any elements of Ae(a) are
assigned to asymptotically infinite locations in rr5-. Moreover, assigning
Ae(a) to asymptotically infinite locations increases unnecessarily controller
band-width and hence we assume that all Ae are finite. We note that
n;; + nc = 0 and hence Me(s, a) is non-existent if the given system is of
minimum phase and left invertible.

(4) The set of nj eigenvalues Aoo(a) can be assigned arbitrarily at asymptotically
infinite locations in rr5-. Howeverfor everyA;(a) EAoo(a),the corresponding
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right and left eigenvectors. Wi(0) and Vi(a) must be such that Wi(a)Vf(a)B
is uniformly bounded as a -HI). This renders Moo(s) zero. We note that
there exists complete freedom in the way AJa) E Aoo(a) tends to infinity as
a -+ 00, i.e. the asymptotic direction and the rate at which each AJa) goes to
infinity can be dictated as desired by the designer.

Let us expand more on the freedom available in assigning every asymptotically
infinite eigenvalue Ai(a) E Aoo(a). As mentioned above, this freedom manifests itself
in two ways:

( 1) in choosing the asymptotic directions along which the eigenvalues tend to
infinity; and

(2) in choosing the rates at which the eigenvalues tend to infinity.

To reflect both these types of freedom, let Aoo(a) for asymptotically large values of
a be subdivided into r < nj sets,

Al A2 Ar (2.7)
/ll' /l2' ..., /lr

Here Al is a set of nlnumbers all in f(j- and Al is closedunder complexconjugation.
AlsoLl~ I nl = nj' Apparently, the elements of At. 1=1 to r, define the asymptotic
directions of asymptotically infinite or fast eigenvalues while the small parameters
/ll, I = I to r, which are some functions of a, define the rates at which these
eigenvalues go to infinity. Thus a designer has the freedom to specify:

(1) Ab and Ae which in addition to 11.-define the asymptotically finite eigenval-
ues of Ao; and

(2) Al and /ll, 1= 1 to r, which define the asymptotically infinite eigenvalues of
Ao.

An assignment of both asymptotically finite and infinite eigenvalues and the
corresponding eigenvectors to a system can be viewed as an asymptotic time-scale
and eigenstructure assignment (ATEA) to it. More formally, we define a time-scale
structure (TSS) of a system as follows:

Definition 2.1
A system defined by the dynamic equation

i = (A- CK(a))x ==Aox

is said to have a time-scale structure (TSS)

(2.8)

t, tl/l1> tl/l2, ..., tl/lr

if A(Ao) approach

Ao, AII/lI, A21/l2, ..., Arl/lr

as a -+ 00 where Ao and AI, I = 1 to r are a set of finite elements in f(j- and /ll, I = 1
to r, are some small positive parameters dependent on a.

In order to have a well defined separation of time-scales, we will assume
throughout the paper that

/It!/ll+ I -+0 as /ll+ 1-+0 (2.9)
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The point of view of TSS expressed by the above definition is slightly different from
other definitions used in the literature (see Saberi 1988 for more details).

It has been suggested (Niemann and Jannerup 1990) to push Ae to 00 so that
Me(s,o-) can be constant over all frequencies. We give below a counter example to
show that if the number of non-minimum phase invariant zeros is greater than one,
such an idea does not work in general. Also, as implied by Lemma 3.2 of Part I,
pushing Ae to 00 in general results in an unbounded peaking of M(jw, 0-)since the
residue Ri(o-) corresponding to an eigenvalue in A.iE Ae can grow faster than A.iitself
as 0-~ 00. Such an unbounded peaking causes unmodelled dynamics and noise at
high frequencies to pass through the entire loop.

Example 2.1

Let t be characterized by

[

I 0 0 I

] [

0

]

0 2 0 I 0
0 0 3 I ' B= 0
I I 101

and C = B'. This system has three invariant zeros at s = 1, 2 and 3. Let the target
loop transfer function Fd)B be specified by

F = [40 -250 320 15]

Since this is a SISO system, the observer gain is fully sp~cified by the intended
eigenvalues of the observer. Let

[

0.50-5+ 1.50-4+20-3+20-2+ 1.50-+ 1.5

]

- -0-5 - 60-4- 140-3- 200-2- 240-- 15
K(o-)=

0.50-5 + 4.50-4 + 150-3 + 270-2 + 40.50- + 41.5

0-2 + 30- + 6

Then it is straightforward to verify that the above K(o-) results in observer
eigenvaluesat -0-2, -0-, -0- and -0- precisely.The resulting M(s,o-) is

N(s,o-)
M(s, 0-) = D(s, 0-)

where

N(s,o-) = 15s3 - (4300-5 + 30000-4 + 83800-3 + 137200-2 + 190200- + 17070)s2

+(15800-5 + 106200-4 + 288000-3 + 463200-2 + 631800- + 55145)s

-( 11900-5 + 77400-4 + 205800-3 + 327600-2 + 442800- + 38130)

and

D(s,o-) = (s, 0-2)(S,0-)3

By examining the behaviour of M( jw, 0-) at frequencies close to 0-, we find that
IIM(jo-, 0-)II is of the order of 1520-2 for 0- ~ 1. This shows that M(jw,o-) is
unbounded as 0-~ 00.
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In summary we note the following: M - (s, 0")can be rendered zero either exactly
or asymptotically by letting A- (0") and V- (0") to coincide either exactly or
asymptotically with the set of plant minimum phase invariant zeros and the
corresponding plant left state zero directions. Mb(s, 0")can be rendered zero either
exactly or asymptotically by assigning Ab(O")arbitrarily in C(j- while Vb(o") is
assigned either exactly or asymptotically to be in the null space of matrix A'.
Me(s, 0")can never be rendered zero either exactly or asymptotically by any means.
However, it is important to recognize that the asymptotic recovery error matrix
Me(s) which depends on Ae, Ve and We can be shaped in an infinite number of
ways. As discussed in Part 1, Ae and We (and hence Ve) can be assigned
appropriately so that Me(s) has certain chosen directional properties or it is as small
(in some norm sense) as it could be. Needless to say such a freedom is of
paramount importance to the designer. Next Moo(s, a) can be rendered asymptoti-
cally zero by selecting every element of Aoo(a) arbitrarily and by assigning the
associated right and left eigenvectors W;(a) and V;(a) such that W;(a)V[1{a)A is
uniformly bounded as a - 00. The freedom in assigning Aoo(a), W;(a) and V;(a)
can be viewed as freedom to assign the asymptotic time-scale structure (TSS) and
hence the infinite eigenstructure of the observer dynamic matrix. This freedom of
assigning appropriate TSS, as will be seen later on, has an overwhelming impact on
the value of controller gain and hence on the controller band-width for any
prescribed recovery error.

2.2. Limitations of ARE-based design

As discussed in the introduction, one of the existing and prominent methods of
design to achieve ALTR for arbitrary specified target loops is the ARE based
design. It was developed originally for left invertible and minimum phase systems.
However, as discussed earlier, ARE based defiign could be used for non-minimum
phase systems as well provided one is content with the recovery error it results in.
In ARE based design method, observer gain K(a) is given by

K(a) = PC'Q21 (2.10)

where P is the symmetric non-negative definite solution to the algebraic Riccati
equation (ARE)

AP + PA' - PC'Q2ICP + a2AQIA'= 0 (2.11)

Here QI and Q2 are the covariance matrices of fictitious input and output noises
and a is a tuning parameter which controls the intensity of input process noise.
Thus K(a) is implicitly parameterized via ARE. Although, ARE based design has
become common, the underlining mechanism of what it does and what it does not
do is not well understood except for some recent study by Zhang and Freudenberg
(1987, 1990) and Niemann and Jannerup (1990). The purpose of this section is to
conduct such a study and there by find its advantages and limitations. A clear
advantage of it is that at the onset of design, it does not require much systematic
planning. By simply choosing some QI and Q2 (normally as identity matrices), one
somehow solves (2.11) repeatedly for several values of a and then checks to see
whether K(a) as calculated by (2.10) serves as an appropriate gain or not. For left
invertible and minimum phase plants, one eventually obtains an observer gain by
simply making a larger and larger until the required level of loop transfer recovery
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is achieved. As seen in Part 1 (Saberi et af. 1991), for general systems such a
recovery is not possible. Whether complete recovery is possible or not, so far one
does not know in general what kind of freedom ARE based design has in shaping
the attainable loop transfer function and sensitivity and complimentary sensitivity
functions. As reviewed earlier, recovery of loop transfer function and sensitivity and
complimentary sensitivity functions is tied with rendering M(s, 0) zero. It turns out
that in general ARE based design minimizes asymptotically, i.e. as a -+ 00, the H2

norm of M(jw, a) =-(jwln - A + K(a) C) -lB. The minimum asymptotic H2 norm
of M( jw, a) is zero for left invertible minimum phase systems and is non-zero
otherwise. However, the path taken by ARE based design in minimizing the above
H2 norm may not always be the best path. To understand this and other aspects,
we now proceed with a systematic investigation of ARE based design. Earlier
M(s, a) has been partitioned into four parts. We will examine what ARE based
design does to each one of these parts. In general, eigenvalues and eigenvectors of
observer dynamic matrix are functions of a. However, whenever there is no
ambiguity, our notation suppresses the dependence on a.

We first examine what ARE based design does to M - (s, a). Let z i and x"ii,
i = 1 to n;;, be the minimum phase invariant zeros and the corresponding left state
zero directions of the given system ~. Let Ai- and Vi, i = 1 to n;;, be the
eigenvalues and the associated left eigenvectors of Aorepresented in M - (s, a). Then
following the results of Saberi and Sannuti (1987), one can show easily that for all
i = 1 to n;;

Ai -+zi as a -+ 00

Moreover, since whenever an eigenvalue of Ao coincides with an invariant zero of
~, the corresponding left eigenvector of Aocoincides with a corresponding left state
zero direction of ~, we have for all i = 1 to n;;

Vi -+XLi as a -+ 00

Naturally then M - (s, a) -+ 0 as a -+ 00. The limitation of ARE based design in view
of M - (s, a) is that it alwaysplaces some eigenvaluesof Aoat the minimumphase
invariant zeros only asymptotically as a -+ 00 where as in general one has the
freedom to place them either exactly or asymptotically at the minimum phase
invariant zeros. However, this is not a major limitation.

Let us next examine what ARE based design does to Mb(S, a). Let A~ and V~,
i = I to nb, be the eigenvalues and the associated left eigenvectors of Aorepresented
in Mb(s, a). Then again following the results of Saberi and Sannuti (1987), one can
show easily that some of the A~, i = 1 to nb, coincide with stable but uncontrollable
eigenvalues of ~ while the rest of them tend to what are called 'compromise' zeros
(Saberi and Sannuti 1987) as a -+ 00. Also, it can be shown easily that the
corresponding eigenvectorssatisfyeither B'V~ =-0 or B'V~-+ 0 so that Mb(s,a) -+0
as a -+ 00. The limitation of ARE based design in view of Mb(s, a) is that the
locations of the eigenvalues of Ao represented in Mb(s, a) are fixed where as in
general one has complete freedom to place them arbitrarily. However, this is not a
major limitation either.

We now examine what ARE based design does to Me(s, a). For simplicity of
presentation, let us now assume that ~ is left invertible but of non-minimum phase.
Let z:-, x ti and WIt. i = 1 to n;;, be the non-minimumphase invariant zeros and
the corresponding right state and input zero directions of the given system~. Let
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At and vt, i = 1 to n;;, be the eigenvaluesand the associatedleft eigenvectorsof
Ao represented in MAs, 0). Then we have the followingresult.

Lemma 2.1

For each i = 1 to n;;, as (J-+ 00

At -+ -(zt)*

where superscript * denotes complex conjugation. Furthermore

B'Vt -+Ciwit (2.12)

for some constant Ci.

Proof

The behaviour of eigenvalues follows from (Saberi and Sannuti 1987, Zhang
and Freudenberg 1990). For the behaviour of eigenvectors, see Appendix A.

The limitation of ARE based design regarding Me(s, (J) can now be seen easily
in view of Lemma 2.1. The eigenvalues of Ao represented in Me(s, (J)are asymptot-
ically assigned at the mirror images of the non-minimum invariant zeros while the
corresponding error vectors, et = B'vt, i = 1 to n;;, are assigned to the corre-
sponding right input zero directions. This implies that there is no freedom in ARE
based design to shape Me(s, (J) or Me(s) directionally or otherwise. In fact as
mentioned earler, it is straightforward to show that as (J-+ 00, ARE based design
minimizes the H2 norm of M( jw, (J). However, such a mathematical minimization
may not yield desired results. Moreover, the path taken by ARE based design in
minimizing the H2 norm of MUw) may not always be desirable from an engineer-
ing point of view. That is, for any fixed (J, the controller that results from ARE
based design may not be acceptable suboptimal controller. One needs flexibility to
shape the path and the eventual Me(s) by appropriate selection of Ae and We.
Indeed, in general one has some freedom to shape Me(s) and thus Me(s, (J) as
discussed in Part 1 (Saberi et al. 1991) where an example was also given to illustrate
what can be done with such a freedom. The lack of such a freedom in ARE based
design is an important limitation.

Before we examine what ARE based design does to Moo(s, (J), let us recall the
infinitezero structure of ~ as givenby the list of structural invariant indicesc;&'*[see
(2.22) of Part 1],

c;&'*= {nl, n2, ..., nmJ

ql q2 qKI
, "--- ~ r-"--,

= {l, 1, ..., 1,2,2, ...,2, ..., KI, KI, ..., KI} (2.13)

Let A;x', W;x'and V;x', i = 1 to nf' be the eigenvalues and the associated right and left
eigenvectors of Ao represented in Moo(s, (J). As is well known, the eigenvalues A;x',

i = 1 to nf, go to infinity in mu Butterworth patterns as (J -+ 00. Each pattern, say
the ith pattern, has nieigenvaluesand the radii of them vary at the rate of (JI/ni. The
limitation of ARE based design in view of Moo(s, (J)can now be seen in the way the
eigenvalues are pushed to infinity. As discussed above, the radii of far away
eigenvalues vary with respect to (Jat different rates. The fastest and slowest varying
radii are respectively proportional to (JI/nl and (JI/nmu.Thus unless nmu = nl, there is
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a wide spread among the radii of far away eigenvalues which vary at different rates
and this rate of variation and hence the spread is dictated by the integers in C(j*.On
the other hand, a given desired level of recovery Moo(s, 0) requires the smallest far
away eigenvalue to be of certain value, say lAdI, which fixes the value of the tuning
parameter at some Ud' Although for the given level of recovery, the smallest
required radii of the far away eigenvalues need to be lAdI, one is forced by ARE
based design to place some of the eigenvalues at much higher radii than lAdI. This
forces the controller to have higher gain and hence higher band-width than is
necessary. This can best be illustrated by an example. Let C(j*= [1 1 1 1 1 4].
Then in ARE based design, there are five eigenvalues whose radii vary at the rate
of U while there is one Butterworth pattern (having four eigenvalues) whose radius
varies at the rate of u!. Suppose for the desired level of recovery, the smallest radius
of far away eigenvalue is 10 implying that the desired value of u is in the order of
104.Thus altogether there are nine far away eigenvalues among which five of them,
owing to their rate of variation being proportional to u, have radii in the order of
104while the remaining four which vary at the rate of u! have radii in the order of
10. On the other hand, if one is free to design the far away eigenvalues in any
manner instead of being constrained by C(j*, one could design all these nine
eigenvalues to vary at the same rate, say, all of them'proportional to u. Then for
the desired level of recovery all the eigenvalues can have a radius of the order of 10
while the value of the tuning parameter is also of the order of 10. We will show
shortly by means of examples, that this conserves the controller gain and band-
width. In summary of this discussion, we note that the fast time-scale structure of
the observer in ARE based design is dictated by the infinite zero structure of the
given plant. On the other hand, as discussed earlier, there is in general plenty of
freedom available in assigning a fast time-scale structure to the observer. This lack
of freedom in ARE based design is the source of it requiring a much higher gain
and hence band-width than is necessary. This is one of the major limitations of
ARE based design.

In what follows we give four examples to illustrate this limitation. All the four
examples consider minimum phase left invertible plants so than only Moo(s, u) plays
a dominating role in the behaviour of mismatch function. For each example, two
design methods, ARE based design and another ATEA design of §2.3 are consid-
ered. Observer gain and observer eigenvalues are given for both the design methods
so that they result in the same value for the supremum of maximum singular value
of the mismatch function over a given frequency range. Also, for each example and
for both the designs, the maximum singular value of the mismatch function is
plotted with respect to the frequency over a given range. In each of the first tl;lree
examples, there are different orders of infinite zeros and hance as expected ARE
based design results in a much wider spread among different groups of eigenvalues
than is necessary. Consequently, ARE based design requires higher gain and hence
higher band-width than ATEA design. Example 2.5 illustrates another aspect of
ARE based design. For this example C(j* = {I, I} and hence in ARE based design,
there are two Butterworth patterns for fast eigenvalues, the radius of each pattern
being asymptotically proportional to u. However, the two proportionality constants
are vastly different in magnitude since the given system matrices (1, D, C) contain
elements having different orders of magnitude. Because of this ARE based design
again results in a wide spread among the two fast eigenvalues. On the other hand,
in ATEA design, one is not constrained by Butterworth patterns and is free to



Theory of LTRfor non-minimum phase systems-Part 2 1131

assign any eigenstructure so that the required gain and controller band-width are
conserved.

Example 2.2
Let ~ be characterized by

This system has no invariant zeros while the infinite zero structure is given by
rc* = {I, 4}. The target loop transfer function Fd>Bis specified by giving

F= [
8'1125 -0.7311 -0.0391 -0,7926 0.6427

J0.6427 12.0911 11.9185 8.7115 4.2773

Table 1 and Fig. I compare ARE based design and ATEA design.

Example 2.3
Consider the example of Doyle and Stein (1981) characterized by

Table 1. Comparison of ARE based design and ATEA design (over the frequency range:
0.01 to 100 rad S-I).

1 0 1 0 1 1 0

0 0 1 0 0 0 0

A= I 0 0 0 1 0 , B=
0 0 I, c = [1 0 0 0 OJ0 000 1 0 0

0 1 000

-4 -4 0 0 0 0 1

[-002

0,005 2.4

-32 J [°14 -012 J

- -0,14 0,44 -1,3 -30 - 0.36 -8,6
A=

1.2 '
B=

- 0.009 '0 0.018 -1.6 0,35
0 0 1 0 0 0

c=[
1 0

5'3J0 0

ARE based ATEA

[000 I 09994] ['j ° ]

Observer 0.9994 25.904 16
gain 25.904 336.02 175.6916

337.02 2552.1 893.5328
2573.0 9658.2 -4 3030,954

Gain norm 2 11370.62 3164.84

- 10000 -50
Eigenvalues -3.83 + j9.23 -4+j7
of -3-83 - j9'23 -4 - j7
observer -9,25 + j3'82 -4 + j5.54

-9,25 - j3.82 -4 - j5.54

sup {arnax[E(Jw)]} 7.8263 7.8262



11~2 A. Saberi et al.

20

10

i£'
~
'" 0

"'0
;
';:: -10
~
os

::;;

- O'maz[E(j"")]from ATEA

- - - O'm".,[E(j",,)]from ARE-based

, "v ,.,
\"

"--""\', ,,,,,

-30
10-2

~,~

", "...J

"j

-20

10-1 100

Frequency (rad/sec)

101 102

Figure 1. Maximum singular values of E( jw) of Example 2.2.

This system has one invariant zero at s = -0,018 while the infinite zero structure is
given by ~* = {I, 2}. Unlike in Doyle and Stein (1981), the required target loop
transfer function is specified by

F =[
-0,0033

0.0171
0,0472 14.6420 60.8890

J-1,0515 0.2927 3.2469

Table 2 and Fig. 2 compare ARE based design and ATEA design.

Table 2. Comparison of ARE based design and ATEA design (over frequency range: 0.1 to
1000 rad S-I).

ARE based ATEA

[12m 1.5730] [0.5083 IM]

Observer 86.5144 - 0,1090 36,0000 0,0000
gain 0.0425 3.0041 0,0000 2.8272

-0'0019 0.3238 0.0000 0.3141

Gain norm 2 86.5232 36,0036

Eigenvalues -0,018 -0,018
of -10,10 + j9'95 -9,8 + j9'67
observer -10,10 - j9'95 - 9,8 - j9'67

-86,0759 -35,56

sup {amax[E(jw)]} 5.2405 5.7665
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Figure 2. Maximum singular values of E(jw) of Example 2.3.

Example 2.4
Consider the example in (Sogaard-Anderson

and characterized by

r

0 0.9945
- 0 -1,5250
A=

0 -0,0166
0,035 0,0689

1987, Saberi and Sannuti 1990)

0,1044 0

] r

OO

]

0.0678 -30.02 - 11.51 5.241
B-

-0,1502 5.159 ' - 0.1894 -1,968
-0,9920 -0,0903 -0,003 0,135

C=[
1 0 0 O

J0 1 -1 1

This system has one invariant zero at s = - 0,6 while the infinite zero structure is
given by CfJ*= {I, 2}. The required target loop transfer function is specifiedby

F =[
1-14 0.410 0.27 -1'02

J-0.53 0.058 -2.21 6'85

Table 3 and Fig. 3 compare ARE based design and ATEA design.

Table 3. Comparison of ARE based design and ATEA design (over frequency range: 0.01
to 100 rad S-I).

ARE based ATEA

[6-1989 1-9529] [10 0-0000]

Observer 19.9046 127.13 46,448 0,3694
gain 12.6888 -6.776 36.465 -3,5193

-5,2629 -0,2596 - 9.983 1.1113

Gain norm 2 128.8000 60.7523

Eigenvalues -0,65 -0.6
of -3,04 + j3.41 -3,53 + j3.26
observer -3'04 - j3.41 -3,53 - j3.26

- 134,89 -9,1

sup {O"rnax[E(jw)]} 352.93 364.40
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Figure 3. Maximum singular values of E(jw) of Example 2.4.

Example 2.5

Consider the example of Kazerooni and Houpt (1986) characterized by

[

0 0 I 0

] [

0

A
- 0001 - 0

- B-
- 0 0 0 0' - 76

0 0 0 0 - 105

_1O~

]

,

280

c= [
I 0 I O

J0 I 0 4

This system has invariant zeros at s = -0,25 and s = -I while the infinite zero
structure is given by '6'* = {I, I}. The required target loop transfer function is
specified by

F = [
4.7234 3.4265 0.9923 0.6631

J1.1497 0.8579 0.2633 0.1952

Table 4 and Fig. 4 compare ARE based design and ATEA design.

Table 4. Comparison of ARE based design and ATEA design (over frequency range: 0.01
to 100 rad S-I).

60

40

c:

20

:,
0

""
" i
::E

-201

-401
10-2

ARE based ATEA

[ 0.9987

- 0.0001

[3 25]

Observer -0,0000 0.2500
gain 503.52 -1302'1

-325,52 3204.3 82

Gain norm 2 3493.7 300.0

Eigenvalues -0,25 -0,25
of -1,00 -1,00
observer -367.34 - 300.00

-12953,0 - 328.00

sup {urnax[E(jw)]} 4.1809 X 105 4.1713 X 105
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Figure 4. Maximum singular values of E(jm) of Example 2.5.

To summarize this subsection, we note that the major limitations of ARE based
design lie in the way it arrives at Me(s, 0")and M OCJ(s, 0").Me(s, 0")cannot be rendered
zero by any method. However, in general there is some freedom available in shaping
it directionally or otherwise. ARE based design shapes it in a particular way dictated
by the finitezero structure of the givensystem.Although MOCJ(s, 0) can be rendered
asymptotically zero as 0"--+00, the way it is accomplished in ARE based design
requires a very high gain and consequently it results in a higher controller band-width
than is really necessary. This is because the fast time-scale structure induced in the
observer dynamics by ARE based design is fixed and is dictated by the infinite zero
structure of the given system. This is by far a very severe limitation of ARE based
design as conservation of controller band-width is sought in almost all practical
designs. Besides these limitations, due to the implicit parameterization of gain, a
non-linear algebraic Riccati equation (2.11) has to be solved repeatedly. Such a
solution is numerically cumbersome as (2.11) is 'stiff', especially for large 0"owing
to the interaction of several slow and fast time-scales. This can be brushed off as
being a numerical problem. Nevertheless, it is an important limitation in practice.

2.3. Observer design by ATEA
As discussed above, the conventional ARE based design has several serious

limitations. Here we present a new design method which overcomes these limita-
tions. The new design method follows the asymptotic time-scale and eigenstructure
assignment (ATEA) concepts proposed originally in Saberi and Sannuti (1989).
Following those concepts, we developed earlier an observer design for left invertible
and minimum phase plants in Saberi and Sannuti (1990). In what follows, we will
present a step by step algorithm for general systems. The method is decentralized in
nature. It uses the special coordinate basis (s.c.b.) of the given system t (see
theorem 2.1 of Part 1, Saberi et al. 1991 and Sannuti and Saberi 1987). The
specified finite eigenstructure of the observer dynamic matrix Ao= A - K(O")Cis
assigned appropriately by working with subsystems which represent the finite zero
structure of the given system (see (2.1) to (2.4) of Part 1). Similarly the specified
asymptotically infinite eigenstructure of Ao is assigned appropriately by working
with subsystems which represent the infinite zero structure of the given system (see
(2.5) of Part 1 for each i = 1 to mJ.
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As discussed earlier, regarding the asymptotically finite eigenvalues, designer has
the freedom to specify A.band A.ewhile A.- must coincide with the set of minimum
phase invariant zeros of the plant. The set of right eigenvectors V - is constrained
to coincide with the corresponding set of state zero directions of the plant. On the
other hand, the set of eigenvectors Vb is constrained to be in the null space of B/.
In view of the special structure of s.c.b. and as shown in Appendix F of Part 1 every
element Vfof Vb has the form [0 0 (Vf)/ 0 0]/. In other words, the set Vb can be
represented in a matrix notation as [0 0 (Vi)' 0 0]' where Vi is a nb x nb matrix.
Thus the selection of Vb to be in the null space of B' is equivalent to any
appropriate selection of Vi. The eigenvalue sets, A.- and A.b, as well as eigenvector
sets, V_and Vb, could either be assigned exactly, i.e. independent of the tuning
parameter 0",or asymptotically as 0"--+00. There is also certain freedom to specify
We. This freedom along with the freedom in selectingA.ecan be used to shape the
recovery error matrix Me(s) so that it has certain desired directional properties or
it is as small as it could be. Again due to the special structure of s.c.b. and as shown
in Appendix F of Part 1, We has the special matrix form [(W:)' 0 0 (W~)' 0]'
where Wee= [(W:)', (W~)']' is a ne x ne matrix. Thus an appropriate selection of
We is equivalent to a similar selection of Wee. Next, the freedom that exists in
specifying the asymptotically infinite eigenstructure of Ao reflects itself in specifying
an appropriate fast time-scale structure. The asymptotic directions of asymptoti-
cally infinite eigenvalues can be specified by the sets AI, I = 1 to r, where r is an
integer less than or equal to nf. The relative fastness of time-scales is specified by
specifying the small positive parameters Ill>I = 1 to r, which are appropriate
functions of the tuning parameter 0" so that (2.9) is true as 0"--+00. There is a
constraint on the infinite eigenstructure, namely, for every asymptotically infinite
eigenvalue A-;(O"),the corresponding right and left eigenvectors Wf(a) and Vf(a) of
Ao must be such that Wf(a)Vf(a)B is uniformly bounded as a --+00.

In what follows, we give a step by step design algorithm. In view of the above
discussion, the input parameters of the algorithm are A.b, vi, A.e, Wee, Al and Ill'
1= 1 to r, as well as the integer r. In fact, the primary inputs to the algorithm are
(1) A.e and Weewhich shape the resultingMe(s)and (2) Al and Ill>1= 1 to r, which
control the time-scale structure of the observer and thus have a strong impact on
the resulting gain of the controller. The rest of the input parameters, namely A.band
Vi are secondary inputs to the algorithm. Our algorithm can be divided into three
steps. Steps 1 and 2 deal respectively with subsystem designs to assign the
asymptotically finite and infinite eigenstructures. In Step 3, subsystem designs of
Steps 1 and 2 are put together to form a composite design for the given system.

Step 1. This step deals with the assignment of asymptotically finite eigenstructure
(i.e. slow time-scale structure) and makes use of subsystems (2.1)-(2.4) of
Part 1. 2(A;;;,)are the minimum phase invariant zeros of the given system
~ and these are left alone to form some of the eigenvalues of Ao, namely
the set A.-, while the corresponding left eigenvectors of Ao coincide with
the corresponding left state zero directions of ~. To place the set of
eigenvalues A.b and left eigenvectors Vb, choose a gain Kb such that 2(Abb)
coincides with A.bwhile Vi coincides with the set ofleft eigenvectors of Abb
where

Abb = Abb - KbCs (2.14)
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Note that the existence of such a Kb is guaranteed by property 2.1 of § 2 of
Part I (Saberi et al. 1991) as long as the eigenvector set Vb is consistent
with the freedom available in assigning it (Moore 1976). Next, in order to
place the set of eigenvalues Ae and right eigenvectors Wee, let us first form
matrices Aee and Ce as follows:

[
Ad;, 0 ]Aee = B E+ A 'c ca cc

Ce=[E: EcJ (2.15)

where

E: = [(Ei;.), (Eta)' (E';;ua)'], Eta = [E,t Et-;;],

Ec = [E~c E;c ... E;"ucJ'

Now select a gain Ke such that the set of eigenvalues and right eigenvectors
of A~e coincide with Ae and Wee respectively where

A~e = Aee = KeCe (2.16)

Again note that the existence of such a Ke is guaranteed by property 2.1 of
§ 2 of Saberi et al. (1991) as long as the eigenvector set Wee is consistent
with the freedom available in assigning it (Moore 1976). For future use, let
us partition Ke as

Ke = [Kel Ke2 ... KemJ (2.17)

where Ket is a ne x I dimensional vector.

Step 2. This step deals with the assignment of asymptotically infinite eigenstructure
(i.e. the fast time-scale structure) and makes use of subsystems, i = I to mu,
represented by (2.5) of Part 1. As discussed earlier, there is complete
freedom to specify any r ~ nf fast time-scales. In particular, one can always
choose r = 1. For generality, we will keep r as arbitrarily given. The
freedom in assigning the fast time-scales is reflected in specifying the sets
AI, and the small positive parameters f.11,I = I to r. Our design to assign an
appropriate fast time-scale structure is again decentralized. We deal with
one single input single output system at a time as represented by (2.5) of
Part I for a particular value of i, i = I to mu. Thus to proceed with our
design, we need to distribute the designer specified elements of the sets AI,
and the parameters f.1t,I = I to r, among mu subsystems. There exists a
complete freedom in such a distribution and hence it can be done in a
number of ways. Let subsystem i be assigned rt time-scales for some rt ~ qt.
Let

Atj, j = I to rt
f.1ij

be the asymptotically infinite eigenvalues that need to be assigned to
subsystem i. Let ntj be the number of eigenvalues corresponding to the
time-scale t/f.1ij.That is, let Aij contain ntj elements. As usual, the set Atj is
assumed to be closed under complex conjugation. Also, in order to have a
well defined separation of time-scales in subsystem i, we will assume that

f.1tj/f.1tj+ 1 ~O as f.1ij+1 ~O for allj = I to rt - I (2.18)
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We note that when r = 1, all J1ijare equal to a single parameter J1and all
ri are equal to unity. That is, there is only one time-scale to be assigned to
all subsystems. In this case, (Jcan be taken as 1/J1.With these preliminaries,
we are now ready to design the i-th subsystem. At first, we will design a
gain matrix Kij for each time-scale t /J1ij, j = 1 to ri. Define a nij x nij

dimensional matrix Gij and a I x nij dimensional matrix Cij having the
following structure

G= [O Inij-I

]
and C..= [1 0]lJ 0 0 lJ

Choose a nij x I dimensional gain vector Kij such that /l(Gij) coincides with
Aij where Gij = Gij - KijCij' Owing to the special structure of Gij and Cij,
such a Kij always exists. Let Kij be partitioned as

Kij =
[

KijC

]Kijd

where Kijd is a scalar. Moreover, the non-singularity of Gij implies that Kijd
is non-zero. Next, the gains Kij, j = 1 to ri, obtained above are put together
to form a composite gain vector which .will induce the required fast
time-scales in the i-th subsystem. Define the scalar numbers Jij as

j-I
J' I = 1 J" = nK id J. = 2 to r,l , lJ l , l

I~I

Let aio = 0 and
j

aij = L nib j = 1 to ri
k=l

Note that air;= qi' Also, let for each j = I to ri

Bi~ij -1 + I = Bi~ij - 1+ 2 = ... = Bi~ij = J1ij

and

q;

11i = n Bik
k~l

..
(2.19)

Also, define a scaling matrix Sij as

[
q; q; q;

]
Sij = Diag n Bil, n Bil, ..., n Bil

I = ~ij - 1 + 2 I ~ ~ij - 1 + 3 I ~ ~ij + I

In (2.20), for j = ri, the product ni~ q;+1Bilis taken as unity. Now let
- I

Kii(J) = - JijSijKij
YJi

(2.20)

and

Ki((J) = [K;l K;2 ... K;rJ' (2.21)

The above design is rather simple when ri = 1. For this case, let iii denote
the small parameter. Then

- I - q- - I ~

Ki((J) = (iiY; [(J1J l Kil
(iii )q; - 2Ki2 ... KiqJ (2.22)
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Step 3.

where K;j, j = I to q;, are selected such that A(Gf) are as desired where

Ge = _
[

Kil Kz2 ... K;qi-I K;qi

J

'

z -Iqi-I 0

Here we did not discuss any eigenvector assignment. However, it turns out
that our eventual design is such that the eigenvectors corresponding to the
asymptotic~lly infinite eigenvalues are naturally assigned to appropriate
locations so that Moo(jw, u) ~ 0 as u ~ cx).

In this step, various gains calculated in Steps I and 2 are put together to
form a composite observer gain for the given system~. Define Ke as

-
[
K:(U)

J

- - - - I
KAu) = Ke(u) = [Kel Ke2 ... KemJ, Ke;= q; J;riK;ridKe; (2.23)

For the case when r; = I, Kild is the same as K;q.and '1; is same as (ji;)qi.
Finally define the observer gain K(u) as Z

K(u) = rlK(u)riI (2.24)

where

K(u) =

L;ij + H;ij + K:(u)
L;if+ H;if
Lbf + Hbf

Lef + Hef + Ke(u)
Lf+Kf(u)

L;i; + H;i;
L;;; + H;;;

Kb
Les + Hes

0

(2.25)

and where

Kf(U) = Diag [KI(u) K2(U) ... KmJu))

Lf= [Li L; ... L:ny

while the gains H;ij, H;i;, H;if, H;;;, Hbf' Hefand Hesare arbitrary but finite.
We have the following theorem.

Theorem 2.1

Consider an observer with its gain given by (2.24). Then we have the following
properties.

(I) There exists a u* such that for all u > u *, the designed observer is
asymptotically stable. Furthermore, it has the time-scale structure t, t/11;j,
j = I to r;, i = I to mu' That is, the eigenvaluesof the observeras I1r~ 0 are
given by

A- + O(l1r), Ab + O(Jlr), Ae + O(Jlr)

A..
-2. + O(I) for j = I to r; and i = I to mu
l1;j

Moreover, if H;if = 0 and Hbf = 0, some finite eigenvalues of Ao are exactly
equal to A- and Ab for all u rather than asymptotically tending to A- and
Ab'

(2) LTR is achieved as intended in the sense that as u ~ CX)

M(s, u) ~ MAs) pointwise in s



1140 A. Saberi et al.

Proof

See Appendix B.

As can be easily seen, ATEA design is decentralized. Required time-scale
structure and eigenstructure is assigned to the subsystems of the given system !.
The calculations involved in subsystem designs do not explicitly require the value of
tuning parameter (T.(Tenters only in (2.21) or (2.22) where subsystem designs are
put together to form a composite gain which assigns the required time-scale
structure. Thus (Ttruely and directly acts as a tuning parameter and controls the
degree of fastness of fast time-scales. We present next an example to illustrate
ATEA design algorithm.

Example 2.6

Let! be characterized by

I I I I I
02222
00033

4 4 4 0 0
0 5 500

A= , B=

0 0

0 0

0 0
I 0
0 I

[

0 0 0 I 0

]
c= 0 0 0 0 I

0 0 I 0 0

This system is left invertible and is of non-minimum phase with two invariant zeros
at s = 1 and 2. Also, ! is already in the form of s.c.b. We note that

Aee=[~ ~l Ce=[~ :J
Let the target loop transfer function F<DBbe specified by

F=[
65 15 23 50 O

J65 15 23 0 50

Since the given system is of non-minimum phase, we cannot completely recover the
given target loop. Let

-

[
0,4856

Ae={-1'5 -2'5} and Wee= [Weel Wee2]= -0,8742

so that the recovery error Me(s) is prescribed as
-

)
15.3086(s + 8,2973) [

1 O

J
M(s =

e (s + 1.5)(s + 2'5) I 0

-0'3940

J0.9191

Then Ke is given by

=
[

-0,2188 O

JKe 1.9687 0

Also, in this example

Abb= 0 and Cs = 1

Let the required Ab be - 3. Then Kb = 3. Let us require only one fast time-scale and
let the required Al be

Al = {- I -I}
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Then following the ATEA algorithm, the gain K(O")is given by

-0.21880" 1 1
1,96870" 2 2

3 3 3

0" 0 4
0 0" 5

K(O")=

This K(O")places one observer eigenvalue exactly at -3 and the remaining eigenval-
ues asymptotically at -1.5, -2'5, -0" and -0". Figures 5 and 6 show the plots of
maximum and minimum singular values of the target and the achieved loop transfer
functions as well as the sensitivity functions for 0"= 1000.

3. Design for exactly recoverable target loops
In this section, we consider the design of observer based controllers for exactly

recoverable target loops. As stated in Theorem 3.3 of Part 1 (Saberi et al. 1991),
a target loop transfer function, L(s) = F&B, is exactly recoverable iff
!l' - (C, A, B) s;;Ker F. Also, in view of Properties 2.3 of Part 1, !l' - (C, A, B) is the
span of x: EB Xc EBxf' This implies that L(s) is exactly recoverable if F is in the
form

F = r Fr-I F =[0 F;;j Fbi 0 O

J3 I' 0 FdJ. Fb2 0 0

where r 3 and r I are non-singular transformation matrices as defined in Theorem
2.1 of Part 1. Now in view of (a) Lemmas 3.2 and 3.3 of Part 1, (b) the form of F
as in (3.1) and (c) interpretations of different partitions of M(s, 0")as in § 2.1, it is
easy to note the following.

( 1) A set of n;; eigenvalues of 10, namely A_, must be chosen to coincide
exactly with the set of plant minimum phase invariant zeros while the
corresponding left eigenvectors of 10 must coincide exactly with the corre-
sponding left state zero directions of ~ so that M - (s, 0")is rendered zero.

(3.1)

- L(jOl)

Lo(jOl.l000)

10° 101 102 1()S

Frequency (rad/sec)

Figure 5. Maximum and minimum singular values of L(Jw) and Lo(Jw,1000) for
Example 2.6.
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11 -20 r - S(jw)

...
'2
lID -40'"

::;;
So(jw.JOOO)

10-1 10° 101 102 103

Frequency (rad/sec)

Figure 6. Maximum and minimum singular values of S(jw) and So(jw,1000) for
Example 2.6.

(2) A set of nbeigenvalues of 10, namely Ab, can be assigned arbitrarily at finite
locations in Cf}-. Moreover, the eigenvector set Vb correspoding to these
eigenvalues can be selected freely within the constraints defined in Moore
(1976). However, Vb must be selected to be in the null space of 8' so that
Mb(s, a) is rendered zero.

(3) A set of n: + nc eigenvalues of Ao, can be assigned arbitrarily at finite
locations in Cf}- subject to the condition that any unobservablebut stable
eigenvalues of the given system must be included among Ae. Moreover, the
eigenvector set Weecorresponding to these eigenvalues can be selected freely
within the constraints defined in Moore (1976). We note that due to the
structure ofF as in (3.1), Me(s, a) is zero irrespective of how Ae and Weeare
selected. Also, we note that n: + nc = 0 if the given system is of minimum
phase and left invertible.

(4) A set of nf eigenvalues of Ao, namely Af, can be assigned arbitrarily at any
finite locations in Cf}-. (The set Aoo is renamed here as Af due to the
finiteness of the involved eigenvalues.) Moreover, the eigenvector set
Vf corresponding to these eigenvalues can be selected freely within the
constraints defined in Moore (1976). We note that due to the structure of F
as in (3.1), Moo(s, a) is zero irrespective of how Af and Vf are selected.

Thus n;; eigenvalues of Aomust be chosen to coincide exactly with the set of plant
minimum phase invariant zeros while the corresponding left eigenvectors of Aomust
coincide exactly with the corresponding left state zero directions of ~. On the other
hand, nb + n: + nc + nf eigenvalues of Ao can be assigned freely at any finite
locations in Cf}-. Also, nb eigenvectors must be selected to be in the null space of 8'
while the remaining n: + nc + nf eigenvectors of Ao can be assigned in any chosen
way consistent with the freedom available in assigning them (Moore 1976). More-
over, since ther9 is no necessity of assigning asympto~cally infinite eigenvalues,
there is no need to parameterize the observer gain K in terms of the tuning
parameter a. Thus the design for ELTR consists of assigning only an appropriate
finite eigenstructure of Ao.

40

20

;-
0
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We now move on to give the design steps to obtain K which assigns an
appropriate finite eigenstructure to Aoso that the observer based controller achieves
ELTR.

Step 1a. This step deals with the assignment of finite eigenstructure to the subsys-
tem (2.3) of Part 1. Choose a gain Kb such that A(Abb) coincides with Ab,
a set of nb designer specified eigenvalues all in ~ -, where

Abb = Abb - KbCs (3.2)

Note that the existence of such a Kb is guaranteed by Property 2.1 of § 2
of Part 1 (Saberi et al. 1991). Also, in our design, the eigenvectors of Abb
can be assigned in any chosen way consistent with the freedom available
in assigning them (Moore 1976). Owing to the properties of s.c.b., our
design always results in the eigenvector set Vb corresponding to the
eigenvalues Ab of Ao, in the null space of H' so that Mb(S) = O.

Step lb. This step deals with the assignment of finite eigenstructure to the subsys-
tems (2.1), (2.4) and (2.5) of Part 1. Let Ax and Cx be defined as

[

Ada 0 L"drCf

]
Ax = BeE:;' Ace LefCf' Cx = [0 0 Cf]

BfE: BfEe Af

(3.3)

Also, let Ax == Ae u Af be a set of n: + ne + nf designer specified eigenval-
ues all in ~ - subject to the condition that any unobservable but stable
eigenvalues of the given system must be included among Ax. Now select
a gain Kx such that A(A~) coincides with Ax where

A~ =Ax -KxCx (3.4)

Again note that the existence of such a Kx is guaranteed by Property 2.1
of §2 of Part 1. Also, the eigenvectors of A ~ can be assigned in any chosen
way consistent with the freedom available in assigning them (Moore
1976). Let us next partition Kx as

K, ~ [¥]
where K:, Ke and Kf are respectively of dimension n: x Pt, ne x Pt and
nf x Pt.

In this step, Kb and Kx calculated in Step 1 are put together into a
composite matrix. Let

Step 2.

K=

K: L;:;
L;if L~
Lbf Kb

Ke Les

Kf 0
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Finally define the observer gain K as

K=rlKril

We have the following theorem.

(3.5)

Theorem 3.1

Consider an observer with its gain as given by (3.5). Then the eigenvalues of the
observer are given by A_, Ab and Ax. Moreover, the observer based controller
which uses the gain as in (3.5) achieves ELTR.

Proof

See Appendix C.

Remark 3.1

We note that in general the observer gain which leads to ELTR is not unique.

Example 3.1

Let ~ be characterized by

[

7.8234
8.7309

A= -2.8977
9.0282

18.0111

c= [
-2.4336
- 0.2668

0.2582 -2.2012 -4.2041
-12.6825 -1.2351 -0.3500

-2.6133 -1.6768 2.5151
-2.9915 -1.7178 -6.4098
-1.1576 -3.2050 -5.7940

[

0.5007 0.4644

]

0.3841 0.9410
B = 0.2771 0.0501

0.9138 0.7615
0.5297 0.7702

-2.8360 -0.0746 1.8284
1.5733 -0.5524 -0.2347

_4.7312

]

0.0711
3.8657

-2.4021
-12.0543

3.1294

J-0.1949

This system is invertible and of non-minimum phase with invariant zeros at s = - 5,
s = - 1 and s = 1. The target loop transfer function is specified by giving

-
[

6.0447 1.8718 -0.6686 -1.1307 -4.7705

JF = 13-4444 3.9393 -0.8832 -3.0416 9.8552

It is straightforward to verify that the target loop specified by F is exactly
recoverable. In fact, as illustrated in Fig. 7, the following observer gain does achieve
ELTR

K=

-2.1408
- 0.9402

0.9038
- 3.4980

-3.0080

-2.1504
-6.2707

1.1040
-3.9161
-5.0407

~

Figure 7 shows the plots of maximum and minimum singular values of the target
and the achieved sensitivity functions, S(jw) and So(jw).
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Figure 7. Maximum and minimum singular values of S(jw) and So(jw) of Example 3.1.

4. Design for asymptotically recoverable target loops
In this section, we consider the design of observer based controllers for

asymptotically recoverable target loops. As stated in Theorem 3.4 of Part 1 (Saberi
et ai. 1991), a target loop transfer function, L(s) = F&H, is asymptotically recover-
able iff 1/ iterc ~ Ker F. Also, in view of Properties 2.3 of Part 1, 1/ iterc is the span
of x: EBxc. This implies that L(s) is asymptotically recoverable iff F is in the form

F=r3Fril, F=
[

O F~ ,Fbi 0 Ffl
J

(4.1)
0 Fa2 Fb2 0 Fp

Thus in view of (a) Lemmas 3.2 and 3.3 of Part 1, (b) the form of Fas in (4.1) and
(c) interpretations of different partitions of M(s, 0")as in § 2.1, it is easy to note the
following.

(1) A set of n;; eigenvalues of Ao, namely A_, must be chosen to coincide
either exactly or asymptotically with the set of plant minimum phase
invariant zeros while the corresponding left eigenvectors of Aomust coincide
either exactly or asymptotically with the corresponding left state zero
directions of t so that M - (s, 0")is rendered zero.

(2) A set of nb eigenvalues of Ao, namely Ab, can be assigned arbitrarily at finite
locations in '?l-. However, Vb must be selected to be in the null space of H'
so that Mb(s, 0")is rendered zero either exactly or asymptotically.

(3) A set of n: + nc eigenvalues of Ao, namely Ae, can be assigned arbitrarily
at finite locations in '?l- subject to the conditions that any unobservable but
stable eigenvalues of the given system must be included among Ae. More-
over, the eigenvector set Wee can be selected freely within the constraints
defined in Moore (1976). We note that due to the structure ofF as in (4.1),
Me(s,O") is zero irrespective of how Ae and We are selected. Also, we note
that na++ nc = 0 if the given systm is of minimum phase and left invertible.

(4) A set of nf eigenvalues of Ao, namely Aoo, can be assigned arbitrarily to
asymptotically infinite locations in '?l- as 0"-+ 00. The right and left eigen-
vectors Wi and Vi are selected such that Wi VfH corresponding to each
AiE Aoois uniformly bounded as IAi1-+00.

2

--
GJ

0;:!...
'c
1\1
:E -2
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Thus n;; eigenvalm;s of Aomust be chosen to coincide exactly or asymptotically
with the set of plant minimum phase invariant zeros while the corresponding left
eigenvectors of Ao must coincide exactly or asmptotically with the corresponding
left state zero directions of ~. On the other hand, nb + n;:- + nc eigenvalues of Ao
can be assigned freely at any finite locations in Cf}-. Also Vb, a set of nbeigenvectors
must be selectedto be in the null spaceof HIwhile We,a set of n;:-+ nceigenvectors
of Ao can be assigned in any chosen way consistent with the freedom available in
assigning them (Moore 1976). Moreover, there exists a freedom to assign nf
asymptotically infinite eigenvalues. The right and left eigenvectors Wi and Vi are
selected such that Wi V{fH corresponding to each AiE Aoois uniformly bounded as
l.Ai1-+<XJ.Thus the design freedom that exists is exactly same as described in § 2.1
and hence ATEA design method developed in § 2.3 can be used here as well. The
essential difference between this section and § 2 is that §2 treats an arbitrarily given
target loop transfer function L(s) where as this section deals with an L(s) which is
specified by an F satisfying (4.1) so that MAs, 0) is zero. However, the same
method of design can be used for both cases.

Example 4.1

Consider the system given in Example 3.1 except that now the target loop
transfer function L(s) is specified by

F = [
-16,2010 -18,2158 -1,1275 12.4677 20.4128

J4.3114 7,1386 -1,8405 -2,6013 -2,8678

It is straightforward to verify that the target loop specified by F is asymptotically
recoverable. Using ATEA design method, an observer gain K(O")with 0"= 200 is
given by

K(O")=

83,8784
36.7824

-14'9693
105,7923
97,1095

89,8098
180.0434

11.0206
146.8637
147.4598

The singular value plots given in Figs 8 and 9 show that ALTR is achieved.

10

=-
3
""CI
='.-
c
~
III
::IE

- S(jUJ)

- - - S.(jUJ,200)

0

-10
10-2 10-1 100

Frequency (rad/sec)

101 102

Figure 8. Maximum and minimum singular values of S(}ro) and So( }ro,200) of Example 4.1.
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Figure 9. Maximum singular values of M(jw, 200) and E(jw,200) of Example 4.1.

5. Design to recover over a specified subspace
The design task considered in this section is the following. Given a subspace Y'

of 91m,we are interested in designing an observer so that the achieved and target
sensitivity and complimentary sensitivity functions projected onto the subspace Y'
match each other either exactly or asymptotically. The conditions under which such
a design is possible are given in Part 1. To recapitulate these conditions, let Vs be
a matrix whose columns form an orthogonal basis of the given subspace Y' of 91m.
Also, given the system ~ characterizedby the matrix triple (C, A,B), let us define
an auxiliary system ~s characterized by the matrix triple (C, A, BVs)' Thus the
auxiliary system ~s differs from ~ in its input distribution matrix BVs' Also, let
L(s) = F«DBbe the specifiedtarget loop transfer function. Then the analysis given
in Part I (see Theorems 3.8 and 3.9) imply the following:

( I) The projections of achievable and target sensitivity and complimentary
sensitivity functions onto the subspace Y' match each other exactly iff
fI!- (C, A, BVs)£;Ker F.

(2) The projections of achievable and target sensitivity and complimentary
sensitivity functions onto the subspace Y' match each other asymptotically
iff 1/ iterdC, A, BVs) £; Ker F.

Thus the task of designing observers for either exact or asymptotic recovery over a
subspace collapses to the task discussed either in § 3 or §4 except that one needs to
use ~s instead of~. The following example illustrates this.

Example 5.1
Consider a system ~ characterized by

[

I I I I

l [

0 °

l

- 0220 - 00
A= 0 3 3 0 ' B= I 0

4 4 4 4 0 I
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and C = B'. This system has two non-minimum phase invariant zeros at s = I and
at s = 2. Now consider a specified subspace g which is a span of the vector

Vs = [~J
It is simple to verify that the auxiliary system ~s characterized by the matrix triple
(C, A, BVs) is left invertible and of minimum phase. Hence the projections of target
and achievable sensitivity and complimentary sensitivity functions onto Vs can
match each other asymptotically. To exemplify this, let the target loop be specified
by

-= [
0 178 53 O

JF 204 0 0 54

Let us choose K(a) as

K(a) =

[

I 2.5

1

2 7,5

3 + a 1.5
4 13

so that the observer eigenvalues are placed at -a, -I, -2 and -3 for all a. Let
the orthogonal projection matrix onto the subspace g be Ps = VsV~. Then the
resulting M(jw, a)P" So(jw, a)Ps and S(jw)Ps are plotted with respect to w over
a given range of w in Figs 10 and 11 when a = 1000. It is easy to note that
M(jw, a)Ps is approximately zero while So(jw, a)Ps is close to S(jw)Ps. Also, note
that the minimum singular values of So(jw, a)Ps and S(jw)Ps are identically zero
due to the singularity of Ps.

6. Conclusions

Full order observer design for loop transfer recovery is considered. Four
different design tasks are pursued depending upon the nature of the target loop
transfer functions. For two design tasks, namely when the target loop transfer

1.2

- CTmax[S(jw)P.]

- - - CTm=[So(jw,lOOO)P.]

101 102 103 10"

Frequency (rad/sec)

Figure 10. Maximum singular values of S(jw)Ps and So(jw, 1000)Ps of Example 5.1.
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0
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Figure 11. Maximum singular values of M(jro, lOOO)Ps of Example 5.1.

function is arbitrarily specified or when it is asymptotically recoverable, a new
method of design based on asymptotic time-scale and eigenstructure assignment
(ATEA) is developed. This method is capable of utilizing all the available design
freedom to shape the loops as desired. On the other hand, the traditional ARE
(algebraic Riccati equation) based design is shown to have several limitations.
Prominent among these limitations are:

(I) its inability to shape the recovery error, for example, in the subspace in
which the error cannot be rendered zero either exactly or asymptotically;

(2) its inability to assign any arbitrary fast time-scale structure (infinite eigen-
structure) to the observer; and

(3) numerical difficulties due to 'stiffness' of design equations and 'repetitive'
nature of design.

On the other hand, the ATEA design method:

(1) can utilize all the available design freedom to shape the recovery error as
desired;

(2) allows arbitrary assignment of observer fast time-scale structure; and

(3) is free of 'stiffness' problems.

Also, because of the above mentioned limitations, ARE based design results in a
higher controller gain and band-width than is necessary. A bank of numerical
examples illustrate this. For the design task when the given target loop is exactly
recoverable, no design method is yet available in the literature. To fill this gap, a
new finite eigenstructure assignment method is also developed here. Another design
task of recovering the target sensitivity and complimentary sensitivity functions
over any specified subspace of the control space is also considered. This task
generalizes the notion of traditional loop transfer recovery. All the design methods
developed here are implemented in a 'Matlab' software package. A number of
design examples show various capabilities of the developed design methods.
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Appendix A

Proof of Lemma 2.1
We assume that the given system ~ has simple non-minimum phase invariant

zeros so as to avoid complexity in presenting the proof. In our proof, we also use
the all-passjminimum-phase decomposition as in Zhang and Freudenberg (1990) of
~. Let B?r,= B and for each i= I to n;:-,

B;" =B;,,-1 -2Re(ziK17f

where Ci and 17iare the right state and input zero directions associated with an
invariant zero zi of a system characterized by the triple (C, A, B;,,-I) and where
17f17i= 1. We have the following properties:

Properties A.I
(1) - (z t) * is an invariant zero of a system characterized by the triple

(C, A, B;,,) along with the right state and input zero directions Ci and 17i
respectively.

(2) Let t/Jibe the left state zero direction associated with the invariant zero
-(zt)* of (C, A, B;,,), then t/JfB;,,-1 = ci17f where Ci= 2Re (Zt)t/JfCi is a
constant.

Proof
Consider

B;"17i= [B;,,- 1 - 2Re (z iK17fJ17i

=B;,,-I17i- 2Re (ziK

=(zi In - AK - 2Re (ziKi

=( -(zt)*In - AK

Now to prove the second point, we have by definition

0 = t/JfB;" = t/Jf[B;,,-1- 2Re (ziK17fJ

=t/JfB;,,-1 - Ci17f

Hence the result D

Property A.2
Consider a left invertible plant ~ with simple non-minimum phase invariant

zeros. Let z i, X t.i and wJi.;,i = I to n;:-,be the non-minimum phase invariant zeros
and the corresponding right state and input zero directions of the given system ~.
Let Jei and Vi, i = I to n;:-,be the eigenvalues and the associatedleft eigenvectors
of Ao represented in Me(s, a). Then the minimum phase image model of~, namely
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the sytem characterizedby (C, A, B':!), has invariant zeros at -(zt)*, i = 1 to n:,
with the corresponding left state zero directions t/Ji, i = 1 to n:, satisfying the
following property as a -+ 00:

et = B'Vt -+B't/Ji= Ciwit

where Ci is a constant.

Proof

Consider a non-minimum phase zero z;+- of t. Then it follows from Property Al
that - (zn * is an invariant zero of (C, A, B ~). Let t/JI and VI be respectively the
left state and input zero directions associated with the invariant zero - (z n * of
(C, A, B~). It follows from the results of Appendix B in Chen et al. (1990 b) that
the left state and input zero directions associated with the minimum phase invariant
zeros of a left invertible system remain unchanged in its minimum phase image
model. Since (C, A, B':!) is a minimum phase image of (C, A, B~) as well, we note
that t/JIand VI are also the left state and input zero directions associated with the
invariant zero - (z n * of (C, A, B':!). Hence

0 = t/JI{B':! = t/JI{B~= t/JI{[B- 2Re (Znxtl(wtl)H]

In view of the above and in view of the well known result V;+--+ t/JI as a -+ 00, we
have

e;+-= BT;+- -+B't/JI= [2Re (znt/Jl{xtl]wtl (A 1)

On the other hand, it is quite easy to verify that the all-pass/minimum phase
decomposition and in particular B':! does not depend on the order of naming the
invariant zeros. Thus we may rearrange any of the invariant zeros to be z;+-to yield
the desired result as in (A 1).

Now the proof of Lemma 2.1 is evident from Property A.2 since LQG controller
for a non-minimum phase plant is same as the corresponding one for the minimum
phase image model of the plant. 0

Appendix B

Proof of Theorem 2.1

Without loss of generality, we will assume that the given system is in the form
of s.c.b. Then by renaming the variables Xo= [(x;)', xi,]' and xe = [(x:)', x~]', we
can rewrite the observer dynamic matrix Ao as

[

Aoo 0 - iiOfCf

]
Ao= Aeo Aee -[~f+Ke(a)]Cf

BfEo BfCe Af - Kf(a)Cf - LfCf

(B 1)

where

[A;;;,
Aoo= 0

-ii~~
] [

0 -ii~~
]

e ' Aeo= - - ,
Abb BeEea -HesCs

[
-
] [

-+
]- Hif - Haf

HOf= - , Hef= -
Hbf Hef

A = [A;:a 0 ]ee BeE:;' Ace
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We prove the TSS properties of the observer on a transposed system ~t whose
closed-loop dynamic matrix is a transpose of Ao. Consider ~t,

mu

io = A~oxo+ A:.oxe+ L: E;ox/q/
/=1

. mu
xe = A~exe+ L: E;ex/q/

/=1

and for each i = 1 to mu

ii = A~,Xi- [~J[11~iXO+ (!l~i + K~i(U»Xe+ K; (u)x;] + /~I E;,x/q/

where

Let us adopt the following scaling and transformation of variables,

Xo= XO' Xiq, = Xiq,+ K~iXe,

q,
Xik = n 8i/Xik>

/=k+1
i = 1 to qi - IXe = Xe,

We next define

X-.. = [X,'".. 1 +1'J 'J- Xi"ij-I+2 Xi"" ]
'

'J

and

X " = [Xi",' 1 +1'1 'J- Xi",)'Xi"ij-I +2

so that

X.. = 8-.X. for ] ' = 1 to r. - 1'J 'J 'J '

and

Xir; = Sir;Xir; + [~J K~iXe

where Sij is as defined in (2.20). Then (B 2) to (B 4) can be rewritten as

Xo= A~oxo + Doexe + I Do/[O
/=1

I]X/r/

Xe = (A~e)'xe + I De/[O
/=1

1]Xlr/

for each i = 1 to mu

llilXiI = G;IXiI - Hil I JijK;jXij + I Dill[O
j= I /= 1

I]X/r/ + Diloxo + DileXe

mu
Il.X. = G~.X.. + H..X.. 1 + " D.. /[ Or'l '1 '1 '1 '1 '1- ~ '1

/=1
l]Xir/+DijeXe for j = 2 to ri

(B 2)

(B 3)

(B 4)

-"

"

(B 5)

(B 6)

(B 7)

(B 8)

E,T)= [Ei;; Eib]' Eie = [Ei EicJ

!lof = [!l01 !l02 ... !lomJ, !lef = [!leI !le2 ... !lemJ

X= [x -, X x;"y, Xi = [Xii X'2 Xiq,]'Xe ... ...
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where

Hij =[~ ~]

The zero elements in nij x nij - 1 dimensional matrix Hij are of appropriate dimen-
sion and mayor may not exist depending upon the values of nij and nij- I' Also,
various coefficient matrices in the above equations are as follows

mu

Doe = A~o - L E;oK~i' DOl= E;o,
1=1

Del = E;e

Dilo = -YfiHilf10i,
mu

Dile = -YfiHilf1~i - L lff;ilK~1
1= 1

[Iffiii Iffli2 [
qi qi

]IfflirJ= Eli Diag n Bib n Bik' ..., Biqi
k= 1 k=2

mu

Dije = - L lff;ijK~1
1=1

for j = 2 to ri - I

D ijl = Iff;ij for j = I to ri - I

Dirie = -I~I lff;iriK~1+ Iliri[~J K~i(A~e)'

and

Diril = Iff;iri+ Iliri [~J K~;Del

Although (B 5) to (B 8) are in singularly perturbed form, their time-scale structure
properties are not transparent. In order to bring various time-scales into focus, we
adopt another transformation of variables. Let for each i = 1 to mu

(B 9)

Xiri = Xir; and Xij = Xij + :f{ij+ IXij+ 1 for j = 1 to ri - 1 (BlO)

where nij - 1 X nij dimensional matrix

:f{.. =
[K~ :.d JIJ ijc IJ

Then it is straightforward to verify that (B 7) and (B 8) can be rewritten as

mu

llilXiI = (Gfl)'XiI + L DidO
1=1 1]Xlr/+ Diloxo + Dile xe

ri Ilil
+ L - :f{i2:f{i3

k = 2 Ilik
:f{ik

X

[
(Gfk)'Xik + HikXik-1 + I Dikl[O

1=1 l]Xlr/+ DikeXe]
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/l..X.. = (GC ) 'X.. + HX 1 + ~ D.. /[ O
rlJ IJ IJ IJ IJ IJ - f , IJ

/=1
I]Xlr/ + Dije Xe

rj l1ij
+ L - :f(ij+ l:f(ij+2 ... :f(ik

k=j+ Illik

[
mu

X (G~k)'Xik + HikXik-1 + L Dik/[O
/= 1 I]X/r/ + DikeXe] for j = 2 to ri - 1

l1irXir = (G~rYXir + HirXir-1 + I DirAO
" , , " /=1'

I]X/r/ + DirjeXe (B 11)

Since the interconnection matrices in the coupled equations (B 11) tend to null
matrices as (J-+ 00, the time-scale structure property of the observer follows directly
from singular perturbation theory. To show this more explicitly, we next do
Lyapunov analysis of the above dynamic system. For this purpose all the small
parameters are defined as

l1ij = Baij (B 12)

for some positive scalars aij where

1
B=-

(J

Then in view of the property (2.18), we note that

aij > aij+ 1 for all j = 1 to ri - 1

Also, we can rewrite (B 11) as

[
mu rj

]BailXiI = (G~I)'Xii + Bct;'l.@~oxo + .@~exe+ L ,@~/Xlr/ + L KtkXik
/~ 1 k= 1

[
mu rj

]8aijX.. = (Gc. ) 'X.. + HX. 1 + B4 .@*.x+" '@~/X / + " K'!':kK kIJ IJ IJ IJ lJ - lJe e L. IJ r/ L. Jl I
/~ 1 k=j

for j = 2 to ri - 1

Bajr,Xir.= (G~rYXir + HirXir-1 + Bdirj
[.@teXe + I .@t./Xlr/

], , , " '/=1 '
(B13)

for some positive scalars d& and for some appropriately defined interconnection.
coefficient matrices. It is important to note that all the interconnection matrices are
bounded as B-+O. Let

d = _21 min {d~' i = 1 to m and ) ' = 1 to r. }IJ' U I

Then

dij == d& - d > 0 for all i and j
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Also, let us define

Xo = adxo and Xe = adxe

Then we can rewrite (B 5), (B 6) and (B 13) as

mu
., d '"Xo = AooXo+ DoeXe+ a L, Do1[O

I~ 1
I]X1rl

Xe = (A~e)'Xe + ad I Del[O
1=1

I]X1r/

and for each i = I to mu

aailXil = (Gfl)'Xil + adil
[E&ilOXO+ E&ileXe+ I E&iIlXir/ + f KlikXik

]1= 1 k~ 1

aa;jXij = (Gij)'Xij + HijXij-1 + ad;j
[E&ijeXe+ I E&ijlX1r/+ f ~ikXik

]I~ 1 k= 1

for j = 2 to ri - I

aa;';Xir.= (GfrY Xir + Hir.Xir.- 1+ ad;,;
[E&ir.eXe+ I E&ir.IXlr/ ], , , " 'I~I '

(B 14)

To proceed with a Lyapunov analysis of the above system, let us select positive
definite matrices Po, Pe and Pij, i = I to mu and j = I to ri, satisfying the following
Lyapunov equations

PoA~o+AooPo= -I

PeA~e + AeePe= -I

Pij(Gij)' + GijPij = -I

We next define a Lyapunov function

V(X) = X~PoXo + ceX~PeXe + I f CijX;jPijXij
1= 1 j= 1

(B 15)

where Ceand Cijare some positive scalars that are yet to be selected. It is then easy
to show that dVjdt calculated along the trajectory of (B 14) satisfies the following:
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~ ~

dt:::;-IIXoI12+21IPoIIIIDoeIIIIXoIIIIXell+2e\~IIIPoIIIIDokII IIXol1IIXkrJ

mu

-Ce IIXe 112+ 2ceed L Ilpe 1IIIDek 1IIIXe 1IIIXkrk II
k=1

+ i~1 { - eC~:'IIXii 112+ 2 eC~:'edilllXilllllPill1

x [112fiilO1IIIXoII+ 112fiile1IIIXeII+ k~1 112fiild IIXkrJI + k~1 IIKlik 1lllXid]

+r'i I [ - C:: IIXij 112+ 2 C:: Ilpij 1IIIXij1lllXij-111 + 2 C::edijllXd Ilpij II
j ~ 2 e 'J e 'J e 'J

X (112fiije 1IIIXe II + k~1 112fiijk 1IIIXkrk II + Jj IIR;ik1IIIXikII)]

C- C. C.

- e::' IIXir, 112+ 2 e::' Ilpir,1IIIXir,1lllXir,- III+ 2 e~:;' ed'r, IIXir, 1IIIPir, II

X [112fiir,e1IIIXe II+ k~1 112fiir,k1IIIXkrkII]}

= -[IIXo II, IIXe II, IIXllll, ,.., IIXlr, II, .." IIXmulll, .." IIXmurmJ]R(e)

x [IIXo II, IIXe II, IIXllll, ,.., IIXlr!ll, .." IIXmulll, ..., IIXmurmuIIJ'

Let us next choose

Ce> Ilpo 11211DOe112

In order to facilitate the selection of coefficients Cij, let

d. = ~min {d..' J' = 1 to r. }
I ri + 1 IJ' I

and define

bij = (ri + 1- j)di < dij, j = 1 to ri

Then for each i = 1 to mu and j = 1 to rb select

Cij = eaij -bij

Here we note that for j = 1 to ri - 1

b.. > bij+ IIJ

Then the matrix R(e) is given as
* *Roe

* RI *
R(e) = I * * R2 ...

*
*
*

* *
* .,. Rmu

(B 16)

(B 17)

"

(BI8)

(B 19)
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where *'s represent appropriate dimensional submatrices which tend to null ma-
trices as 8 --+O. Also

Roe = [-Ilpo I: IIDoe II -Ilpo 1IIIDoeII] > 0Ce
(B 20)

whenever Ceis as in (B 17). Furthermore, for each i = 1 to mu

Now in view of (B 18), it is straightforward to verify that Ri, for each i = 1 to mu,
is positive definite for 8 sufficiently small. Then in view of the special structure of
R(8) as in (B 19), there exists an 8* such that for any 8 < 8*, R(8) is indeed a
positive definite matrix and thus the stability of the observer dynamics is guaran-
teed. This completes our Lyapunov analysis.

So far we proved that ATEA algorithm yields an admissible observer gain K(O")

in the sense that Ao is a stable matrix for sufficiently large 0"and that it has the
required time-scale structure. In what follows, we will show that K(O")achieves LTR
in the sense that

M(s,O") = F(sln - A + K(O")C) -Ii} --+MAO") pointwise in s (B 22)

as 0"--+00. In view of (2.25), it can be seen easily that K(O")has the following form,

K(O")= T(O")r(O")N + Q (B 23)

where

r(0") = Diag [~ 1 ... ~
J

, N = [lmu 0]
111 112 11mu

Q=

+ -+
Laf + Haf

L;if + H;if
Lbf + Hbf

Lef + Hef

Lf

Lds + Hds

L;;. + H;;.

Kb

Les + Hes
0

(B 24)

While T(O") satisfies

T(O") --+BmT (B 25)

--* IIpi211 * *
8biI 8bi2

IIPo. II 1 * * *
- 8bi2 -

Ri= I

I (B 21)

* * -* _IIPirill
8biri-1 8biri

* * IIPiri11 1 *
- 8biri 8biri-
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as a ~ 00 where

K+a

Bm=

0
0 , T = Diag [Jlr[ Klr l d J2r z K2r 2d ... Jm r Km r d]u mu u mu (B 26)

Ke

Bj ~

It is shown in Chen et al. (1990 b) that the triple (C, A, Bm) forms a left invertible
and a minimum phase system. Thus it follows from the results of Saberi and
Sannuti (1990) that

(s/n - A+ K(a)C)-I Bm ~ 0 pointwise in s (B 27)

as a ~ (f). Next let

B=

(B 28)

where

(B 29)

Thus we have

M(s, a) = F(sIn - A + K(a)C) -IB

=F(sIn - A + K(a) C) -1([Bm, 0] + Be)

~ F(sIn- A + K(a)C)-I Be (B 30)

as a ~ (f). We will next show that M(s, a) ~MAs) as a ~ (f). To simplify the
notation, we reorder some variables and rewrite Ao as in (B 1). We note that

Ke(a)r-I(a) = KeT (B3l)

and

KAa)r-l(a) -+BjT (B 32)

as a ~ (f). Let Aei(a)and Wei(a) respectively be an eigenvalue and eigenvector of Ao
represented in Me(s, a). Let us partition Wei(a) as

Wei(a) = [W~Oi(a) W~ei(a) W~ooi(a)]' (B 33)

It is then easy to show that as a ~ 00

Aei( a) ~ Iei E Ae

WeOi(a) ~O, Weei(a) ~ Wei, Weooi(a) ~ Cfr-l(a)T-ICe Weei ~O (B 34)

where Iei and Weei are respectively an eigenvalue and eigenvector of A~e' Now in
view of the fact

Wo Ve Voo]H[WO We Woo] = In

B = [Bm 0] + Be

0 0 -K: 0
0 0 0 0
0 0 and Be = 0 0
0 Be -Ke Be

Bj 0 0 0
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we note that Voand V00 are of the fonn

Vo= [* 0 *]' and V00 = [* 0 *]'

where * denotes some finite value not necessarily zero. Hence

VoBe = 0 and V00Be = 0 (B 35)

Thus we can rewrite (B 30) as

M(s, a) --+F(sIn - 1 + K(a) C) -I Be

n - H

= L FW;(a)V; (a)Be
; = I S - A;

n --
--+...;.FW. VHB

L... el e. e
; ~ I S - Ie;

= Me(s) (B 36)

Next by partitioning F as

F = [Fo Fe Foo]

and letting

[

-K+ 0

]Bee = -ie Be

we note that

n --H

( )
-

) ...;. Fe Wee; Vee;Bee -I

M s, a --+Me(s = ;:-1 S - Ie; = Fe(sIne- A~J Bee
(B 37)

where

[Veel Vee2 ... Veen.] = [Weel Wee2 ... Ween.] - H

This completes the LTR analysis of ATEA algorithm. 0

..

Appendix C

Proof of Theorem 3.1

We assume that the given system ~ is in the fonn of s.c.b. (see Theorem 2.1 of
Part 1). Then for the gain K given by (3.5), we note that

Then it is simple to verify that the eigenvalues of 10 are given by A- u Ab U Ax,
and moreover M(s) ==F(sIn - 1 + KC) -In ==O. Hence ELTR is achieved. 0

Ad;. 0 0 0 (Ldj - K:)Cf

10 = 1 - K(a)C = I

0 A;, 0 0 0
0 0 Abb 0 0

BeE:;' BeE;;, 0 Aee (Lef - Ke)Cf

BfE: BfE;; BfEb BfEe Af - KfCf
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