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A simple algorithm for the stable/unstable decomposition of a linear
discrete-time system

BEN M. CHENt

A simple algorithm that decomposes the dynamics of a linear discrete-time
system into stable modes, unstable modes and those on the unit circle, is
considered here. The relationship between such a decomposition and the
stable/unstable decomposition of continuous-time systems is also established.

..

1. Introduction

In many control problems, it is often useful to separate the dynamics of the
given systems into the stable and unstable parts (see for example Hsu and Hou
1991). It is also desirable in many applications to decompose the stable and
unstable zero dynamics of the given systems (see for example Chen et al. 1992,
1993 and Saberi et at. 1993). In general, the stable/unstable decomposition of a
linear continuous-time system is rather easy and can be done using the
well-known and numerically well-behaved Schur decomposition technique. An
m-file that realizes such a decomposition has been reported by Lin et at. (1991).
In principle, one can utilize the same technique to obtain a stable/unstable
decomposition for discrete-time systems. However, due to the ordering of
eigenstructures in Schur decomposition, the procedures involved are rather
complicated. In this note we present a simple algorithm that computes a
non-singular transformation T such that the dynamic matrix, say A, of a linear
discrete-time system is decomposed as

[

A0

T-1AT = ~

0
Ao
0 JJ (1.1)

where the eigenvalues of A0' Ao and A@ are respectively inside, on and
outside the unit circle of the complex plane. More importantly, we will also
show the relationship between the stable/unstable decomposition of discrete-time
systems and that of continuous-time systems.

:J 2. Main results

We give our main results in this section. We will convert the stable/unstable
decomposition of a linear discrete-time system into an equivalent problem for an
auxiliary continuous-time system. First, let us recall the following lemma. The
proof of this lemma is very straightforward.

Lemma 2.1: Consider a real square matrix X. Assume that X does not have
eigenvalues at -1 and let X := (X + I)-l(X - I). Then we have
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(1) X has all its eigenvalues inside the unit circle if and only if X has all its
eigenvalues in the open left half-plane;

(2) X has all its eigenvalues on the unit circle if and only if X has all its
eigenvalues on the imaginary axis;

(3) X has all its eigenvalues outside the unit circle if and only if X has all its
eigenvalues in the open right-half plane.

We are ready to present our results.

Proposition 2.1: Consider a real square matrix A and assume that it does not
have eigenvalues at -1. Let A := (A + I)-\A - I). Also, let T be a non-singu-
lar transformation such that

[
;L

T-lAT = ~

0
Ao
0 1.]

(2.1)

where ;L, Ao and A+ have their eigenvalues in the open left half-plane, on the
imaginary axis and in the open right half-plane, respectively. Then

[

AG

T-lAT = ~

0
Ao
0 JJ (2.2)

where the eigenvaluesof AG' Ao and Ai2Iare respectivelyinside, on and outside
the unit circleof the complexplane. D

Proof: First note that A = (A + I)-l(A - I) implies that A = (I + A)(I -
A)-I. Then we have

T-lAT = T-l(I + A)TT-l(I - A)-IT

= (I + T-l A T)(I - T-lA T)-l

[
I + A - 0 ~ 0

] [

I - A-
= 0 I + Ao 0 0

0 0 I + A+ 0

[

(I + A-)(I - A_)-l 0
= 0 (I + Ao)(I - AO)-l

0 0

In view of Lemma 2.1, the result follows.

0 0

]

-1

I - Ao
.

0 ~

0 I - A+

(I + A+)(~ - A+)-']
D

The following remarks deal with the cases when the matrix A has eigen-
values at -1.

Remark 2.1: If A has eigenvalues at -1 but does not have eigenvalues at 1,
then the non-singular transformation of the stable/unstable decomposition, T,
can be obtained using the same procedure as in Proposition 2.1 by re-defining A
as A := (I - A)-l(I + A). D

Remark 2.2: If A has eigenvalues at both 1 and -1, then the following
procedure should be used to determine T. First, let A(A) be the set of the
eigenvalues of A and then do the following.
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Step!. If max{IAI: AEA(A)}~1, set TCt=I, A*=A and go to Step 3.
Otherwise, determine

a := min {IAI: A E A(A) and IAI> 1} (2.3)

and define

ACt := [2A/(a + 1) + Ir1[2A/(a + 1) - I] (2.4)

It is simple to show that 2A/( a + 1) does not have any eigenvalues on
the unit circle and hence ACt has no eigenvalueson the imaginary axis.

Step 2. Utilizing the result of Proposition 2.1, find a non-singular transformation
T Ct such that

T~1ACtTCt = [.110- A~+]
(2.5)

where the eigenvalues of ACt- and ACt+ are respectively in the open left
and the open right half complex plane. It is simple to verify that

T~1ATCt = [~* }0] (2.6)

where the eigenvalues of A0 are outside the unit circle and the
eigenvalues of A* are either on or inside the unit circle of the complex
plane.

Again, it is easy to see that 2A,j«(3 + 1) does not have any eigenvalues
on the unit circle and hence A~(3 has no eigenvalues on the imaginary
axis.

Step 4. Next, utilizing the result of Proposition 2.1, find a non-singular transfor-
mation T *(3such that

[
.11' (3--1 ~ - '"

T *(3 A*(3T *(3 - 0 A~(3+]
(2.9)

where .11*(3-and .11*(3+have their eigenvalues in the open left and the
open right half-plane, respectively.

Finally, it is straightforward to verify that the non-singular transforma-
tion T

Step 5.

T := TCt[TO(3

has the following property

~] (2.10)

Step 3. If min {IAI: AE A(A)} 1, set T(3= I and go to Step 5. Otherwise,
compute

(3 := max{IAI: A E A(A) and IAI< 1} (2.7)

and define

.11*(3:= [2A*/«(3 + 1) + Ir1[2A*/«(3 + 1) - I] (2.8)
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[

AG

T-1AT = ~

0
Ao
0 LJ (2.11)

where AG, Ao and A@ have their eigenvalues inside, on and outside
the unit circle of the complex plane, respectively. 0

Remark 2.3: In general, the algorithm given in Remark 2.2 is numerically well
behaved. It may have some numerical difficulties when matrix A has eigenvalues
very 'close' to the unit circle. However, these difficulties can be overcome by
grouping these 'awkward' eigenvalues with those on the unit circle and this can
be done by slightly modifying the procedure of Remark 2.2. We would like to
note that this is a very common problem. In fact, a similar situation also arises
in the continuous-time case when the given dynamic matrix has eigenvalues very
'close' to the imaginary axis. 0

We illustrate the above results in the following examples.

Example 2.1: Consider a system with dynamic matrix

l

34.2 1.8 8.2 -16.6

j
A = -64.4 -1.6 -16.4 33.2

4.2 -0.2 2.2 -2.6
61.6 0.4 14.6 -32.8

which has eigenvalues at 2, 0, j and - j. First, let us compute

l

-5.7333333 -35.2666667 -18.4 -31.8

j
A = 12.1333333 70.8666667 36.8 63.6

-1.4000000 -6.6000000 -3.4 -5.8
-13.5333333 -70.4666667 -37.2 -62.4

Using the software package on Lin et at. (1991), we obtain

l

-0.3364018 -0.3402378 -0.2105630 0'3746343

j
0.6728035 0.6804755 0.4211261 -0.6556101

T = -0.0708214 -0.0686780 -0.6259673 0.0000000
-0.6550982 -0.6453485 0.6216760 0.6556101

and

(2.12)

(2.13)

(2.14)

0

(2.15)

O 0 0 0

T-1 AT = I 0
0.7844393 64.8404082 0

0 -0.0249126 -0.7844393 0

LO 0 0 2--.J

This verifies the result of Proposition 2.1.

Example 2.2: Consider another system with dynamic matrix

[1'@

6.00 7.40 6.20

2'W]

-2.38 -4.45 -7.27 -6.76 -2.66
A = 4.42 9.05 13.43 11.84 4.94

-2.06 -4.65 -6.49 -5.62 -2.42
-2.28 -8.20 -10.62 -9.06 -2.96
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The eigenvalues of A are at 1.5,1, -1,0 and 0.5. Hence, we would have to use
the procedure of Remark 2.2. First we have (Y= 1.5 and

A ='"

[

-0.1688312
-1.1948052

2.3838384
-1.2640693
-0.8196248

21.8181818
-11.3636364

20.4646465
-13.5151515
-25.2929293

27.0337662
-14.4010390

26.2832323
-17 -4271861
-31.6760750

Using the package of Lin et at. (1991), we find

[

0.5260730
-0.2455007

T", = 0.4559299
-0.3156438
-0.5962160

-0.4759932
-0.3201876

0.5946341
-0.4116698

0.3845110

and

T~lAT", = [~* }Q9J
0.0211936
0
0
0

-1
0
0
0

0 0

Next, we have {3= 0.5 and

A,p ~ l~

-0.1695489
-1

0
0

-0.4694273
0.6942234
0.1322330

-0.2446311
-0.4694273

2.9630208
-1.0909336

0.5
0

0

-14.3704733
-1.7454937
-0.2

0

26.1610390
-14.4664935

26.6602020
-17.9399134
- 30.7354690

0.4255322
0.3754696

-0.2002505
-0.6758453

0.4255322

- 5.2095969
-1.2820860

0.2075349
1

0

19-4414739

l
-1.2582407

0.1423096
0.1428571

Again, using the software package of Lin et al. (1991), we get

l

O.0211889

T - 0.9997755
*f3- 0

0

[

-0.4647394 0.2682318
-0.3253176 0.0984160

T = 0.6041612 0.4554152
-0.4182655 -0.3840153

0.3717915 -0.7506632

and

5,6311688

]

-3.4348052
6.5438384

-4.1440693
-7.2596248

-0'1761533

l
0.4712102

-0.7178249
0.2598262
0.4051527

0
0
'0
0

1.5

0.8933552
-0.0189334

0.4489521
0.0000000

-0.5260730
0.2455007

-0.4559299
0.3156438
0.5962160

-1 0

~

0 0.8483480
0 -0.2029648
0 -0.4889897

-0.5166115 -0.1761533

]

-0.5961342 0.4712102
0.5755384 -0.7178249
0.0308937 0.2598262
0.2133955 0.4051527

(2.16)
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T-1 AT = (2.17)

0

3. Conclusions

We have presented in this short paper a simple algorithm for the stable/
unstable decomposition of linear discrete-time systems. We have also shown the
relationship between such a decomposition and that of continuous-time systems.
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