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A non-iterative method for computing the infimum in
Hoo-optimization

BEN M. CHENt, ALl SABERl:j: and UY-L01 LY§

This paper presents a simple and non-iterative procedure for the computation
of the exact value of the infimum in the singular H ",,-optimization problem,
and is an extension of our earlier work. The problem formulation is general
and does not place any restriction on the direct feedthrough terms between the
control input and the controlled output variables, and between the disturbance
input and the measurement output variables. Our method is applicable to a
class of singular H ",,-optimization problems for which the transfer functions
from the control input to the controlled output and from the disturbance input
to the measurement output have no invariant zeros on the jw axis and also
satisfy certain geometric conditions. The computation of the infimum in our
method involves solving two well-defined Riccati and two Lyapunov equations.

Conventions and notation

A T transpose of A
I identity matrix
IR set of real numbers
C whole complex plane

C- open left-half complex plane
C+ open right-half complex plane
CO imaginary axis j w

amax(A) maximum singular value of A
A(A) set of eigenvalues of A

Amax(A) maximum eigenvalue of A where A(A) C IR
p(A) spectral radius of A

Ker (V) kernel of V
1m (V) image of V

1. Introduction

The past decade has witnessed a proliferation of literature on H co-optimal
control since it was first introduced by Zames (1981). The main focus of the
work has been, and continues to be, on the formulation of the problem for
robust multivariable control and its solution. Since the original formulation of
the H co-problem in Zames (1981), a great deal of the work has been on the
solution to this problem. Practically all research results of early years involved a
mixture of time-domain and frequency-domain techniques (Doyle 1984, Francis
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1987, Glover 1984). Recently, considerable attention has been focused on purely
time-domain methods based on algebraic Riccati equations (ARE) (Doyle et at.
1989, Doyle and Glover 1988, Khargonekar et at. 1988, Petersen 1987, 1988;
Sampei et at. 1990, Stoorvogel1991, Stoorvogel and Trentelman 1990, Zhou and
Khargonekar 1988). Along this line of research, connections are also made
between H ",-optimal control and differential games (Basar and Bernard 1989,
Papavassilopoulos and Safonov 1989). Typically in ARE approaches to H ",-op-
timal control problems, the achieved design solution is suboptimal in the sense
that the H ",-norm of the closed-loop system transfer function from the disturb-
ances to the controlled outputs is less than a prescribed value. For the regular
case, (this refers to a system where the feedthrough matrix from the disturbance
to the measurement output is surjective and the feedthrough matrix from the
control input to the controlled output is injective) the existence of suboptimal
state (output) feedback laws is formulated in terms of the existence of a
stabilizing positive semi-definite solution(s) for one (two) 'indefinite' algebraic
Riccati equation(s) and the satisfaction of a coupling condition for the case of
output feedback. A recent paper by Stoorvogel (1991) has shown that conditions
for the existence of suboptimal output feedback laws for the general singular
case (i.e. not a regular case) can be expressed in terms of the existence of
solutions to two quadratic matrix inequalities. Solutions of these inequalities
must also satisfy two rank conditions and a coupling condition. The latter
condition requires that the spectral radius of the product of the two solutions to
be smaller than a certain prior given upper bound.

In this paper, we address the problem of computing the infimum in
H ",-optimization for the output feedback case. The ARE-based approach to this
problem simply provides an iterative scheme of approximating the infimum
(denoted here by y~) of the H ",-norm of the closed-loop transfer function using
output feedback compensators. For example, in the regular case and utilizing
the results of Doyle et at. (1989), an iterative procedure for approximating y~
would proceed as follows: one starts with a value of y and determines whether
y > y~ by solving two 'indefinite' algebraic Riccati equations and checking the
positive semi-definiteness and stabilizing properties of these solutions. In the
case where such positive semi-definite solutions exist and satisfy a coupling
condition, then we have y > y~ and one simply repeats the above steps using a
smaller value of y. In principle, one can approximate the infimum y~ to within
any degree of accuracy in this manner. However this search procedure is
exhaustive and can be very costly. More significantly, due to the possible
high-gain occurrence as y gets close to y~, numerical solutions for these AREs
can become highly sensitive and ill-conditioned. This difficulty also arises in the
coupling condition. Namely, as y decreases, evaluation of the coupling condition
would generally involve finding eigenvalues of stiff matrices. These numerical
difficulties are likely to be more severe for problems associated with the singular
case. So, in general, the iterative procedure for the computation of y~ based on
AREs is not reliable and thus should not be used to determine the infimum y~.

In a recent paper of Chen et at. (1992), a non-iterative algorithm was
proposed to calculate y~ for a class of systems that satisfy the following
conditions: (i) the transfer function from the control input to the controlled
output is right-invertible and has no invariant zeros on the jw axis; and (ii) the
transfer function from the disturbance to the measurement output is
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left-invertible and has no invariant zeros on the jw axis. The goal of this paper is
to generalize and extend the results of Chen et al. (1992) by relaxing the above
assumptions; namely, to replace the right- and left-invertibility assumptions
imposed on the given plant by two geometric conditions, which are much
weaker than the former ones. We would like to point out that under the
assumptions of Chen et al. (1992), the computation of rt involves solving four
Lyapunov equations. However, the computation of rt under the new
assumptions of this paper requires solving two well-defined Riccati and two
Lyapunov equations. The new algorithm has been implemented efficiently in a
MATLAB-software environment for numerical solutions.

The outline of this paper is as follows. In § 2 we introduce the problem
statement. In § 3 we provide some preliminaries on the special coordinate basis
(s.c.b) and its properties for non-strictly proper systems, and the main results of
Stoorvogel (1991) in notations consistent with the problem statement of § 2. The
s.c.b transformation and Stoorvogel's theorem are both instrumental in the
derivation of the main results given in § 4 for the exact computation of rt.
Section 5 gives other related results on problems of almost disturbance
decoupling with internal stability, and conditions under which the infimum of
the output feedback case is equal to that of the state feedback case. Finally in
§ 6 we draw the conclusion.

We refer to the linear dynamical system

i = Ax + Bu, y = Cx + Du (0.1)

as the system (A, B, C, D). We also refer to TyuCs)= C(sI - A)-l B + D as the
transfer function matrix of the system (A, B, C, D) between the input u and the
output y. For any real rational matrix T(s),

IITlloo:= sup {amax[T(jw)] : w E Iffi} (0.2)

then IITlloocoincides with the Loo-norm of T(s) if T(s) is proper and has no
poles in Co, and with the H oo-norm of T(s) if it is proper and stable. We also
define the following subspaces:

(i) "Vg(A, B, C, D)-the maximal subspace of Iffin which is (A + BF)-
invariant and contained in Ker(C + DF) such that the eigenvalues of
(A + BF)!"Vg are contained in Cg k C for some F.

(ii) 9'g(A, B, C, D)-the minimal (A + KC)-invariant subspace of Iffin
containing 1m (B + KD) such that the eigenvalues of the map which is
induced by (A + KC) on the factor space Iffin/9' g are contained in Cg k C
for some K.

For the cases that Cg = C, Cg = C- and Cg = COU C+ , we replace the index g
in "Vgand 9'g by '*', '-' and '+' respectively.

2. Problem formulation

Let us consider the following linear system,

!

i = Ax + Bu + Ew

2:: y = C1x + DlW

Z = Czx + Dzu

(2.1)
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where x E IRn is the state, U E IRm is the input, WE IRP is the disturbance,
Y E IRr is the measured output available for feedback control and Z E IRq is the
controlled output. Let Tzw(s) denote the closed-loop transfer function matrix
from the disturbance W to the controlled output z. The standard H oo-optimal
control problem is concerned with the construction of stabilizing feedback
control-laws that minimize the H oo-norm of Tzw(s). We consider three different
classes of control laws: static-state feedback, dynamic-state feedback and
dynamic-output feedback laws. Furthermore, we denote the infimum of the
H oo-norm achieved under these three classes of feedback laws as yi; y~ and Yo
respectively. Namely,

yi := inf {IITzwlloowhere u(s) = Fx(s) for any F which internally stabilizes the
system of (2.1), i.e. A + BF is a stability matrix}

y~ := inf {IITzwlloowhere u(s) = Fis)x(s) for any proper transfer function
matrix Fs(s) which internally stabilizes the system of (2.1)}

Yo:= inf {IITzwlloowhere u(s) = Fo(s)y(s) for any proper transfer function
matrix Fo(s) which internally stabilizes the system of (2.1)}

Zhou and Khargonekar (1988) have shown that y~ = yi which also implies
that yi ~ Yo. It is also well-known that, in general, Yois not equal to yi. In this
paper we give a simple and non-iterative procedure for determining Yo. The
method is applicable to the general system of (2.1) satisfying the following
assumptions.

(A1) The system (A, B, C2, D2) is stabilizable and has no invariant zeros in
Co.

(A2) Im(E) ~ V-(A, B, C,2 D2) u ;-r(A, B, C2, D2).
(B1) The system (A, E, Cb D1) is detectable and has no invariant zeros in

Co.

(B2) Ker(C2) ;dV-(A, E, Cb D1) n ;r(A, E, Cb D1).

Here we would like to note that the above (A1) and (B1) are the standard
assumptions on H oo-optimization literature. On the other hand, (A2) and (B2)
generalize the results of Chen et al. (1992), in which the subsystems
(A, B, C2, D2) and (A, E, Cb D1) are required to be right- and left-invertible,
respectively. In fact, if (A, B, C2, D2) and (A, E, Cb D1) are respectively right-
and left-invertible, then (A2) and (B2) are automatically satisfied.

One of the key components of our method is to put the problem in a special
coordinate basis (s.c.b) introduced in Sannuti and Saberi (1987) and Saberi and
Sannuti (1990) which explicitly exhibits the finite and infinite zero structures of
the system. The other component utilizes the results of Stoorvogel (1991).

3. Preliminaries

In the following section we shall recall the definition of the special
coordinate basis (s.c.b) for a linear time-invariant non-strictly proper system
(Saberi and Sannuti 1990), and the theorem of Stoorvogel (1991). Such a
coordinate basis has a distinct feature of explicitly displaying the finite and
infinite zero structures of a given system as well as other system geometric
properties. The results of Stoorvogel provide conditions for the existence of an
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H ",-norm bound solution in the output feedback case. They are both
instrumental in the derivation of the method described in § 4.

3.1. Special coordinate basis

In the following we recapitulate the main results in a theorem and some
properties of the special coordinate basis while leaving detailed derivation and
proofs to be found in Sannuti and Saberi (1987) and Saberi and Sannuti (1990).
Consider the system described by

i = Ax + BU

}Z = Cx + Du

It can be easily shown that using singular value decomposition one can always
find an orthogonal transformation U and a non-singular matrix V that put the
direct feedthrough matrix D into the following form

-
[

I
D = UDV = 0'

(3.1)

gJ (3.2)

where r is the rank of D. Without loss of generality one can assume that the
matrix D in (3.1) has the form as shown in (3.2). Thus, the system in (3.1) can
be rewritten as

i = Ax + [Bo B1] (~~)

)(~~) = [~~J x + [~ gJ (~~)

(3.3)

where Bo, Bb Co and C1 are the matrices of appropriate dimensions. Note that
the inputs Uo and Ub and the outputs Zo and Z1 are those of the transformed
system. Namely,

u = V (~~) and (~~) = Uz

Note that the H ",-norm of the system transfer function Tzw(s) is unchanged
when we apply an orthogonal transformation on the output z, and also under
any non-singular transformations on the states and control inputs. We have the
following main theorem.

Theorem 3.1: There exist non-singular transformations rs, ro and rj such that
- r [(

+
)
T T

(
-

)
T T T

]
T

X - s Xa ,Xb, Xa ,xe,xf

[
T T

]
T - T'

[
T T T

]
T

[
T T

]
T - r [

T T T
]
T

Zo, Zl -.L 0 Zo, zf, Zb , Uo, Ul - j Uo, uf, Ue

and

[A+

L:bCb 0 0

+]

LafCf

A : r,'(A - BoCo)r, f,
Abb 0 0 LbtCf

L;bCb A- 0 LCf (3.4)aa
BeE ea LebCb BeE Ace LetCf
BfE; BfEfb BfEIa BfEfe Aff



(3.5)

(3.6)

0
0
0

where the pair (Ace>Bc) is controllable, pair (Abb, Cb) is observable and the
subsystem (Aff, Bf' Cf) is invertible with no invariant zeros.

The proof of this theorem can be found in Sannuti and Saberi (1987) and Saberi
and Sannuti (1990). We also note that the output transformation ro is of form

ro = [Ir 0 ]0 rOr

[

Ir

f) := ro1Dri = ~ ~]
(3.7)

(3.8)

In what follows, we state some important properties of the s.c.b which are
pertinent to our present work. For further details regarding s.c.b and its
properties, interested readers are referred to Saberi et al. (1991).

Property 3.1: The given system (A, B, C, D) is right-invertible if and only if Xb
and hence Zb are non-existent, left-invertible if and only if Xc and hence Uc are
non-existent, invertible if and only if both Xc and Xb are non-existent.I

Property 3.2: Invariant zeros of (A, B, C, D) are the eigenvalues of A;;-aand
A~. Moreover, the stable and unstable invariant zeros of (A, B, C, D) are the
eigenvalue of A~ and A;a respectively.

Property 3.3: The pair (A, B) is stabilizable if and only if (Aeon, Bcon) is
stabilizable where

A = [A;a L;bCb
]

B = [Bta L;f
]eon 0 Abb' eon BOb Lbf

There are interconnections between the s.c.b and various invariant and
almost-invariant geometric subspaces. We list in the following the geometrical
interpretations of some state vector components of s.c.b.

Property 3.4:
(1) x;;-Eex; EeXc spans 'V*(A, B, C, D).

(2) x;;- EeXc spans 'V-(A, B, C, D).

(3) x; EeXc spans 'V+(A, B, C, D).

(4) Xc Eexf spans 9'*(A, B, C, D).

(5) x;;- EeXc Eexfspans 9'+(A, B, C, D).

(6) x; Eexc Eexfspans 9'-(A, B, C, D).

(3.9)
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[B

0

tJ

BOb 0
jj := r;1[Bo B1]ri = Boa 0

Boc 0
BOf Bf

[co] [ct.

COb COa COc

cor]C := ro1 C1 rs =
0 0 0 Cf
Cb 0 0 0

and
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3.2. Stoorvogel's theorem

We recall in this subsection a main theorem of Stoorvogel (1991) that will
play an important role in our present work. Before we introduce the theorem,
let us define the following quadratic matrices,

F (P) '= [AT P + PA + cic2 + y-2 PEET P
Y' BTP + Di C2

PB +TCiD2 J (3.10)D2D2

and

G (Q) := [AQ + QAT + EET + y-2Qcic2Q
Y CIQ + DIET Qci + ¥Dll (3.11)DIDI J

It should be noted that the above matrices are dual of each other. In addition to

these two matrices, we define two polynomial matrices whose role is again
completely dual.

L(P, s) := [sI - A - y-2 EET P - B] (3.12)
and

M(Q, s) := [SI - A -=-~~2QCiC2] (3.13)

Now we are ready to introduce the theorem of Stoorvogel (1991). We have the
following theorem.

Theorem 3.2: Consider system (2.1). Assume that (A, B ,C2, D2) and
(A, E, Cb DI) have no invariant zeros in Co. Then the following statements are
equivalent.

(1) There exists a linear, time-invariant and proper dynamic compensator
Fo(s) such that by applying u(s) = Fo(s)y(s) in (2.1) the resulting
closed-loop system is internally stable. Moreover, the Boo-norm of the
closed-loop transfer function from the disturbance input w to the
controlled output z is less than y.

(2) There exist positive semi-definite solutions P, Q of the quadratic matrix
inequalities F Y(P) ~ 0 and G y(Q) ~ 0 satisfying p( PQ) < y2, such that
the following rank conditions are satisfied:

(a) rank {F y(P)} = normrank {G2(s)}

(b) rank {Gy(Q)} = normrank{GI(s)}

(c) rank[Li:C':?] = n + normrank{G2(s)}, \:IsE COU C+

(d) rank [M(Q, s), Gy(Q)] = n + normrank {GI(s)}, \:IsE COU C+

where GI(s) = CI(sI - A)-I E + Db G2(s) = C2(sI - A)-I B + D2 and
'normrank' denotes the rank of a matrix with entries in the field of rational
functions.

Proof: For the proof see Stoorvogel (1991). D

4. Computational algorithm for y~

The algorithm for Ydinvolves the computation of two non-negative scalars Y~
and YQ which are respectively the infima in Boo-optimization of the system 1:



1406 B. M. Chen et al.

and its dual, where in each case the measurement output is replaced by the
system state. Computation of yp and YOprovides the necessary preliminary for
the computation of y(\'.

The following § 4.1 and 4.2 deal with the definition and computation of yp
and YO respectively, while in § 4.3 we present our main theorem regarding the
computation of y(\'.

4.1 Computation of yp
We define non-negative scalar yp as the infimum of H ",,-optimizationfor the

system,

t

i = Ax + Bu + Ew

.l'p: y = x

z = Czx + Dzu

By definition, yp is clearly equal to yi. However we use the terms yp and YOin
the next subsection to conform with the notation of matrix inequalities in
Stoorvogel's theorem. In what follows, we introduce a step-by-stepprocedure to
compute yp.

(4.1)

Step1
Transform the system (A, B, Cz, Dz) into the special coordinate basis (s.c.b)

described in § 3. To all sub-matrices and transformations in the s.c.b of .l'p, we
append the subscript 'p' to signify their relation to the system .l'p. Next we
compute

r;iE = [(E~p)T (EbP)T (E;p)T (Ecp)T (EfP)T)T (4.2)

It is simple to verify from the properties of s.c.b that the assumption (A2)
implies EbP = O. Also, for economy of notation, we denote np the dimension of
[ffinj9'+(A,B,Cz,Dz). We note that np=O if and only if the system
(A, B, Cz, Dz) is right-invertible and is of minimum phase.

Step 2
If the system (A, B, Cz, Dz) is of non-minimum phase and/or not right

invertible, we define

A .- [A~ap
UP .- 0

L~bPCbP
J

B .= [Btap

J
A .=[L~fP

JA ,up. B ' 13P. L~ ~ ~

CZIP := rOrp [~ ~pJ, CZ3P := rOrp [CfPOCjp]

and

Ap := AllP - A13P(Ci3PCZ3P)-ICi3PCZIP

BpB~ := BllPBIIP + A13P(Ci3PCZ3P)-1 AI3P

C~Cp := CilPCZIP + CiIPCZ3P(Ci3PCZ3P)-ICi3PC2IP

Then we solve for the positive definite solution Sp of the algebraic
Riccati equation,

matrix
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T T T
ApSp + SpAp - BpBp + SpCpCpSp = 0

together with the matrix T p defined by

T '- [Taap
p.- 0

(4.3)

gJ
where TaaPis the unique solution of the algebraic matrix Lyapunov equation,

A~apTaap + Taap(A~ap)T = E~p(E~p)T (4.4)

Here we note that (-Ap, Cp) is detectable since -Aaap is stable and
(AbbP, CbP) is observable. Also, the assumption (AI) implies that (Ap, Bp) is
stabilizable. Hence the existence and uniqueness of the solutions Sp and TaaP
follow from the results of Richardson and Kwong (1986).

Step 3
The scalar yp is given by

* -
{

YAmax(TpSpl)

YP - 0 if np = 0

Here we note that the eigenvalues of (TpS;l) are real and non-negative. (It is
shown in Wielandt (1973) that AB has as many positive, zero and negative
eigenvalues as A, if A is hermitian and B is hermitian and positive definite.)

Theorem 4.1: Consider the system .l'p given by (4.1). Then under the
assumptions (AI) and (A2),

if np > 0
(4.5)

(1) yp is the infimum of Roo-optimization for .l'p.

(2) for y> yp, the positive semi-definite matrix P(y) given by

P(y) = (r;"i)T [POJY) gJ r;pl
(4.6)

where

{

(Sp - y-ZTp)-l ifnp > 0
Po(y) =

0 if - 0l np-

is the unique solution of the matrix inequality Fy(P(y» ~ 0 and satisfies
both rank conditions (a) and (c) of Theorem 3.2. Moreover, such a
solution P(y) does not exist when y < yp.

Proof: This is a slight generalization of the result in Chen et al. (1990). It can
be easily shown following arguments similar to those in Chen et al. (1990). 0

Remark 4.1: Note that item (2) of the above theorem implies that y~~ yp. We
would also like to note that a similar result was obtained by Scherer (1990)
under the assumption that the system (A, B, Cz, Dz) has no infinite zeros. 0

The next lemma provides the necessary and sufficient condition for yp = O.

Lemma 4.1: yp = 0 if and only if 1m (E) ~ 9'+ (A, B, Cz, Dz).

Proof: Again, this is a slight generalization of the result in Chen et al. (1990).
In fact, the above result still holds when assumption (A2) is removed. 0

(4.7)
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4.2. Computation of YQ
As in the definition of Y~, the non-negative scalar YO is defined as the

infimum in H co-optimization for the dual system,

{

X=ATX+CIU+CiW

~Q: y = x

Z=ETX+DIu

Determination of YO follows exactly the procedure described in § 4.1 for the
computation of Y~ where it now applies to the subsystem ~Q of (4.8). For
completeness and to define properly matrices required in the computation Y~
and in our main theorem of § 4.3, we re-iterate here the three steps involved in
the computation of YO'

(4.8)

Step 1
Transform the system (AT, cI, ET, Di) into the special coordinate basis

(s.c.b) described in § 3. Again we add here the subscript 'Q' to all submatrices
and transformations in the s.c.b of the system ~Q' Next we compute

r;dci = [(E~Q)T (EbQ)T (E~Q)T (EcQ)T (EfQ)T]T (4.9)

It is simple to show from the properties of s.c.b that the assumption (B2)
implies EbQ = O. Again, for the economy of notation, we denote nQ the
dimension of "V+(A, E, Cl, Dl). Note that nQ = 0 if and only if the system
(A, E, Cb Dl) is left-invertible and is of minimum phase.

Step 2
If the system (A, E, Cb Dl) is

invertible, we define

A [A~Q
llQ:= 0

of non-minimum phase and/or not left

L~bQCbQ
J B '- [BtbQ

] A '- [L~fQ

]A ' llQ'- B ' l3Q'- LbbQ ObQ bfQ

C2lQ := rOrQ [~ C~Q]' C23Q:= rOrQ[Cf~CjQJ

and

AQ := AllQ - A13Q(Ci3QC23Q)-lCi3QC2lQ

BQB6 := BUQBIlQ + A13Q(C1c23Q)-l AI3Q

C6CQ := CilQC2lQ+ CilQC23Q(C1QC23Q)-lCi3QC2lQ

Then we solve for the positive definite solution SQ of the algebraic
Riccati equation,

T T T
AQSQ + SQAQ - BQBQ + SQCQCQSQ = 0

together with the matrix T Q defined by

matrix

(4.10)

TQ := [TOQ ~J
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where TaaQis the unique solution of the algebraic matrix Lyapunov equation,

A~QTaaQ + TaaQ(A~Q)T = E;Q(E;Q)T (4.11)

Again, existence of the solutions for SQ and T Q follows from the assumption
(B1) and the properties of s.c.b.

Step 3

The scalar YOis given by

{

"\fC(TQSQl) if nQ > 0
YO = .

0 If nQ = 0

We note that the eigenvalues of (T QSQl) are real and non-negative.

Theorem 3.2: Consider the system IQ given by (4.8). Then under the
assumptions (B1) and (B2),

(1) YO is the infimum of H~-optimization for IQ.

(2) for y> Yo, the positive semi-definite matrix Q(y) given by

Q(y) = (r;J)T [Q~Y) gJ r;J

(4.12)

(4.13)

where

Qo(y) ={~SQ - y-ZTQ)-1

if nQ > 0

if nQ = 0
(4.14)

is the unique solution of the matrix inequality Gy(Q(y» ~ 0 and satisfies
both rank conditions (b) and (d) of Theorem 3.2. Moreover, such a
solution Q(y) does not exist when y < YO'

Proof: This is a dual version of Theorem 4.1. D

Remark 4.2: Note that item (2) of the above theorem also implies that
y~~ YO' D

Again analogous to Lemma 4.1 we have

Lemma 4.2: YO = 0 if and only if <y+(A, E, Cl> D1) !;; Ker (Cz).

Proof: This is a dual version of Lemma 4.1. Again, the result is still true when
assumption (B2) is removed. D

4.3. Computation of yt
In this subsection, we provide our main results on a simple and non-iterative

procedure for the c()mputation of y~. First of all, we reformulate the
computation of y~ in the followinglemma.

Lemma 4.3: Let y~Q = max {y~, YO}.Then

y~ = inf{y E (Y~Qoo)lf(y) < yZ} (4.15)

where fey) = p[P(y)Q(y»), and P(y) and Q(y) are given by (4.6) and (4.13)
respectively.



1410 B. M. Chen et al.

Proof: It follows from Remarks 4.1 and 4.2 that y~~ y~Q' Next, for any
y E (Y~Q' 00) such that fey) < yZ, i.e. p[P(y)Q(y)] < yZ, then the
corresponding P(y) and Q(y) as given in (4.6) and (4.13) satisfy the conditions
of Theorem 3.2. Hence, y > y~. 0

One straightforward computation of y~ can be done via an iterative search
algorithm that involves in each step the multiplication of two matrices P(y) and
Q(y) of dimensions n x n and the determination of the spectral radius of the
product P(y)Q(y). This iterative search is costly and usually involves
computation of eigenvalues of stiff matrices since the product P(y)Q(y) could
become ill-conditioned as y approaches y~Q from above. Hence, the overall
procedure tends to be ill-conditioned. Note that as y gets close to y~, P(y)
contains the inverse of an amost singular submatrix and, similarly Q(y) contains
the inverse of an almost singular submatrix as y approaches YO (see (4.6) and
(4.13».

In contrast to the above iterative procedure, here we present an elegant,
well-conditioned and non-iterative algorithm for the exact computation of y~.
First we derive an explicit expression for fey) using (4.6) and (4.13). Then in
the case where min {np, nQ} > 0, we partition the product of the inverses of the
s.c.b state transformations as follows,

r;l(r;d) T = [r :] (4.16)

where r is of dimension np x nQ.
It is then straightforward to show that the scalar function f( y) is given by

f(y) = { Amax[(Sp- y-ZTp)-l:(SQ - y-ZTQ)-lrT]

if min {np, nQ} > 0

if min {np, nQ} = 0

(4.17)

The function fey) of (4.17) is a well-defined mapping from (Y~Q'00) to [0,00).
Its evaluation involves the computation of the maximum eigenvalue of a matrix
of dimension np x np, which is normally of a much smaller dimension than the
original product P(y)Q(y). We establish some important properties of the
function fey) in the following proposition.

Proposition 4.1: fey) is a continuous, non-negative and non-increasing function
of y on (Y~Q' 00).

Proof: The proof follows from Observation 4.1 of Chen et al. (1992). 0

The function fey) defined above can be extended as a mapping from
[Y~Q,00) to [0,00) by setting f(Y~Q) = limy~yi\'(/(Y)' It follows from Proposition
4.1 that the limit f(Y~Q) exists and could be finite or infinite.

Before stating our main result of this subsection regarding the computation
of y~, we need to establish several important propositions.

Proposition 4.2: fey) = yZ has either no solution or a unique solution in the

interval (Y~Q'00).

Proof: The result follows from Proposition 4.1 and the fact thatyZ is strictly
increasing for positive y. 0
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Proposition 4.3: If f( y) = y2 has no solution in the interval (Y~Q'00) then Y6 is
equal to Y~Q' Otherwise, Y6 is equal to the unique solution of f(y) = y2 in the
interval (Y~Q'00).

Proof: f( y) = y2 has no solution in the interval (Y~Q,00) implies that f( y) < y2
for all y E (Y~Q' 00) and hence according to Lemma 4.3, Y6= Y~Q'On the other
hand, it is obvious that Y6 is equal to the unique solution of f(y) = y2 when
such a solution exists. D

At a first glance, it seems that the solution of f(y) = y2 would involve the
rooting of a highly nonlinear algebraic equation in y. Actually its solution can be
achieved in one-step. Namely, the problem of solving f(y) = y2, if such a
solution exists in the interval (Y~Q,00), can be converted to the problem of
calculating the maximum eigenvalue of a constant matrix. In fact, we also show
that, when f(y) = y2 has no solution in the interval (Y~Q'00), the maximum
eigenvalue of this matrix is equal to y~Q, which is Y6as well. Define

{

(Sp - y-2Tp)-lr(sQ - y-2TQ)-lrT - y2I ifmin{np, nQ} > 0
N(y)=:

_y2 I if min {np, no} = 0

(4.18)

and

[

TpS:P1+ rs"(}rTs:p1 -rs"(/
]

.
I T I I If np > 0 and nQ > 0

-TQSa r S:p TQSa

T pS:p1 if np > 0 and nQ = 0

TQSal ifnp=OandnQ>O

0 if np = 0 and nQ = 0

We have the followingpropositions on the matrices M and N(y).

Proposition4.4: Eigenvaluesof M are real and non-negative.

Proof: It is trivial when min {np, nQ} = O. For
min{np, nQ} > 0, we have

A[M] = A{[~ ;Q] [Tp ~srrr~rT

M :=
(4.19)

the case where

-rSaI ][S:P1
Sal 0 ~] }

= A{[Sf

= A{[Sf

~][~
0
] [Tp+ rSalrT

T Q -SalrT
-rSaI

] }Sal

0 ][Tp + rSalrT
TQ -SalrT

-rSaI
] }Sal

(4.20)

Now, it is trivial to verify that both sub-matrices in (4.20) are symmetric and
positive semi definite. Then using the result of Weilandt (1973) (i.e. Theorem 3),
it is simple to show that the eigenvalues of M are real and non-negative. D

Proposition 4.5:

(i) N(y) has real eigenvalues for all y E (Y~Q'00).
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(ii) Amax[N(y)] = fey) - y2 is continuous and strictly decreasing on (Y~Q,00).

Proof: Again it is trivial when min {np, nQ} = O. For the case where
min {np, nQ} > 0, we have

(i) It is straightforward to show that (Sp - y-2Tp)-1 > 0 and
(SQ - y-2T Q)-l > 0 for all y E (Y~Q'00). Hence, all the eigenvalues of
N(y) are real for y E (Y~Q' 00).

(ii) It follows from Proposition 4.1. 0

Proposition 4.6: If min {np, nQ} > 0, then the roots of det[N(y)] = 0 are real.
Moreover, the largest root of det[N(y)] = 0 in the interval (Y~Q' 00) is equal to
V Amax(M) .

Proof: Using the definition of N(y) in (4.18), we have

det[N(y)] = (-1)npdet[y2I - (Sp - y-2Tp)-lr(sQ - y-2TQ)-lrT]

( 1) np

= - det [y2S - T - Y2r(y2S - T ) -lrT ]
det[Sp - y-2Tp] p p Q Q

(-1)np d t[
y2Sp - Tp r ]= e 2 T 2

det[Sp - y-2Tp] det [y2SQ - TQ] Y r y SQ - TQ

(-1)npdet[Sp]det[SQ] 2
= 2 2 det [y I - M]

det[Sp - y- Tp]det[y SQ - TQ]

Now it is simple to see that the roots of det[N(y)] = 0 are real since all the
roots of det[y2Sp-Tp]=0, det[y2SQ-TQ]=0 and det[y2I-M]=0 are
real. Moreover, it follows from (4.5) and (4.12) that det[Sp - y-2Tp] *0 and
det[y2SQ-TQ]*0 for all YE(Y~Q'oo). Hence, the largest root of
det[N(y)] = 0 in (Y~Q' 00) is equal to the largest root of det[y2I - M] = 0,
which is equal to V Amax(M). 0

The main result of this subsection is summarized in the followingtheorem.

(4.21)

Theorem 4.3:

Yo = v' Amax(M)

where M is defined in (4.19).

Proof: The result is obvious for the case where min {np, nQ} = O. In what
follows, we proceed to prove our claim for the case where min {np, nQ} > O.

First, we will show that Yois equal to the largest root of det[N(y)] = 0 when
f( y) = y2 has a unique solution in the interval (Y~Q,00). It is simple to observe
that det[N(yo)] = 0 since Amax[N(yo)] = f(yo) - (YO)2 = O. Now suppose that
there exists a Yl such that det[N(Yl)] = 0 and Yl > Yo. This implies that there
exists an eigenvalue of N(Yl)' say Ai[N(Yl)], such that Ai[N(Yl)] * Amax[N(Yl)]
and Ai[N(Yl)] = O. Thus, we have

Amax[N(Yl)] > Ai[N(Yl)] = 0 = Amax[N(yo)],

contradicting the findings in Proposition 4.5 that Amax[N(y)] must be a non-in-
creasing function. Hence, Yo is the largest root of det [N (y)] = 0 and it is

equal to V Amax(M) as shown in Proposition 4.6.
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Now we consider the situation when f(y) = yZ has no solution in the interval

(YPQ,oo). In this case, clearly we have Yt= YPQ and O:%;f(YPQ):%;(YPQ)z. The
last inequality and the definition of N(y) in (4.18) imply that
-(YPQ)z :%;Ai[N(YPQ)]:%;O. Thus, the determinant of N(YPQ) is bounded.
Evaluatng (4.21) at Y= YPQ,we have

det[N(YPQ)]det[Sp - (YPQ)-zTp]det[(YPQ)zSQ- TQ]

= (_1)np det[Sp] det [SQ]det [(YPQ)zI - M] (4.22)

Note that from (4.5) and (4.12) and the definition of YPQ,we have

det[Sp - (YPQ)-zTp]det[(YPQ)zSQ - TQ] = 0

and since det [N (YPQ)]is bounded, it follows from (4.22) that

det [(YPQ)zI - M] = 0

or (YPQ)zis an eigenvalueof M. Furthermoresincedet[N(y)] =0 and similarly
det[yZ1- M] = 0 do not have a root in (YPQ, 00), hence YPQ= V Amax(M). 0

We illustrate our main result in the following example.

Example: Consider a given system characterized by

and

A::-ap = 1, E;p = [5 1]

Then, solving equations (4.3) and (4.4), we obtain

[

0.556281 0.185427 -0'305593

J
Sp = 0.185427 0.395142 0.231469,

-0.305593 0.231469 1.217984 [

13

Tp = ~

0
0
0 ~J

A [[

1 1 0

il B [t

0

rl
E

]

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

C1 = [
-2 -3 -2 -

Dl = [ J2 3 2 l'

C, l

0 1 0

n D, l

0

J

0 0 0 0
1 0 0 0
0 1 0 0

Step 1
It is simple to verify that the subsystem (A, B, Cz, Dz) is neither left- nor

right-invertible with one invariant zero at s = 1. Also, assumption (A 2) is
satisfied. Moreover, it is already in the form of s.c.b with

Ap [

1

n BpB [!

1

n CCp [

0

J
1 1 1
1 1 0
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Step 2
The subsystem (A, E, Cb D1) is invertible and of non-minimum phase with

invariant zeros at {-1.630662, -3.593415,0.521129 :t jO.363043}. Hence, as-
sumption (B 2) is automatically satisfied. Applying s.c.b transformation to
(AT, cI, ET, Di), we obtain

[

-0.011218
0.185213

rsQ = -0.919232
0.279141

-0.206551

-0.106028
-0.745725

0.096732
0.532936

-0.373195

-0.906482
0.194520
0.326906
0.087364
0.161098

-0.212184
-0.119195
-0.603079
-0.581308

0.489027

0.090909

]

0.181818
0.272727
0.181818
0.090909

rOrQ = 1

+ [0.433179
AQ = AaaQ = 0.551005

and

CT C = [0 O

J E+ = [-0.769496 0.010023 0.448951 -0.769496

JQ Q 0 0' aQ -0.090061 0.655677 -1.044466 -0.090061

Again, solving equations (4.10) and (4.11), we obtain

[ 0.026333 -0.021114

J [
1.274771 -0.555799

JSQ = -0.021114 0.043965' TQ = -0.555799 1.764580

Step 3
Evaluate

[

0.500695
-0.442374

M = 102 X 0.616882
1.074941

-0.583103

We obtain

-0. 253237
J

T [ 0.033508
0.609080 ' BQBQ = -0.018630

-0.334250
0.992368

-0.513348
-1.295698

1.526365

0.245016
-0.260321

0.588766
0.921909

-0.286520

0.082332
0.032515
0.501907
0.622391
0.180099

-0.018630

J0.030289

0.052125

]

0.253182
0.261525
0.172484
0.487850

0

5. Other related results

Results developed in §4 can also be used to examine solvability conditions of
almost disturbance decoupling problems with internal stability and to establish
exact conditions where Y6 = yi.

Y6= 13.638725

5.1. Almost disturbance decoupling with stability

The problem of almost disturbance decoupling was first introduced by
Willems (see Weiland and Willems (1989) for a recent result and related
references). The basic problem is the design of a linear time-invariant internally
stabilizing controller using output feedback such that the controlled output z is
approximately decoupled from the disturbance input w. The more precise
definitions of these problems are given below.

Definition 5.1: Consider the system of (2.1) with C1 = I and Dl = 0, i.e.,
y = x. Then we say that the H co-Almost Disturbance Decoupling Problem with
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internal Stability (ADDPS)Hoo is solvable if for all E> 0 there exists a state
feedback law u = Fx for the system defined above such that the closed-loop
system is internally stable and the H oo-normof the transfer function between the
disturbance input wand the controlled output z is less than E. 0

Deimition 5.2: Consider the system of (2.1), we say that the H oo-Almost
Disturbance Decoupling Problem with Measurement feedback and internal
Stability (ADDPMS)Hoo is solvable if for all E> 0 there exists an output
feedback law u(s) = Fo(s)y(s) such that the closed-loop system is internally
stable and the H oo-norm of the transfer function between the disturbance input
wand the controlled output z is less than E. 0

From the above formulation, it is obvious that solvability conditions for
(ADDPS)Hoo and (ADDPMS)Hoo are exactly the conditions where Yi= 0 and
Y6= 0 respectively. Solvability conditions for (ADDPS)Hoo with Dz = 0 and for
(ADDPMS)Hoo with Dl = 0 and Dz = 0 are well-known (see Weiland and
Willems 1989). In the following theorem, we extend these results to the general
case when Dl *"0 and/or Dz *"O.

Theorem 5.1: Consider the system ~ as given by (2.1). Let C1 = I and Dl = 0,
i.e. y = x. Then (ADDPS)Hoo is solvable under the assumption (AI) if and only
if Im(E) ~ g+(A, B, Cz, Dz).

Proof: The proof follows from Lemma 4.1. 0

Theorem 5.2: Consider the system ~ as given by (2.1). Then (ADDPMS)Hoo is
solvable under the assumptions (AI) and (B1) if and only if

(1) Im(E) ~ g+(A, B, Cz, Dz),

(2) V+(A, E, Cb D1) ~ Ker(Cz),

(3) V+(A, E, Cb D1) ~ g+(A, B, Cz, Dz).

Proof. (=»: It follows from Lemmas 4.1 and 4.2 that the firt two conditions
imply Yt = YO= 0 and

T p = 0 and T Q = 0 (5.1)

Also, it is simple to verify that

V+(A, E, Cb D1) = 1m {(r;d)T[ I~Q])

and

g+ (A, B, Cz, Dz) = Ker ([Inp o]r;h

Then, it is easy to see that the condition

V+(A, E, Cb D1) ~ g+(A, B, Cz, Dz) (5.2)

holds if and only if

[Inp o]r;l(r;d)T [IOQ] = r = 0

Equations (5.1) to (5.3) imply that M = 0 and hence Y6= o.

(5.3)
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(<=): Conversely, it follows from Lemma 4.3 that Yo= 0 implies
y~ = YQ= O.Then, by Lemmas 4.1 and 4.2, we have

1m(E) ~ g+(A, B, Cz, Dz), <Y+(A,E, Cl, Dl) ~ Ker(Cz)

and

Tp = 0, TQ = 0

Thus,

M ~ [rs<;,rSpl -~SQJ

Now, it is simple to see that Yo= V Amax(M) = 0 implies r = 0 and hence

"V+(A, E, Cl, Dl) ~ g+(A, B, Cz, Dz)

This completes the proof of Theorem 5.2. 0

5.2. When Yo is equal to y:

An interesting question in H ",-optimization problem is under what
conditions the infimum in H ",-optimization via output feedback is equal to that
achieved using state feedback. In the following theorem we provide a necessary
and sufficient condition under which Yo= y~.

Theorem 5.3: Consider the system ~ given by (2.1) that satisfiesthe assumptions
(AI), (A2), (Bl) and (B2). Then Yo= y~ if and only if

{

Amax(TpSpl) if np > 0
Amax(M)=

0 ;1' - 01) np -

Proof: The proof follows from Theorems 4.1 and 4.3.

Corollary 5.1:

(1) If (A, E, Cb Dl) is left-invertible and is of minimum phase, i.e. nQ = 0,
then Yo= y~.

(2) If (A, B, Cz, Dz) is right-invertible and is of minimum phase, i.e. np = 0,
then Yo = y~ if and only if <Y+(A,E, Cb Dl) ~ Ker(Cz).

(3) If both np and nQ are non-zero, then Yo= yi if
<y+(A, E, Cb Dl) ~ g+ (A, B, Cz, Dz) and Amax(TQSQl) ~ Amax(TpSpl).

Proof: Items (1) and (2) are obvious in view of Theorem 4.3 and Lemma 4.2.
To prove item (3), let us consider the following. It follows from (5.2) and (5.3)
that

0

"V+(A, E, Cl, Dl) ~ g+(A, B, Cz, Dz)

implies r = 0 and hence

M = [Tpgpl TQ~QlJ

Thus the result is trivial in view of the fact y~ = yi. 0
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6. Conclusions

In this paper we have extended the results of Chen et at. (1992) and
presented a simple and non-iterative algorithm for the computation of the
infimum for a class of singular H ",-optimization problems using output
feedback. We have shown that this infimum is equal to the square root of the
maximum eigenvalue of a constant matrix that can be easily obtained from the
system matrices of :1:. Our results are obtained under the assumptions that the
two subsystems :1:pand :1:Qhave no invariant zeros on the jw axis and satisfy
certain geometric conditions. The proposed algorithm for computing the
infimum is applicable to the general case of a singular H ",-optimization problem
where no restrictions have been placed on the direct feedthrough matrices from
the control input to the controlled output, and from the disturbance to the
measurement output. Our current research effort is directed toward removing
some of the assumptions imposed in this paper on :1:pand :1:Q.
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