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Non-iterative computationof infimumin discrete-timeHoo-optimization
and solvability conditions for the discrete-timedisturbancedecoupling
problem

BEN M. CHENt, YI GUot and ZONGLI LIN~
t{

A non-iterative method for the computation of the infimum for a class of discrete-
time.H00 optimal control problems, and the solvabilityconditions for the general
discrete-time disturbance decoupling problem are given in this paper. The method for
the computation of the infimum is applicable to systems where the transfer functions
from the disturbance input to the measurement output and from the control input to
the controlled output are free of unit circle invariant zeros and satisfy certain
geometric conditions. The solvability conditions we obtained for the general discrete-
time disturbance decoupling problem are also necessary and sufficient conditions.

J

1. Introductionand problemstatement

A great deal of work has been done on the study of the H 00 optimal control
problem in both continuous-time setting (see for example, Doyle et at. 1989, Francis
1987, Glover 1984, Kimura 1989, Khargonekar et at. 1988, Stoorvogel 1992), and
discrete-time setting (see for example, Basar and Bernard 1989, Stoorvoge1 1992,
Stoorvogel et at. 1994), since the original formulation of the problem by Zames (1981).
On the other hand, the disturbance decoupling problem was first introduced by
Willems in the early 1970s(see Weiland and Willems 1989,and Stoorvogel and van der
Woude 1991, for recent results and related references). Recently, Stoorvogel (1992)
has obtained a very interesting interconnection between the Hoo optimal control
problem and the disturbance decoupling problem. By performing certain system
transformations, he was able to transform the solution of an Hoooptimal control
problem to the solution of an auxiliary disturbance decoupling problem.

In this paper, we first address the problem of the computation of the infimum in
discrete-time Hoo optimization. The algebraic Riccati equation, or ARE-based
approach to this problem (see for example Stoorvoge1 et at. 1994)provides an iterative
scheme of approximating the infimum (denoted here by y*) of the Hoo-norm of the
closed-loop transfer function. As is well-known, this kind of search procedure is
exhaustive and can be very costly. More seriously, as y gets close to y*, numerical
solutions for these AREs can become highly sensitive and ill-conditioned. So, in
general, the iterative procedure for the computation of y* based on AREs is not
reliable and thus should not be used to determine the infimum y*. Recently, Chen
(1995b) proposed a non-iterative method for computing this y* for a class of discrete-
timeH00-optimizationproblemsin whichthe transfer functionfrom the disturbanceto
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the measurement output is left invertible, and the transfer function from the control
input to the output to be controlled is right invertible. In this paper, we extend his
result by replacing the above conditions by certain weaker geometric conditions.
The second result of the paper deals with the problem of discrete-time disturbance
decoupling. We would like to point out that most of the results on disturbance
decoupling in literature are in continuous-time setting. To the best of our knowledge,
there has been no report in the literature that deal with the necessary and sufficient
solvability conditions for the general discrete-time disturbance decoupling problem.
We will derive for the first time a set of solvability conditions for this problem.

We consider in this paper the following standard linear time-invariant discrete time
system I characterized by

x(k+ 1) = Ax(k) + Bu(k) + Ew(k)

1

y(k) = C1x(k) + Dl2 w(k)

z(k) = C2x(k) + D21u(k) + D22w(k)

(1.1)

where x E ~n is the state, u E ~m is the control input, y E ~l is the measurement, w E ~q
is the disturbance and z E~ P is the output to be controlled. A, B, E, C1,D12,C2,D21
and D22are constant matrices of appropriate dimension. Throughout this paper, we
assume that (A, B) is stabilizable and (A, C1) is detectable and, as in most of the Hoo
control literature, we also assume that both the subsystems (A, B, C2,D21) and
(A, E, C1,D12)are free of unit circle invariant zeros. Without loss of generality but for
simplicity of presentation, we further assume that matrices [C1 D12]and [B' D;l] are
of maximal rank. The Hoooptimal control problem is to find an internally stabilizing
causal controller such that the Hoo-norm of the overall closed-loop system is
minimized. To be more specific, we will investigate dynamic feedback laws of the form

Ie: Jxe(k+ 1) = KXe(k) + Ly(k)
1 u(k) = MXe(k) + Ny(k)

(1.2)

We will say that the controller Ie of (1.2) is internally stabilizing when applied to the
system I, if the following matrix is asymptotically stable

A .=
[

A+BNCI BM

]el' LC1 K
(1.3)

i.e. all its eigenvalues lie inside the open unit disc of the complex plane. Denote by Gel
the corresponding closed-loop transfer matrix. Then the H 00 norm of the transfer
matrix Gelis given by

IIGellloo:= sup O"maJGelejCO)]
COE[O.21t]

where O"max[']denotes the largest singular value. The infimum y* can now be formally
defined as

y*:= inf{IIGelllooIIe internally stabilizes L} (1.4)

Given a y > y*, the Hoooptimal (or more precisely suboptimal) control problem is to
find an internally stabilizing controller Ie such that the resulting IIGellioo< y. Also, Ie
is said to be a y suboptimal controller for I if the corresponding IIGellioo< y. The
discrete-time disturbance decoupling problem for I of (1.1) is rather easy to define at
this stage. It is simply to find an internally stabilizing controller Ie such that the
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resulting Gcl = 0 and hence y* is equal to zero. The goals of this paper are to present
a non-iterative method that computes exactly this y* for X;under assumptions (AI)
and (A2) given in §3, and to derive a set of necessary and sufficient conditions under
which the disturbance decoupling problem for X;is solvable.

The remainder of this paper is organized as follows. In §2, we recall some
background material, i.e. the special coordinate basis of linear systems, which is
instrumental to the derivation of the main results of the paper. Section 3 gives non-
iterative algorithms for computation of y* for three common cases, i.e. the full
information, the output feedback and the state feedback cases, while §4 derives a set
of necessary and sufficient conditions under which the disturbance decoupling problem
for X;is solvabl~. Finally, concluding remarks are made in §5.

For a system characterized by a matrix quadruple (A, B, C, D), we define the
following two geometric subspaces.

(1) r -(A, B, C, D) is the maximal subspace of [Rnwhich is (A + BF)-invariant and
contained in Ker(C+DF) such that the eigenvalues of (A +BF)lr- are inside
the open unit disc of the complex plane for some F.

(2) !I'-(A, B, C, D) is the minimal (A + KC)-invariant subspace of [Rncontaining
1m (B + KD) such that the eigenvalues of the map which is induced by (A + KC)
on the factor space [Rnj!l' - are contained inside the open unit disc of the
complex plane for some K.

Obviously, r-(A,B,C,D) = [Rnj!l'-(A',C',B',D'). Throughout this paper, the fol-
lowing notation will also be used:

X' := transpose of matrix X
xt := generalized inverse of matrix X

1:= identity matrix with appropriate dimension
Ker (X) := kernel of X
1m (X) :=image of X

A(X) := set of eigenvalues of a real square matrix X
Amax(X):= maximum eigenvalue of X where A(X) c [R

O"max(X):=maximum singular value of matrix X
C-1{.or}:={x ICXE.or},where.or is a subspace

2. Backgroundmaterial

In this section, we recall from Sannuti and Saberi (1987) and Saberi and Sannuti
(1990) the special coordinate basis for linear systems. Consider the system described by

x(k+ 1) = Ax(k) + Bu(k) + Ew(k)

!z(k) = C2x(k) + D21u(k)
(2.1)

It can be easily shown that using singular value decomposition one can always find an
orthogonal transformation U and a non-singular matrix V that put the direct
feedthrough matrix D21into the following form

UD21 V = [~ ~]
(2.2)

where r is in the rank of D21.Without loss of generality one can assume that the matrix
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D21in (2.1) has the form as shown in (2.2). Thus, the system in (2.1) can be rewritten
as

x(k+ 1) = Ax(k)+ [Bo B1](~:~~D+EW(k)

(
Zo(k»

)=
[

C2'0

]
x(k) +

[

1r 0

] (
uo(k»

)zl(k) C2,1 0 0 u1(k)

(2.3)

where Bo, B1, C2,0 and C2,1 are matrices of appropriate dimensions. Note that the
inputs Uoand U1'and the outputs Zoand Zl are those of the transformed system. Namely

u = v(~:) and (;:)= Uz

Also, note that the Hro-norm of the system transfer function from W to Z remains
unchanged when we apply an orthogonal transformation on the output z, and under
any non-singular transformations on the states and control inputs. We have the
following theorem.

Theorem 2.1: Consider the linear system as given in (2.1). Assume that (A, B, C2,D21)
has no invariant zeros on the unit circle. Then, there exist non-singular transformations
Ts, Ti and To such that

Xc

x=Ts
~f , (~:) = Ti

[

~:

]

, Z = To

[

;:
IXd Uc Zb

Xb

(2.4)

and

T;l(A - Bo C2,0)Ts =

T;l E =

Ec
E~
E;
Ed
Eb

(2.5)

T;l[Bo B1]Ti =

Boc 0 Bc

Boa 0 0

~a 0 0

BOd Bd 0

BOb 0 0

COb

] [

1r

0 , T~l D21Ti = 0
Cb 0

(2.6)

[

C

]
[

Coc Coa cta COd

T~l 2,0 Ts = 0 0 0 Cd
C2,1 0 0 0 0

0 0

]

0 0
0 0

(2.7)

Acc BcEa BcEa LCd Cd LCb Cb

0 Aa 0 Ld Cd Lb Cb
0 0 A;a L;d Cd L;b Cb I'

Bd Edc BdEa BdEa Add Bd Edb
0 0 0 Lbd Cd Abb
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where the pair (Ace'Be) is completely controllable, the pair (Abb'Cb) is completely
observable, while the subsystem (Add'Bd, Cd) is invertible and free of invariant zeros.
Also, A(A;") and A(A;a)are respectively the sets of unstable and stable invariant zeros of
(A, B, C2,D21).Moreover, thepair (A, B) is stabilizable if and only if thepair (Aeon'Beon)
is controllable, where

[

A:a L:d Cd L:b Cb

]

Aeon := Bd E~a Add Bd Edb

0 Lbd Cd Abb [

~a 0

]
and Beon:= BOd Bd

BOb 0

(2.8)

Also, (A, B, C2,D21) is left invertible if and only if Xc is non-existent,' it is right
invertible if and only if xb is non-existent,' it is invertible if and only if both Xb and

Xc are non-existent. Furthermore, x; EBXc spans the subspace "f/-(A, B, C2,D21) and
x: EBXcEBxd spans the subspace Y-(A, B, C2,D21). For further use, we define
nx:= dim (x:) + dim (xd)+dim (xb).

Proof: For the proof see Sannuti and Saberi (1987), and Saberi and Sannuti (1990),
where the continuous-time counterpart was proven and the state variables x; and x:
were not separated. The separation of x; and x: for discrete-time systems can be easily
done using the algorithm given by Chen (1995a). One can slightly modify the m-file,
scb.m, in the toolbox of Lin et at. (1991) to yield a Matlab function that realizes the
above special coordinate basis. D

3. Non-iterative proceduresfor computinginfimum

We present in this section our first result, i.e. the non-iterative algorithms for
computing the infimum y* of discrete-time Hoooptimization for I: of (Ll). For the
sake of simplicity,we will first assume that D22 = O.The case when D22=F0 will be
discussed later. It is then without loss of generality to assume that [C2 D21]and [E' D~2]

are of maximal rank. Throughout this section, we also assume that the following two
conditions are satisfied

(AI): 1m (E) s; "f/-(A, B, C2,D21)+Y-(A, B, C2,D21)'and

(A2): Ker (C2) ::2"f/ -(A, E, C1, D12) n Y -(A, E, C1, D12)

Note that these assumptions are not essential and might be further relaxed. Moreover,
they are automatically satisfied if (A, B, C2,D21)is right invertible and (A, E, C1,D12)is
left invertible. The general interpretations of the above conditions are rather simple
under the special coordinate basis and will be given later.

This section is divided into three subsections. The first subsection deals with the full
information case, while the second subsection deals with the general output feedback
case. The full state feedback problem is then treated as a special case in the second
subsection. A numerical example that illustrates our algorithms for the computation
of the infimum y* is given in §3.3.

3.1. The full information case

We assume that y = [x'w']', which implies that the condition (A2) is automatically
satisfied. Without ofloss generality but for simplicity of presentation of our results, we
also assume that D21 is in the form of (2.2). In what follows, we state a step-by-step
algorithm for the computation of the infimum y*.
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Step 1. Transform the following system

x(k+ 1) = Ax(k) + Bu(k) + Ew(k)

Iz(k) = C2x(k)+D2lU(k)
(3.1)

into the special coordinate basis as given by Theorem 2.1 and define Ax, Bx, Bxo,BXl'
Ex, Cx and Dx as follows

[

A':' L:d Cd L:b Cb

] [

Bta 0

] [

E;.

]
Ax := Bd E~a Add Bd Edb , Bx := [Bxo BXl]:= BOd Bd , Ex:= Ed

0 LbdCd Abb BOb 0 Eb

(3.2)

and

[

0 0 0

] [

I 0

]
Cx:= To 0 Cd 0 , Dx = To 0 0

0 0 Cb 0 0

Note that assumption (AI) implies and is implied by the fact that Eb in (3.2) is always
equal to zero. Also, it follows from the property of the special coordinate basis that the
pair (Ax, Bx) is completely controllable.

(3.3)

Step 2. Find a matrix F;,such that Ax + BxF;,has no eigenvalues at -1. Then define Ax,
Ex, Ex, cx, jjx and jj22 as

Ax:= (Ax + BxF;, + I)-l (Ax + BxF;,-I)

Ex:= 2(Ax+BxF;,+I)-2 Bx

Ex := 2(Ax + Bx F;,+ I)-2 Ex

Cx:= Cx+DxF;,
(3.4)

jjx:= Dx-(Cx+DxF;,)(Ax + BxF;,+I)-l Bx

jj22:= -(Cx+DxF;,)(Ax+BxF;,+I)-l Ex
)

Step 3. Solve the following continuous-time algebraic Riccati equation and algebraic
Lyapunov equation, both independent of y

0 = [Ax- Ex(jj~jjxtl jj~Cx]Sx + Sx[Ax - Ex<jj~jjxtl jj~ Cx]'

- Ex<jj~jjxtl E~+ Sx[C~Cx- c~jjx<jj~jjxtl jj~ Cx]Sx (3.5)

0 = [Ax- Ex<jj~jjxtl jj~ Cx]~+ T,,[Ax - Ex<jj~jjxtl jj~ cx]'

-[Ex-Ex<jj~jjxtl jj~jj22][Ex-Ex<jj~jjxtl jj~jj22]' (3.6)

for positive definite solution Sx and positive semi-definite solution ~. For future use,
we define

Sx:= (Ax+BxF;,+I)Sx(A~+F~B~+I)/2 (3.7)
and

1:.:= (Ax + BxF;,+1) ~(A~+F~B~+I)/2 (3.8)

Step 4. The infimum, y*, is given by

y* = (AmaX<~S~l»l/2 = (Amax(1:.S~l»l/2 (3.9)
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Proof of the algorithm: Following the results of Chen et al. (1994) and Stoorvogel et
al. (1994), it is straightforward to show that the following three statements are
equivalent.

(1) There exists a y suboptimal controller for L of (1.1) with C1 = (~) and

D12= e).

(2) There exists a y suboptimal controller for the following auxiliary system

xx(k+ 1) = Axxx(k) +Bx ux(k) +Ex wik)

yik) = e)xik) +(~)Wx(k)

zx(k) = Cxxx(k) +Dx ux(k)

(3.10)

where Ax, Bx, Ex, Cx and Dx are defined as in (3.2) and (3.3).

(3) There exists a y suboptimal controller for the following auxiliary system

:: = ~)~,+~'~' :~1~"
I

(3.11)

Zx - Cxxx+Dxux+D22Wx

where Ax, Bx, Ex, cx, 15xand 1522are as defined in (3.4).

We would like to note that items (2) and (3) above are also equivalent to the following.

(1) There exists a solution Px> 0 to the following discrete-time algebraic Riccati
equation

P = A' PAC C _
[

B~PxAx+D~Cx
]
' G (P )-l

[

B~PxAx+D~Cx

]
(312 )

x x x x+ x x E' P A x X E' P A .x x x x x x

where

Gx(Px):=[D~ODx -~2J]+[;:]Px[Bx Ex]
(3.13)

such that the following conditions are satisfied

~:=B~PxBx+D~Dx > 0

Rx:= y2J-E~PxEx+E~PxBx V~l ~PxEx > 0

(3.14)

(3.15)

(2) There exists a solution ~ > 0 to the following continuous-time algebraic
Riccati equation

0 = P A +1"P +C' C- _
[

B~~+15~Cx
]

/

G--1
[

B~Px+151 C

]
x x x x x X -, - - - - - x x

ExPx+D;2CX X E' P +D' C
with x x 22 x

(3.16)

- - - - 1--
D;2[J-DiD~Dxt D~]D22< y2J (3.17)
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and

G :=
[
~J5-: - i5~i5222

]x D;2Dx D;2D22-y I
(3.18)

Furthermore, the solutions to the above Riccati equations, if they exist, are related by

Px = 2(A~+F~B~+1)-1Px(Ax+BxF;,,+1)-l (3.19)

Thus, it is equivalent to show that y* given by (3.9) is the infimum for system E of
(Ll) by showing that it is an infimum for the auxiliary system in (3.11). This can be
done by first showing the properties of the auxiliary system of (3.11) and then applying
the results of Chen et al. (1992b). We note that the matrix F;"in Step 2 of the algorithm
is a pre-state feedback gain, which is introduced merely to deal with the situation when
Ax has eigenvalues at -1 and the inverse of 1+ Ax does not exist. For the sake of
simplicity but without loss of generality, we will hereafter assume that Ax has no
eigenvalues at -1 and F;"= O.We will first show the following three facts associated
with the auxiliary system (3.11): there exists a pre-disturbance feedback to the system
in (3.11) in the form of

ilx = ~ wx+vx (3.20)
such that

(1) i522+i5Jt = 0

(2) Im(Ex+ExFw) C;;Y-(Ax,Ex,cx,i5x)+Y-(Ax,Ex,cx,i5x), and

(3) (Ax, Ex, cx, i5x)is left invertible, and is free of infinite zeros and stable invariant
zeros as well as invariant zeros on the unit circle.

In fact, we will show that such an Fwis given by

Fw= -(i5~i5xt1 i5~i522 (3.21)

In order to make our proof simpler, we first apply a pre-state feedback law

[

0 0 0

]Ux = F;"xx+vx = - E+ 0 E xx+vxda db
(3.22)

to the system in (3.10) such that the resulting dynamic matrix Ax+BxF;" has the
following format

[

A;a L;d Cd L;b Cb

]

0 Add 0

0 Lbd Cd Abb

(3.23)

while the rest of system matrices in (3.10) remain unchanged. Hence, it is without loss
of generality to assume that Ax is already in the form of (3.23). Also, we assume that
both Addand Abbhave no eigenvalues at - 1. Then it is simple to verify that

[

(A;a+ 1)-1
(Ax+1)-l = 0

0

Xl X2

]
(Add + 1)-1 0

-(Abb+1)-l LbdCctCAdd + 1)-1 (Abb+1)-l

(3.24)

where
Xl = - (A;a+ 1)-1 [L;d - L;b Cb(Abb+ 1)-1 Lbd] CctCAdd+ 1)-1

X2 = -(A;a + 1)-1 L;b Cb(Abb + 1)-1

(3.25)

(3.26)
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and

- -1
Dx = Dx-Cx(Ax+I) Bx

= To

[

-CiAddI+I)-1 BOd -CiAd~+1)-1 Bd

]X3 Cb(Abb+ I)-I Lbd CiAdd + 1)-1 Bd

where

X3 = Cb(Abb + I)-I Lbd CiAdd + I)-I BOd - Cb(Abb + I)-I BOb (3.27)

Define

[

I ° 0

]

fo = To - CiAdd+ I)-I BOd - Cd(Add+ I)-I Bd °
X3 Cb(Abb+ 1)-1LbdCiAdd + I)-I Bd I

We note that fo is non-singular. This follows from the property of the special
coordinate basis that the triple (Add'Bd,Cd) is square and invertible with no invariant
zeros, and hence CiAdd + 1)-1Bd is non-singular. Then we have

(3.28)

D, ~ To [~ !]
(3.29)

and

D22 = -CiAx+I)-1 Ex =
[

-C,(A,~+1)-' E,
]

= fo

[

~4

]Cb(Abb+ 1)-1 Lbd CiAdd + 1)-1 Ed °

(3.30)

where

X4 = [CiAdd + 1)-1 Bd]-1 CiAdd + I)-I Ed (3.31 )

It is now obvious to see that the following pre-disturbance feedback law to (3.11)

- F- - -
[

°

]

- -
Ux = w Wx+Vx = - X4 Wx+Vx

(3.32)

is such that D22+DxFw = 0. We also have

E, + BE" ~ 2(A, + 1)-' (E, + BJw) ~ 2(A. + W' [ ~ ]

(3.33)

where

E1 = Ed-Bd[CiAdd +1)-1 Bd]-1CiAdd + I)-I Ed (3.34)

This shows the first fact. Since Dx is of maximal column rank, it follows that the above
~ is also equivalent to -(D~Dxr1 D~D22.Next, let us proceed to prove the second
fact, i.e.

1m(Ex + BxFw)~ "Y-(Ax' Bx, cx, Dx) +Y'-(Ax' Bx, cx, Dx)



442 B. M. Chen et al.

We will have to apply several non-singular state transformations to the system

~x: ~x~x+~x~x+(Ex+ExFw)Wx l
Zx - Cxxx+Dxvx f

and transform it into the form of the special coordinate basis as given in Theorem 2.1.
First let us define a state transformation

(3.35)

T;, = (Ax + 1)-2 (3.36)

In view of (3.24), it is straightforward, although tedious, to verify that

[

(A;a+ I)-2 * *

]
T;, = 0 (Add+ I)-2 0

0 Xs (Abb+ I)-2

(3.37)

where * represents matrices of not much interest and

Xs = - (Abb + I)-I [Lbd CiAdd + I)-I + (Abb + I)-I Lbd Cd] (Add + I)-I (3.38)

and

Ax:= t~1Ax ~ = (Ax-1) (Ax + I)-I

[

(A;a - I)(A;a + I)-I * -1 2(A;a+ I)-I L;b Cb(Abb+ 1)-1

]
= 0 ~M-I)~M+I) 0

0 2(Abb+ I)-I 4d Cd(Add+ I)-I (Abb- I)(Abb + I)-I

(3.39)

[

~a 0

]
Bx := t~1 Ex = 2Bx = 2 BOd Bd

BOb 0

E, ,~ t;:'(E, + k.F.) ~ 2 [ ~n, whe;e E, ~ 0

[

0 0 0

]
Cx:=cxT;,=fo 0 -[CiAdd+I)-:2Bd]-ICiAdd+I!~2 0 -2 (3.42)

0 - Cb(Abb + I) Lbd CiAdd + I) Cb(Abb+ I)

D,~ D, ~ ToU !]

(3.40)

(3.41)

(3.43)

In order to bring the system of (3.35) into the standard form of the special coordinate
basis, we will have to perform another state transformation that will cause the (3,2)
block of Cx in the right-hand side of (3.42) to vanish. The following transformation 1':x
will do the job,

[

I 0 0

]

1':x= 0 1 0
0 Lbd CiAdd + I)-I (Abb + I)2

(3.44)
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It is quite easy to verify this time that

Ax := f~1 Ax '4

443

-

[

(A;a - I) (A;a + I)-I * -1 2(A;a+ I)-I L;b Cb(Abb+ I)

]
- 0 (Add- I)(Add + I) 0

0 2(Abb + I)-2 Lbd CiAdd + I)-2 (Abb+ I)-I (Abb- I)

[

B'Oa

Ex := Exo:= f~1 Ex = 2 B;d

0

]
Bd

-(Abb+I)-2 Lbd Cd(Add+ I)-I Bd

[

E;

] [

E;

]

EA .- r- -1 E- - 2 E * - 2 E *
x .- x x - d - d

(Abb + I)-2 [Eb - ~d Cd(A~d+ I)-I E:J 0

A

[

0 0 0

]
CX:=[~XOl=Cx'4=fo 0 -[CiAdd+I)-IBdrICiAdd+I)-2 0xl 0 0 Cb

15x:=15x= Dx

Then we have

A A A -

[

(A;a- I) (A;a+ I)-I -: 2(A;"+ I)-I L;bCb(Abb+ I)

]
AX-BXOCXO- 0 Aaa 0

0 0 (Abb + I)-I (Abb - I)

where

A:a = (Add -I)(Add + I)-I +2Bd[CiAdd + I)-I Bdr1 CiAdd +I)-2

Define another non-singular state transformation

[

I 0 T*

]

1;,= 0 I 0
0 0 I

with T* being a solution to the following general Lyapunov equation

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(I - A;a) (I + A;at1 T*+ T*(Abb+ I)-I (Abb- I) = 2(A;a- I)-I L;b Cb(Abb+ I) (3.53)

It follows from Kailath (1980) that such a solution always exists and is unique if A;a
and Abbhave no common eigenvalues. Then it is straightforward to verify that it would
transform the (1,3) block of Ax - ExoCxo in (3.50) to 0 while not changing the
structures of other blocks. Hence, 1;, would also transform the system(Ax,Ex,cx' 15x)
and Ex into the standard form of the special coordinate basis as given in Theorem 2.1
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since the pair {(Abb+ I)-I (Abb- I), Cb}is completely observable due to the complete
observability of (Abb'Cb). It is now clear from the properties of the special coordinate
basis that

1m (Ex) ~ Y-(Ax,Bx,Cx,Dx)+g>-(1x,Bx,Cx,Dx)

which is equivalent to

1m (Ex + fix F,J ~ Y-(Ax, fix' cx, 15x)+g>-(Ax' fix' cx,15x)

This proves the second fact. Moreover, it is also obvious from the properties of the
special coordin!lte basis that (Ax, fix' CX,15x) is left invertible with no infinite zeros and
has some invariant zeros at

A{(A~a- I) (A~a+ I)-I} (3.54)

which are unstable, i.e. in the open right-half complex plane, due to the fact that A(A~J
are outside the unit disc, and the rest of the invariant zeros at A(A:"). In what follows,
we will show that all the eigenvalues of A:a of (3.51) are at 1. As (Ax, fix' cx, 15x)is left
invertible, it is well-known that a complex scalar s is an invariant zero if and only if

rank
[
Sl -:Ax

Cx

-fi

]15xx < nx+p

where p is the dimension of z of the given system (Ll). Noting that

'xes) = rank
[
Sl-:Ax

Cx
-!x

]Dx

k [

Sl-(Ax + I)-I (Ax-I) -2(Ax+I)-2 Bx

]
= ran

Cx Dx-CxCAx+I)-1 Bx

k[
S(Ax+I)-(Ax-I) -2(Ax+I)-1 Bx

]
= ran

Cx Dx-Cx(Ax+I)-1 Bx

k[
(1+s)I-(1-s)Ax -(1-S)Bx

]
= ran

Cx Dx

= rank

(1 +s)I-(1-s)A~a
0
0
0
0
0

(s-l)L~d Cd

(1 +s)I-(1-s)Add

(s-l)Lbd Cd
0

Cd
0

(s-l) L~bCb
0

(1 +s)I-(1-s)Abb
0
0

Cb

(s-I)~a

(s-l)BOd

(s-l)BOb

lr
0

0

0

(s-l)Bd
0
0
0
0
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= rank

(1 +s)I-(1-s)A;a
0
0
0
0
0

0

(1 +s)I-(1-s)Add
0
0

Cd
0

0
0

(1 +s)I-(1-s)Abb
0
0

Cb

0 0

0 (s-I)Bd
0 0

If 0
0 0
0 0

It is obvious to see that for any s E;t{(A;a+ I)-I (A;a- I)}, ris) < nx+p, whichverifies
that some invariant zeros of (Ax, Ex, cx, i5x)are given by (3.54). The only other scalar
that causes rxes) to drop below nx+ p is s = I because the subsystem (Add'Bd,Cd) is
invertible and free of invariant zeros, and the pair (Abb'Cb)is completely observable.
Thus, we can conclude that the remaining invariant zeros of (Ax, Ex, cx, i5x) are at I
and hence all eigenvalues of A:a are at 1. This shows the third fact that we have
claimed.

Next, let us apply a pre-disturbance feedback law
- F- - -

(D
-' D

-
)
-I D-/ D

- - -
Ux= wWx+vx=- x x x 22Wx+Vx (3.55)

to the auxiliary system (3.11). Again, this pre-feedback law will not affect solutions to
the Hooproblem for (3.11) or to the solution p" of(3.16}-(3.18). After applying this pre-
feedback law, we obtain the following new system

ix = Axxx+Exvx +[Ex-Eii5~i5xt1 i5~i522]WX

-
(
0

)
-

Yx = I Xx +(~) Wx (3.56)

Zx = Cxxx+i5xvx +0 Wx

Then it follows from the well-known results in Hoocontrol theory (see for example,
StoorvogelI992) that the existence condition of a y suboptimal controller for (3.56) is
equivalent to the existence of a Px > 0 such that

0 = PxAx+A~p"+ C~ Cx-(PxEx+ c~i5x)(i5~i5xt1 (P"Ex+ c~i5xY-- --- -- - ---1---2
+Px[Ex-Bx(D~Dxtl D~D22][Ex-Bx(D~Dxt D~D22rPxIY (3.57)

is satisfied. Note that the solution p" to the above Riccati equation is identical to the
solution that satisfies (3.16}-(3.17).

Now, in view of the properties of the auxiliary system of(3.56), i.e. the second and
third facts that we have proved earlier, it satisfies the conditions of Chen et at. (1992b).
In fact, following the results of Chen et at. (1992b), we can show that

y* = (;tmax(~8;1))1/2 (3.58)
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and for any y > y*, the positive definite solution ~ of (3.16}-(3.18) is given by

~ = (8x- T"jit1 (3.59)

It then follows from (3.19) that for any y> y*, the positive definite solution Px of
(3.I2}-(3.I5) is given by

Px= 2(A~+ I)-I (8x- T"jy2t1(Ax+ I)-I (3.60)

and hence y* can also be obtained from the following expression,
1

y* = (A.maxCT.;S;I)).

where Sx and T; are as defined in (3.7) and (3.8), respectively.

(3.61)

Finally, note that (Ax, Bx, cx,i5x) is left invertible, and is free of infinite zeros and
stable invariant zeros as well as invariant zeros on the unit circle. It follows from

Richardson and Kwong (1986) that the solution 8x to the Riccati equation (3.5) is
positive definite because (Ax, Bx) is controllable, and the solution T" to the Lyapunov
equation (3.6) is positive semi-definite. In fact, both of them are unique. This
completes the prrof of our algorithm. 0

The following remark deals with the case when the direct feedthrough term from
the disturbance to the controlled output of (1.1) is non-zero, i.e. D22=!=o.

Remark 3.1: For the case when D22=!=0, the assumption (AI) should be replaced by
the following conditions:

(1) 1522:=D22-CiAx+I)-1 Ex is in the range space of 15x= Dx-CiAx+I)-1 Bx,
and

(2) 1m [Ex - Bi15~ 15xt1 15~1522] s;; ny-(Ax, Bx, cx, 15x) + [I'-(Ax, Bx, cx' 15x).

Then our algorithm would carry through without any problems. We would also like
to note that if(A, B, C2,D21)is right invertible, then (Ax, Bx, cx' 15x)is invertible and 15x
is square and non-singular, and ny-(Ax, Bx, cx, 15x)+[I'-(Ax, Bx, cx, 15x)= IRnx.Hence,
the above two conditions will be automatically satisfied. Also, in this case, our result
will be reduced to that reported by Chen (I995b). 0

3.2. The output feedback case

This subsection deals with the general measurement feedback problem. Again, we
will first consider the given system of(1.1) withD22 = 0 and assume that (AI) and (A2)
are satisfied. As in the previous subsection, we will give a step-by-step non-iterative
algorithm for the computation of y*.

Step A. Define an auxiliary full information problem for

x(k+ 1) = Ax(k) + Bu(k) + Ew(k)

I

y(k) = (~)X(k) +(~)W(k)

z(k) = C2x(k) + D21u(k)

and perform Steps 1 to 3 of the algorithm given in the previous subsection. For future
use and in order to avoid notational confusion, we rename the state transformation of

(3.62)
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the special coordinate basis for this subsystem as rsp and the dimension of Ax as nxp.
Also, rename Sx of (3.7) and Trof (3.8) as SxPand Trp,respectively. For later use in §4,
we rename Ex and BXl respectively as Exp and BXIP.

Step B. Define another auxiliary full information problem for

x(k+ 1) = Alx(k)+ C~ u(k) + C~ w(k)

y(k) = (~)X(k) +(~) w(k)

z(k) = Kx(k)+D~2U(k)

(3.63)

and again perform Steps 1 to 3 of the algorithm given in § 3.1 one more time but for
this auxiliary system. We also rename the state transformation of the special

coordinate basis for this case as rSQ and the dimension of Ax as nxQ' and Sx of (3. 7) and
Tr of (3.8) as SXQand TrQ,respectively. Again, for later use in §4, we rename Ex and BXl
respectively as EXQand BXIQ.

Step C. Partition

r-l (r-l )
1 -

[

* *
]

sP sQ - * r (3.64)

where r is a nxp x nxQmatrix, and define a constant matrix

[

T. S-l + rS-1 r 's -l

M = xP xP xQ xP

-TrQS;~rS;~
- rs;~

]TrQS;~
(3.65)

Step D. The infimum y* is then given by

y* = (Amax(M))1/2 (3.66)

Proof of the Algorithm: Once the result for the full information case is established,
the proof of this algorithm is similar to the one given by Chen et al. (1992a, 1992b).

D

As was pointed out by Stoorvogel et at. (1994), for discrete-time Hoocontrol, the
infimum for the full information problem is, in general, different from that of the full
state feedback problem. For the state feedback case, i.e. C1 = I and D12= 0, we note
that the subsystem (A, E, C1,D12)is always free of invariant zeros (and hence free of
unit circle invariant zeros) and left invertible. Thus, as long as (A, B, C2,D21)is free of
unit circle invariant zeros and satisfies assumption (AI), one can apply the above
algorithm to get the infimum, y*. As is reported in Chen (1995b), for this special case,
rsQ, nxQ'SXQand TrQin Step B of the above algorithm can be directly obrained using
the following simple procedure. Compute a non-singular transformation rSQsuch that

r~QE = [~]
(3.67)

where i is a nxQ x nxQ non-singular matrix. Then SXQand TrQare respectively given by

SXQ = (i-lY i-I and TrQ= 0 (3.68)
and hence

y* = [Amax(TrpS;~+rs;~rs;~W/2 (3.69)
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Again, the following remark deals with the case when the direct feedthrough term
from the disturbance to the controlled output of (1.1) is non-zero, i.e. D22=t=O.

Remark 3.2: For the case when D22=t=0, the assumptions (AI) and (A2) should be
replaced by the conditions given in Remark 3.1, which is associated with the full
information system of (3.62), and a similar set of conditions as in that remark but for
the full information system of (3.63). Then our procedure would again carry through
and yield a correct result. Note that if (A, B, C2,D21) is right invertible and
(A, E, C1,D12)is left invertible, then all these conditions will be automatically satisfied.
The result will then reduce to that of Chen (1995b). 0

3.3. An illustrative example

In this subsection, we will use a numerical example to illustrate our computational
procedures developed in the previous subsections. We consider a given system
characterized by

[

0 0

C2 = 0 0
0 0

It is can be verified that (A, B) is controllable and (A, B, C2,D21)is neither right nor left
invertible, and is of non-minimum phase with two invariant zeros at 0 and 2,
respectively. Moreover, it is already in the form of the special coordinate basis as given
in Theorem 2.1, and assumption (AI) is satisfied as Eb = o.

Case 1: The full informationproblem.We first consider the computation of y* for the
full information case. Following the algorithm in §3.1, we obtain

-1 0 0

] [

1 0 0

] [

0

]
0 1 0 , D21= 0 0 0 , D22= 0
001 000 0

Ts = Is, nx = 3

A, ~ [~ ; n B, ~ [~ n E, ~ [i]

[

0 0 0

] [

1 0

]
Cx = 0 1 0 , Dx = 0 0

00100

[

0.25 0.25 0.25

]
Ax = 0.50 -0.50 0.50

-0.25 0.75 -0.25

[

0.3125 -0.1875

] [

0.125

]
Ex = -0.6250 1.3750, Ex = 0.750

0.4375 -1.0625 -0.625

1 1 1 1 1 0 0 1 1

0 0 0 1 1 000 1

A = 10 0 1 1 1 , B= 1 0 0 , E= 1
1 1 1 1 1 0 1 0 1

, 0 0 0 1 1 0 0 0 0
and



and

Computation of infimum is discrete-time H 00 -optimization 449

[

1.000 0.000

] [

0.00

]

Cx = Cx, 15x= 0.250 -0.750 , 1522= -0.50
-0.125 0.375 0.25

It is simple to verity that (Ax, fix' cx, 15x)is left invertible with two invariant zeros at 1
and 1/3, respectively. Solving Riccati equations (3.5) and (3.6), we obtain

[

0.227615

Sx = -0.207890
0.019725

[

0.09375

f;,= - 0.06250
0.03125

Finally, we get

-0.207890
1.202254

- 1.005636

0.019725

]

- 1.005636
1.014089

0.031250

]

-0.020833
0.010417

- 0.062500

0.041667

- 0.020833

[

0.562306 -0.145898 -0.145898

] [

1/3 0 0

]
Sx = -0.145898 0.618034 -0.381966 , 1;"= 0 0 0

-0.145898 -0.381966 0.618034 0 0 0

and

y* = 0.934173

Case 2: The full state feedback problem.Following the algorithm and the simplified
procedure for the state feedback problem given in §3.2, we obtain those matrices as in
the full information case and

TSQ =

1 1
-1 0

0 -1
0 0
0 0

101
000

0 0 0 I, nxQ= 1
-1 0 0

010

s,. ~ 1, 1;Q ~ 0, r~ [i]
and

y* = 3.181043

Case 3: The outputfeedback problem.Now, we consider the computation of y* for the
given system with an output measurement characterized by

C1 = [0 0 0 0 1], D12= 0



450 B. M. Chen et al.

It can be shown that (A, C1) is detectable and (A, E, C1,D12)is invertible with three
invariant zeros at 0,0'618 and -1'618, respectively, and one infinite zero of order 2.
Hence, Assumption (A2) is automatically satisfied. Following the algorithm of §3.2,
we obtain those matrices as in the full information case and

[

23.027553 3,772507 -2.331538

]
SXQ = 3.772507 1 0

-2.331538 0 1

[

3,359675 0 -1'440970

]
~Q= 00 0

- 1.440970 0 2

[

2.331538 1 2

]

T= 0 1 4
001

76.552500 66.462330
138-464005 120.137767
42.124612 36,888544
29.289490 24.966581

0 0
-70,777088 -61,6869177

-0,959053
- 1.653030
- 0,693977

0
0

0,959053

M=

52.087460
92.575462
28.034442
19.202703

0
-46,978714

and finally

2.618034
5.236068
2.618034

0
0

-3,618034

-4,236068
-7,854102
-2,618034
- 1.440970

0
4.236068

y* = 15.16907

4. Solvability conditions for the discrete-timedisturbancedecoupling

We now present a set of necessary and sufficient conditions under which the well-
known disturbance decoup1ing problem for the discrete-time systems is solvable.
Again, as in the previous section, we will first assume that the D22matrix in the given
system of (1.1) is equal to zero. We will tackle the case when D22=1=0 later in the final
remark. We first have the following result for the full information case.

- 0-455504 -0,563227 0.191811 0 0
-0,455504 0.226419 0.191811 0 0

TSQ = I
0.737020 -0,366354 0.118545 0 0 I, nxQ= 3
0.173987 0.703162 -0,502167 1 0
0,107530 - 0,053450 0.812523 -4 1
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Theorem 4.1: Consider the given system of (1.1) with, C1 = (~), D12= (~) and

D22= O. Then the following two statements are equivalent.

(1) There exists a controller of the form (1.2) such that the closed loop system is
asymptotically stable and such that the closed loop transferfunction from w to z
is equal to O.

(2) (A, B) is stabilizable and 1m(E) s; ny-(A, B, C2,D21)+ BKer(D21).

Proof: In view of the proof of the algorithm in §3.1, we note that the existence of a

stabilizing proper controller for the given system (1.1) with C1 = (~) and Dl2= e),
such that the resulting closed loop transfer function from w to z is equal to 0, is
equivalent to the existence of a stabilizing proper controller for the auxiliary system
(3.10), such that the resulting closed loop transfer function from wx to zx is equal to O.
It is also equivalent to the existence of a stabilizing proper controller for the
continuous-time auxiliary system (3.11), such that the resulting closed loop transfer
function from Wx to zx is equal to o. Again, following the proof of the alogrithm in §3.1,
it is clear that the latter and hence all the above three statements are equivalent to the
existence of a stabilizing proper controller for the following auxiliary system

i = Axxx+Bxvx+Exwx

-
(
0

)
,

Yx = I Xx +(~) Wx
(4.1)

zx = Cxxx+15xvx

where Ax, Bx, Ex, Cx and 15xare as defined from (3.45) to (3.49). Due to the fact that
(Ax, Bx, cx, 15x) is left invertible with no infinite zeros and has only unstable invariant
zeros, we have ny-(Ax, Bx, CX,15x)+ Bx Ker (15x)= {O}.It then follows from the result
of Stoorvogel and van der Woude (1991) that the existence of a stabilizing proper
controller for (4.1) which solves the disturbance decoupling problem, is equivalent to
(A, B) being stabilizable and Ex = 0, i.e. E; = 0, Eb = 0 and E~ = 0, where E~ is defined
in (3.34). What we need to show next is to prove the fact that Ex = 0, which implies,
and is also implied by, T;.= 0, if and only ifIm (E) s; ny-(A, B, C2,D21)+ BKer(D21)'
which is equivalent to 1m (Ex) s; 1m (BX1).In view of the structures of Ex, Ex and Bx!'
it is sufficient to show that E~ = 0 if and only if 1m (Ed) s; 1m(Bd). Clearly, by the
definition of E~ in (3.34), i.e.

E~ = Ed - Bd[ Cd(Add + I)-1 Bd]-1 CiAdd + I)-1 Ed (4.2)

if E~ = 0, then we have

Ed = Bd[Cd(Add+ I)-1 Bd]-1 CiAdd + I)-1 Ed (4.3)

Hence, Ed is in the range space of Bd. Conversely, if Ed is in the range space of Bd, i.e.
Ed = BdX for some appropriate X, then we have

E~ = BdX - Bd[Cd(Add+ I)-1 Bd]-1 CiAdd + I)-1 BdX = 0 (4.4)

0This completes the proof of Theorem 4.1.
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The following theorem is for the general output feedback case.

Theorem 4.2: Consider the given system of (1.1) with D22= O.Then thefolio wing two
statements are equivalent.

(1) There exists a controller of the form (1.2) such that the closed loop system is
asymptotically stable and the closed loop transfer function from w to z is equal
to O.

(2) (A, B) is stabilizable, (A, C1) is detectable, and
(a) 1m (E) <:;Y-(A,B,C2,D21)+BKer(D21)'
(b) Ker (C2) ;2 Y-(A, E, C1,D12)n C11(D12),
(c) Y-(A, E, C1,D12)<:;Y-(A, B, C2,D21).

Proof: The first statement is equivalent to (A, B) being stabilizable, (A, C1)
detectable, and y* = O.Hence Amax(M)= 0, and the infima for the auxiliary systems
(3.62) and (3.63) should be zero as well. The proof then follows from Theorem 4.1 that
T;.p= 0, which is equivalent to condition 2(a), and T;.Q= 0, which is equivalent to
condition 2(b). Furthermore, M reduces to

M=
[

rS;brS-1 xP
0 -~S;b]

(4.5)

Since both SxPand SXQare positive definite, it is obvious that Amax(M)= 0 if and only
if r = O.Using a similar argument as in Chen et at. (1992a), one can show that r = 0
if and only if condition 2(c) holds.

Conversely, if conditions 2(a}-2(c) hold, it is obvious that T;.p= 0, T;.Q= 0 and
r = 0 and hence y* = O.In fact, it is quite straightforward to construct a controller of
the form (1.2) that yields a zero closed loop transfer function from w to z. 0

Remark 4.1: The following remarks are in order.

(1) It is interesting to note that the necessary and sufficient conditions for the
solvability of a discrete-time disturbance decoupling problem are identical to
its continuous-time counterpart as given by Stoorvogel and van der Woude
(1991). However, as noted in the next item, one can test these conditions
without computing any geometric subspaces using our approach.

(2) It follows from the proofs of Theorem 4.1 and Theorem 4.2 that the solvability
conditions given in Theorem 4.2 are equivalent to the following

1m (Exp) <:;1m (BXIP)' 1m(ExQ)<:;1m(BXIQ) and r = 0 (4.6)

where Exp, BXIP'EXQ'BXIQand r are defined in Step A to Step C of §3.2.
Obviously, the above conditions are computationally simple to verify.

(3) For the case that D22=1=0, following the result of Stoorvogel and van der
Woude (1991), one can show that the solvability of the disturbance decoupling
problem implies the existence of a matrix S such that

D22 + D21 SD12 = 0 (4.7)

Next we apply a pre-output feedback u = Sy + v to the system of (1.1). The new
system we thus obtain will have a zero direct feedthrough matrix from w to z.

D
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5. Conclusions

We have presented in this paper non-iterative procedures that compute the Hoo
optimization infimum y* for a class of systems that satisfy certain geometric
conditions, and a set of solvability conditions under which a solution to the general
discrete-time disturbance decoupling problem exists. The algorithms for computing y*
involve only the solutions of some y independent algebraic Riccati equations and
Lyapunov equations and the computation of the maximum eigenvalue of a constant
matrix. We should also note that the geometric conditions imposed on the given
systems are not essential and can be relaxed. This can be shown by some numerical
examples. Hence., it leaves some room for improving our results. On the other hand,
the solvability conditions of the disturbance decoupling problem, which are also
necessary and sufficient, can be easily tested without computing any geometric
subspaces. Note that the numerical computation of geometric subspaces is, in general,
quite difficult.

~
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