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An Output Feedback Controller Design for
Linear Systems Subject to Sensor Nonlinearities

Yong-Yan Cao, Senior Member, IEEE, Zongli Lin, and Ben M. Chen, Senior Member, IEEE

Abstract—In this paper, the output feedback controller
design problem is addressed for linear systems subject to sensor
nonlinearity. First, the existence condition of an output feedback
controller is derived for systems with sensor sector nonlinearity. A
design method for the output feedback controller is proposed
using a linear-matrix inequality (LMI) based approach. The result
is then applied to the design of a regional output feedback
controller for the systems subject to sensor saturation. An LMI op-
timization based approach is proposed to computing the feedback
matrices of the regional output feedback controller. At last
a numerical example is presented to show the effectiveness of the
results.

Index Terms—Linear systems, sector nonlinearity, sensor satu-
ration, control, 2 gain.

I. INTRODUCTION

I N FEEDBACK control systems, feedback device non-
linearities, including actuator and sensor saturation, arise

frequently. They can severely degrade the closed-loop system
performance and sometimes even make an otherwise stable
closed-loop system unstable. The issue of closed-loop system
stability and performance in the presence of feedback device
nonlinearities thus carries a great deal of practical importance.
While in practice it is desirable to choose actuators and sensors
that are large enough so that they operate in their linear regions,
cheaper actuators and sensors can be used if their saturation
can be satisfactorily handled.

While actuator nonlinearity has been addressed in much
detail, (see, for example, [1], [13], [5] and the references
therein), few results are available that deal with the sensor
nonlinearity. Among these few results, observability of a linear
system subject to sensor saturation was studied in detail in
[12]. A discontinuous dead beat controller was constructed
for single-input–single-output (SISO) linear systems in the
presence of output saturation in [11]. A semiglobal stabilizing
linear output feedback controller design method was proposed
for the SISO linear systems subject to sensor saturation in [14].

In this paper, we will use the circle criterion theory to ad-
dress the issues related to analysis and design for linear sys-
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tems subject to sensor nonlinearity. In particular, we will focus
on the output feedback controller design for linear systems
with sensor sector nonlinearity. We will present an LMI condi-
tion under which the system with sensor sector nonlinearities is

stabilizable. A design method for the globally stabilizing
output feedback control laws will be proposed by an LMI
optimization based approach. These results will then be applied
to design the regional controller for linear systems subject
to sensor saturation. Our method was motivated by [3], where
an explicit controller computing formulation was proposed for
linear systems based on the LMI optimization approach.

We note that output feedback control in the context of
linear systems subject to actuator saturation has already
been addressed by several authors. In particular, Kapila and
Haddad [9] considered the fixed-structure controller design
problem. Nguyen and Jabbari [15] studied the output feedback
disturbance attenuation problem for linear systems subject to
actuator amplitude and rate saturation using LMI approach.
Despite the impression of its duality with actuator saturation
and the similar effects on a given closed-loop system as those of
actuator saturation, sensor saturation is fundamentally different
from actuator saturation. For example, for a system subject to
actuator saturation, the feedback gain is a design variable. Thus,
for a given set of initial conditions, there is a possibility of
designing the feedback gain such that saturation is completely
avoided. For a system subject to sensor saturation, the output
matrix is fixed. Hence, if the sensor saturation occurs for
some initial conditions of the system, this saturation cannot be
avoided by any control design.

This paper is organized as follows. Problem formulation and
preliminaries will be given in Section II. Stability and gain of
the output feedback control systems with sensor sector nonlin-
earities will be analyzed in Section III. The design method for
a dynamic output feedback control law will be proposed
in Section IV. In Section V, this design approach will be ap-
plied to linear systems subject to sensor saturation such that the
closed-loop system has a prespecified regionalgain. A nu-
merical example will be given in Section VI to illustrate the de-
sign method. The paper will be concluded in Section VII.

Notations: The following notation will be used throughout
the paper. denotes the set of real numbers, denotes the

dimensional Euclidean space, and denotes the set of
all real matrices. denotes the transpose of
is the Moore–Penrose inverse of and denote
the null space and range space of, respectively, denotes
a matrix with the following properties: and

1057-7122/03$17.00 © 2003 IEEE



CAO et al.: OUTPUT FEEDBACK CONTROLLER DESIGN 915

. Note that exists if and only if has lin-
early dependent rows. Also note that, for a given is not
unique but throughout the paper, any choice is acceptable. In
the sequel, if not explicitly stated, matrices are assumed to have
compatible dimensions. The notation is used
to denote a symmetric positive definite (positive semidefinite,
negative definite, negative semidefinite, respectively) matrix.
and denote the identity matrix and zero matrix of compatible
dimensions.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a linear system with sensor saturation

(1)

(2)

(3)

where is the state vector, the control input
vector, the controlled output vector, the mea-
sured output vector, the disturbance input vector; and

, and and are
real-valued matrices of appropriate dimensions. Also assume
that is stabilizable and detectable. The function

, for some diagonal matrices and with
, denotes the standard vector-valued sector nonlin-

earity defined as follows [10].
Definition 1: A memoryless nonlinearity is

said to satisfy a sector condition if

(4)

for some diagonal real matrices , where
is a positive-definite symmetric matrix. In this case,

we say that belongs to the sector .
The problem considered in this paper can be described as fol-

lows.
Problem 1: For a given system (1)–(3) and a , find a

dynamic output feedback control law of the form

(5)

(6)

such that, for any , the closed-loop system is glob-
ally asymptotically stable at the origin and the gain from the
disturbance input to the performance output is less
than or equal to , i.e.,

(7)

Under the feedback law (5)–(6), the closed-loop system can
be written as

(8)

(9)

(10)

where

Lemma 1: [8] Let matrices , and
be given and suppose that

and . Then, there exists a matrix
such that

if and only if

III. STABILITY AND -GAIN ANALYSIS

In this section, we analyze the closed-loop stability and the
gain for the system (8)–(10) by applying the multivariable

circle criterion. We first present the following result on global
asymptotic stability.

Lemma 2: For the system (8)–(10) with , suppose
that diagonal matrices and are given such that

is positive definite and that matrix
is Hurwitz. If there exists a matrix satisfying

(11)

then, system (8)–(10) in the absence of, is globally asymptot-
ically stable at the origin for any .

Proof: Decompose the nonlinear function into a
linear and a nonlinear part as

(12)

where the nonlinearity belongs to the set given by

(13)

Then, (8) with can be rewritten as

Select a Lyapunov function as . By (11),
we have the first equation shown at the bottom of the next page,
which implies that the system (8)–(10) is globally asymptoti-
cally stable at the origin for any .

Lemma 3: For the system (8)–(10), suppose that diag-
onal matrices and are given such that is
positive definite and and that matrix is Hurwitz. If
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there exists a matrix satisfying (14) at the bottom of the
page. Then, for any , system (8)–(10) is globally
asymptotically stable at the origin and the gain from to
is less than or equal to.

Proof: First note that the matrix inequality (14) implies
(11). Hence if (14) holds, then the system (8)–(10) with

is globally asymptotically stable at the origin for any
.

Decompose the nonlinear function into a linear and a
nonlinear part as in (12), the system (8)–(10) can be rewritten
as

where and . Define a
Lyapunov function as . Then, we have the last
equation at the bottom of the page, where

By (14) and Schur complement, we further have

Integrating both sides of the above inequality and noting that
, we have

IV. CONTROL DESIGN

First, we will derive a condition under which an output
feedback controller of the form (5)-(6) exists such that the
closed-loop system (8)–(10) in the absence ofis globally
asymptotically stable at the origin for any Then,
an controller design method will be proposed.

Theorem 4: The system (1)–(3) is globally asymptotically
stabilizable by an output feedback control law of the form
(5)–(6) if there exist matrices and that satisfy the
following matrix inequalities:

(15)

(16)

(17)

Proof: Feedback controller (5)–(6) such that the
closed-loop system (8)–(10) is globally asymptotically stable at
the origin for any if there exists a matrix
satisfying

(18)

In what follows, we will prove that (18) holds if and only if (15),
(16), and (17) hold for some and .

We first note that

(14)
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where

Then, the matrix inequality (18) can be rewritten as

(19)

where

By Lemma 1, (19) holds if and only if

(20)

It is easy to see that

Partition and as

(21)

where and Then, we have

This implies that the two matrix inequalities in (20) are equiv-
alent to (15) and (16), respectively. On the other hand, because

of the formulation of and in (21), we can prove that
is equivalent to (17) [7], [4].

The above derivation procedure is similar to that of [7], [8],
[4]. Similarly, if the solution of the LMIs (15),
(16) and (17) satisfies the rank condition

then, an th-order controller can be constructed. Select
and such that and define

Then, a stabilizing output feedback controller can be con-
structed by solving the LMI (19) for .

We note here that the matrix inequality (15) is equivalent to

which is stronger than the stabilizability condition of [2].
In what follows, we will present an approach to explicitly

computing the control law through the variable linearizing
change approach of [3].

Theorem 5: Given a system (1)–(3) and a constant ,
there exists an output feedback controller (5)–(6) such that, for
any the closed-loop system (8)–(10) is globally
asymptotically stable at the origin and the gain from to
is less than or equal to if there exist matrices

and of appropriate dimensions such that the LMIs
shown in (22) at the bottom of the page, and as follows, hold:

(23)

where represents blocks that are readily inferred by symmetry.
Suppose that is a feasible solution of the
LMIs (22) and (23). Then, the system matrices of the desired
output feedback controller (5)–(6) can be computed by

(24)
where and are two matrices
satisfying

(25)

Proof: By Lemma 3, the closed-loop system (8)–(10) is
globally asymptotically stable at the origin and thegain is less
than or equal to if there exists a matrix satisfying (26),
shownat thebottomof thenextpage. Partitionand as

(22)
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where and . Then, we have

Define the linearizing change of the control variables as follows:

(27)

and

It is not difficult to see that and

(28)

(29)

(30)

(31)

(32)

Premultiplying and postmultiplying (26) by
and respectively, and using (28)–(32), we can
find that (26) and hold if and only if (22) and (23) hold,
respectively.

V. REGIONAL DESIGN FORSENSORSATURATION

In this section, we will consider the regional controller
design for the systems with sensor saturation. That is, we as-
sume that in system (1)–(3)

(33)

where is the standard vector-valued saturation function
defined as follows:

with . Here, denotes
the th element of the vector , the saturation level.

Let stand for the th row of the matrix We define the
symmetric polyhedron

If control does not saturate for all that is
, then the nonlinear dynamics (8) admits the

following linear representation:

(34)

Note that the saturation function can be written as a sector
nonlinearity described by (4) with and . That is,

Hence, global asymptotic stability of the closed-loop
system subject to sensor saturation can be analyzed by the re-
sults of Section IV. By Theorem 4, it is easy to see that the ex-
istence of the globally stabilizing output feedback controller re-
quires the open-loop system to be asymptotically stable, i.e.,
is a Hurwitz matrix. In what follows, we will design a regional
stabilizing controller based on the approach developed in the
previous section for general systems. In our regional control de-
sign, we do not require the saturation function to belong to a
sector globally and thus does not have to be 0.

To analyze the regional gain, we also assume that the dis-
turbance where

for some
For the regional analysis of the linear system subject to sensor

saturation, we first present the following definitions.
Definition 2: Consider the closed-loop system subject to

sensor saturation (8)–(10) and (33). A set in is said
to be invariant if all the trajectories starting from
within it will remain in it regardless of An ellipsoid

is invariant if for
all and all , the boundary of .

Definition 3: For a given set the system sub-
ject to sensor saturation (8)–(10) and (33) is said to have a re-
gional gain less than or equal toin for some if

is invariant, i.e., for all and

(35)

We can then prove the following theorem.
Theorem 6: Given a system subject to sensor saturation

(1)–(2) and (33), a dynamic feedback control law (5)–(6) and
a constant , the ellipsoid is invariant and the
regional gain from to is less than or equal to if

(26)
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there exist two positive diagonal matrices
with and a constant such that
(36) and (37), shown at the bottom of the page, hold, and

i.e., for all
where denotes the th

diagonal element of
Proof: First we establish the set invariance. That is, for

, we will show that

Following the procedure in the proof of Lemma 2, we can show
that for each

where . Note that

we obtain the third equation at the bottom of the page. It follows
from (36) and Schur complement, that for all
and

Observing that on the boundary of , hence
It follows that is an invariant set. On the other

hand, following the procedure in the proof of Lemma 3, it is
easy to see that if (37) holds then the inequality (35) holds.

It is easy to check that under the condition of Theorem 6,
in the absence of disturbance. This

implies that (8)–(10) with is asymptotically stable at the
origin with contained in the domain of attraction.

Note that the constraint

is equivalent to

(38)

With the predesigned dynamic control law (5)–(6) and the given
performance index , we can then present the following

optimization problem to estimate the invariant set with
a given gain

s.t. matrix inequalities (36), (37), (38).

Similar to Section IV, with the given and the stabi-
lizing output feedback controller can be directly computed by
the variable linearizing change approach.

Theorem 7: Given a system subject to sensor saturation
(1)–(3) and (33), and a , if, for two given positive diagonal
matrices with , there exist
constant and matrices
and of compatible dimensions satisfying (22), (23), and (39)
shown at the bottom of the next page, and

(40)
then, there exists a dynamic output feedback controller of the
form (5)–(6) such that the regional gain from to is less
than or equal to in the region , where

(41)

for any matrices and satisfying decomposition

(42)

(36)

(37)
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Suppose that is a feasible solution of the
LMIs (22), (23), (39), and (40). Then, the system matrices of
the output feedback controller (5)–(6) can be computed by (24).

Proof: By the linearizing change of variables (27), we find
that (36) and (37) are equivalent to (39) and (22), respectively.
Changing variable as shown in (28)–(32), we have

By (38), we have

(43)

This means the constraint can be
written as LMI (40). Then, by Theorem 6, we can prove the
result.

It is easy to see that a different decomposition (42) will lead
to a different invariant set , but its projection on state

i.e., with ellipsoid is the same. A typical
solution of (42) is .

VI. A N UMERICAL EXAMPLE

The following state equations describe the longitudinal dy-
namics of the F-8 aircraft:

This example is borrowed from [16]. The disturbancesatis-
fying is added to study the performance under
output feedback control. We assume that the sensors are subject
to saturation with for . With

Fig. 1. Output responses with sensor saturation. (a) Proposed controller.
(b) CentralH controller.

, we obtain the fol-
lowing controller by Theorem 7:

Fig. 1 shows the output responses with sensor saturation under
the controller proposed in this paper and the central con-
troller as obtained by the MATLAB command hinfric with the
specification of . In this simulation,

(39)
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and the initial condition is

which is a random vector generated by the MATLAB. Fig. 1(b)
shows that the closed-loop system under the standardcon-
troller loses stability in the presence of sensor saturation. This is
because the sensor saturation was not taken into account in the
control design.

VII. CONCLUSION

In this paper, we analyzed the stability and thegain for
linear systems with sensor nonlinearities based on the circle cri-
terion theory. A globally stabilizing output feedback controller
design approach was proposed using the LMI based approach.
The results were then applied to the systems with sensor satura-
tion nonlinearities. A regional stabilizing output feedback con-
troller design method was proposed such that the closed-loop
systems has a given regional gain.
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