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Exact Computationof the Infimum in
Hoo-Optimization Via Output Feedback
Ben M. Chen, Student Member, IEEE, Ali Saberi, Member, IEEE, and Uy-Loi Ly

Abstract- This paper presents a simple and noniterative pro-
cedure for the computation of the exact value of the infimum in
the standard Roo.optimal control with output feedback. The
problem formulation is general and does not place any restric-
tions on the direct feedthrough terms between the control input
and the controlled output variables, and between the distur-
bance input and the measurement output variables. The method
is applicable to systems that satisfy 1) the transfer function from
the control input to the controlled output is right-invertible and
has no invariant zeros on the jUJ axis and, 2) the transfer
function from the disturbance to the measurement output is
left-invertible and has no invariant zeros on the jUJ axis.

I. INTRODUCTION

OVER the past decade one has witnessed a proliferation
of literature on Roo-optimal control since it was first

introduced by Zames [1]. The main focus of the work has
been and continues to be on the formulation of the problem
for robust multivariable control and its solution. Since the
original formulation of the Roo problem in [1], a great deal
of work has been on the solution of this problem. Practically
all research results of early years involved a mixture of
time-domain and frequency-domain techniques [2]-[4]. Re-
cently, considerable attention has been focused on purely
time-domain methods based on algebraic Riccati equations
(ARE) [5]-[14]. Along this line of research, connections are
also made between Roo-optimal control and differentialgames
[15]. Typically in ARE approaches to Roo-optimal control
problems, the achieved design solution is suboptimal in the
sense that the Roo-norm of the closed-loop system transfer
function from the disturbances to the controlled outputs is
less than a prescribed value. For the regular case, 1 the
existence of suboptimal state (output) feedback laws is formu-
lated in terms of the existence of a stabilizing positive
semidefinite solutions(s) for one (two) "indefinite" algebraic
Riccati equation(s) and the satisfaction of a coupling condi-
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1Regular case refers to a system where the feedthrough matrix from the
disturbance to the measurement output is surjective and the feedthrough
matrix from the control input to the controlled output is injective.

tion for the case of output feedback. A recent paper by
Stoorvogel [10] has shown that conditions for the existence of
suboptimal output feedback laws for general singular case
(i.e., not a regular case) can be expressed in terms of the
existence of solutions to two quadratic matrix inequalities.
Solutions of these inequalities must also satisfy two rank
conditions and a coupling condition. The latter condition
requires that the spectral radius of the product of the two
solutions to be smaller than a certain prior given upper
bound. Their results are general and elegant. In their formu-
lation, no assumptions are made on the direct feedthrough
matrices between the control inputs and the controlled out-
puts, and between the disturbance inputs and the measure-
ment outputs. Their conditions are very intuitive and reminis-
cent of the dissipation inequality in singular linear quadratic
optimal control.

In this paper, we address the problem of computing the
infimum in Roo-optimization for the output feedback case.
The ARE-based approach to this problem provides simply an
iterative scheme of approximating the infimum (denoted here
by 1':) of the Roo-normof the closed-loop transfer function
using output feedback compensators. For example, in the
regular case and utilizing the results of [5], an iterative
procedure for approximating 1': would proceed as follows:
one starts with a value of l' and determines whether l' > 1':
by splving two "indefinite" algebraic Riccati equations and
checking the positive semidefiniteness and stabilizing proper-
ties of these solutions. In the case where such positive
semidefinite solutions exist and satisfy a coupling condition,
then we have l' > 1': and one simply repeats the above steps
using a smaller value of 1'. In principle, one can approximate
the infimum 1': to within any degree of accuracy in this
manner. However, ,this search procedure is exhaustive and
can be very costly. More significantly, due to the possible
high-gain occurrence as l' gets close to 1':, numerical solu-
tions for these ARE's can become highly sensitive and ill-
conditioned. This difficultyalso arises in the coupling condi-
tion. Namely, as l' decreases evaluation of the coupling
condition would generally involve finding eigenvalues of
stiff matrices. These numerical difficulties are likely to be
more severe for problems associated with the singular case.
So in general, the iterative procedure for the computation of
1': based on ARE's is not reliable and thus should not be
used to determine the infimum 1':'

The subject of this paper is to provide an alternate simple
and noniterative method of computing 1': without solving
any ARE or quadratic matrix inequalities. Our algorithm is
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applicable to systems that satisfy 1) the transfer function from
the control input to the controlled output is right-invertible
and has no invariant zeros on the jCJ)axis and, 2) the transfer
function from the disturbance to the measurement output is
left-invertible and has no invariant zeros on the jCJ)axis.
However, we make no assumptions on the feedthrough matri-
ces from the control input to the controlled output and from
the disturbance to the measured output. Our results provide
basically an extension of the well-known one-block problem
for the singular case. Our algorithm has been implemented
efficiently in a MATLAB-software environment for numeri-
cal solutions.

The outline of this paper is as follows. In Section n, we
introduce the problem statement. In Section ill we provide
some preliminaries on the special coordinate basis (SCB)
[16], [17] and its properties for nonstrictly proper systems,
and the main results of Stoorvogel [10] in notations consistent
with the problem statement of Section n. The SCB transfor-
mation and Stoorvogel's theorem are both instrumental in the
derivation of the main results given in Section IV for the
exact computation of 'Y: and the conclusions are given in
Section V.

Throughout this paper we shall adopt the following con-
ventions and notations:

A'
I
00
~
~-
~+
~o

umax(A)
A(A)
>-max(A)
p(A)
Ker( V)
Im(V)

Transpose of A.
An identity matrix of appropriate dimension.
The set of real numbers.
Whole complex plane.
Open left-half complex plane.
Open right-half complex plane.
Imaginary axis jCJ).
Maximum singular value of A.
The set of eigenvalues of A.
Maximum eigenvalue of A where A(A) C 00.
The spectral radius of A.
Kernal of V.

Image of V.

We refer to the linear dynamical system

x = Ax + Bu, Y = Cx + Du (1.1)

as the system (A, B, C, D). We also refer to Tyu(s) = C(sI
- A) - \B + D as the transfer function matrix of the system
(A, B, C, D) between the input u and the output y. For any
real rational matrix T(s)

II T( s) II 00 := sup {umax [ T(jCJ))] : CJ)e OO} (1.2)

then II T(s) II 00 coincides with the Loo-normof T(s) if T(s)
is proper and has no poles in ~o, and with the Hoo-norm of
T(s) if it is proper and stable.

II. PROBLEM FORMULATION

Let us consider the following linear system:

I

x = Ax + Bu + Ew,
L: y = C\x +D\w,

Z = C2x + D2u
(2.1)
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where x e 00n is the state, u e 00 m is the input, we 00P is the
disturbance, y e 00r is the measured output available for
feedback control and z e 00q is the controlled output. Let
Tzw(s) denote the transfer function matrix from the distur-
bance w to the controlled output z. The standard Hoo-opti-
mal control problem is concerned with the construction of
stabilizing feedback control-laws that minimize the Hoo-norm
of Tzw(s). We consider three different classes of control-laws:
static-state feedback, dynamic-state feedback and dynamic-
output feedback laws. Furthermore, we denote the infimum
of the Hoo-norm achieved under these three classes of feed-
back laws as 'Y:, 'Yd, and 'Y:, respectively. Namely

'Y: := inf {II Tzw(s) II00 where u(s) = Fx(s) for any F
which internally stabilizes the system of (2.1), i.e.,
A + BF is a stability matrix};

'Yd := inf {IITzw(s) II00 where u(s) = ~(s) x(s) for any
proper transfer function matrix ~(s) which inter-
nally stabilizes the system of (2.1)};

'Y: := inf {IITzw(s) II00 where u(s) = Fo(s)y(s) for any
proper transfer function matrix Fo(s) which inter-
nally stabilizes the system of (2.1)} .

Zhou and Khargonekar in [13] have shown that 'Yd = 'Y:
which also implies that 'Y: S 'Y:' It is also well-known that
in general 'Y: is not equal to 'Y:' In a recent paper [18] we
presented a noniterative algorithm for the exact computation
of 'Y:' In this paper, we will present a simple noniterative
procedure to compute exact 'Y: for the output feedback case.

One of the key compOnents of our method is to put the
problem in a SCB introduced in [16], [17] which exhibits
explicitly the finite and infinite zero structures of the system.
The other component utilizes the results of Stoorvogel [10].

ill. PRELIMINARIES

In the following section we shall recall the definition of the
SCB for a linear time-invariant nonstrictly proper system
[17], and the theorem of Stoorvogel [10]. Such a coordinate
basis has a distinct feature of explicitly displaying the finite
and infinite zero structures of a given system as well as other
system geometric properties. The results of Stoorvogel pro-
vide conditions for the existence of an Hoo-norm bound
solution in the output feedback case. They are both instru-
mental in the derivation of the method described in Section
IV.

A. Special Coordinate Basis

In the following, we recapitulate the main results in a
theorem and some properties of the special coordinate basi's
while leaving detailed derivation and proofs to be found in
[16], [17]. Consider the system described by

x = Ax + Bu + Ew,
z = Cx + Du. (3.1)

It can be easily shown that using singular value decomposi-
tion one can always find an orthogonal transformation U and
a nonsingular matrix V that put the direct feedthrough matrix
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D into the following form
-

[

I

D= UDV= ~ ~]
(3.2)

where r is the rank of D. Without loss of generality one can
assume that the matrix D in (3.1) has the form as shown in
(3.2). Thus the system in (3.1) can be rewritten as

.

[

Uo

]x = Ax + [Bo B1] Ul + Ew,

[ ~~] = [ ~~1x + [~ ~ ][ ~~]
(3.3)

where Bo, Bj, Co' and C1 are the matrices of appropriate
dimensions. Note that the inputs Uoand UI' and the outputs
Zo and Zl are those of the transformed system. Namely

U = V[~~] and [~~] = Uz.
Note that the H",,-normof the system transfer function Tzw(s)
is unchanged when we apply an orthogonal transformation on
the output z, and under any nonsingular transformations on
the states and control inputs. We have the following main
theorem.

Theorem 3.1: There exist nonsingular transformations rs,
ro, and ri such that

.r [( +
)
'

(
-

)
' , , ,

]
'

x = s xa ' xa ' Xb' xc' xf '

[zo,z;]' =ro[zo,zj,zi,]', [u~,ul]' =ri[u~,uf'u~]'

where the pair (Acc, Bc) is controllable, the pair (Abb,Cb)
is observable, and the subsystem (Aff' Bf' Cf) is invertible
with no invariant zer/)s.

The proof of this theorem can be found in reference [16],
[17]. We also note that the output transformation fo is of
form

[

Ir

fo = 0 f:J.
(3.7)

In what follows, we state some important properties of the
SCB which are pertinent to our present work. For further
details regarding SCB and its properties, interested readers
are referred to [19].

Property 3.1: The given system (A, B, C, D) is right-
invertible iff x b and hence Zb are nonexistent, left-invertible
iff Xc and hence Uc are nonexistent, invertible iff both Xc
and x b are nonexistent.

Property 3.2: Invariant zeros of (A, B, C, D) are the
eigenvalues of A;a and A;a. Moreover, the stable and
unstable invariant zeros of ( A, B, C, D) are the eigenvalues
of A;a and A ;a' respectively.

Property 3.3: The pair (A, B) is stabilizable if and only
if (Aeon' Bean)is stabilizable where

[

A;a
Aeon = 0

L;bCb

]

=
[

Bta

A ' Bean Bbb Ob

L;f

]

. (3.8)
Lbf

Property 3.4: If the system (A, B, C, D) is stabilizable
and right-invertible, Le., x b is nonexistent, then the pair
( A ;a, [B;a' L;f]) is controllable.

There are interconnections between the SCB and various

invariant and almost invariant geometric subspaces. To estab-
lish these interconnections, let us define the following sub-
spaces:

. yg(A, B, C, D)-the maximal subspace of ~n
which is (A + BF)-invariantand containedin Ker(C +
DF) such that the eigenvalues of (A + BF) Iy g are
contained in '6'g~ '6' for some F.

. .9"g(A, B, C, D)-the minimal(A + KC)-invariant
subspace of ~n containing Im(B + KD) such that the
eigenvalues of the map which is induced by (A + KC) on
the factor space ~ n/ .9"g are contained in '6'g~ '6' for
some K.

For the cases that '6'g= '6', '6'g= '6'- and '6'g= '6'0 U '6'+,
we replace the index g in Y g and .9"g by" *", "- ", and
" + ", respectively. We list in the following the geometrical
interpretations of some state vector components of SCB.

Property 3.5:
1) x; $ x; $ Xc spans Y*(A, B, C, D).
2) x; $ Xc spans r-(A, B, C, D).
3) x; $ Xc spans r(A, B, C, D).
4) Xc $ xf spans .9"*(A, B, C, D).
5) x; $ Xc $ xf spans r(A, B, C, D).
6) x; $ Xc $ xf spans Y(A, B, C, D).

B. Stoorvogel's Theorem

We recall in this section a main theorem of Stoorvogel [to]
that will play an important role in our present work. Before
we introduce the theorem, let us define the following quadratic

and

rs-I(A - BoCo)rs

A;a 0 L;b Cb 0 L;fCf
0 A;a L;bCb 0 L;fCf
0 0 Abb 0 LbfCf

BcE:a BcE LcbCb Acc LcfCf

BfEla BfEja BfEfb BfEfc Aff -
(3.4)

Bta 0 0

BOa 0 0

r-l[B B1]ri = I BOb 0
0 I, (3.5)s 0

Boc 0 Bc

BOf Bf 0

[] r C'o

Coa COb Coc

CO!]
r;' : r,

0 0 0 Cf'
0 Cb 0 0

[I,

0

]
rolDri = 0 (3.6)

0
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matrices:
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F-y(P(-y)):=
[

A' P(-y) + P(-y)A + C2C2 + "I-2P(-y)EE' P(-y)

B' P(-y) + D2C2

and

P(-y)B + C2D2

]D;'D2
(3.9)

G-y(Q("I)):=
[

AQ(-Y) + Q("I) A' + EE' + "I-2Q("I)C2C2Q(-y)

CIQ( "I) + DIE'

It should be noted that the above matrices are dual of each
other. In addition to these two matrices, we define two
polynomial matrices whose role is again completely dual

L(P(-y),s):= [sl - A - "I-2EE'P("I)

and

-B], (3.11)

M(Q(-y), s):= [SI - A - ~-~:(-y)C2C2]. (3.12)

Now we are ready to introduce the theorem of Stoorvogel
[10]. We have the following theorem.

Theorem 3.2: Consider the system (2.1). Assume that
(A, B, C2, D2) and (A, E, Cu DI) have no invariant zeros
in rt°. Then the following statements are equivalent:

1) There exists a linear time-invariant finite-dimensional
proper dynamic compensator Fo(s) such that by applying
u(s) = Fo(s)y(s) in (2.1) the resulting closed-loop system is
internally stable. Moreover, the H",,-normof the closed-loop

) transfer function from the disturbance input w to the con-
trolled output Z is less than "I.

2) There exist positive semidefinite solutions P( "I), Q( "I)

of the quadratic matrix inequalities F-y(P( "I)) 2::0 and
G-y(Q("I)) 2::0 satisfying p[P("I)Q("I)] < "12, such that the
following rank conditions are satisfied:

a) rank {F-y(P("I))} = normrank{G2(s)},

b) rank {G-y(Q(-y))} = normrank{GI(s)},

[

L(P(-y),S)

]c) rank F-y(P("I)) = n + normrank{G2(s)},

vs e rt° U rt+,

d) rank[ M(Q(-y), s), G-y(Q(-y))]

= n + normrank {GI(s)}, Vse rt° U rt+

where GI(s) = CI(sl - A)-IE + Du G2(s) = C2(sl -
A)-IB + D2 and "normrank" denotes the rank of a matrix
with entries in the field of rational functions.

Proof: See Stoorvogel [10].

IV. COMPUTATIONAL ALGORITHM FOR "I:

In this section we give a simple and noniterative procedure
for determining "I:. The method is applicable to the general
system of (2.1) satisfying the following two sets of basic
assumptions.

Assumption A: The system (A, B, C2, D2) is stabiliz-
able, right-invertible, and has no invariant zeros in rt°.

Q("I)C; + ED~

]

.
DID~

(3.10)

Assumption B: The system (A, E, Cu DI) is detectable,
left-invertible, and has no invariant zeros in rt°.

The algorithmfor "I: involvesthe computationof two
nonnegativescalars "It and "I~ whichare, respectively,the
infima in H""-optimization of the system L and its dual,
where in each case the measurement output is replaced by the
systemstate. Computationof "It and "I~ providesthe neces-
sary preliminary for the computation of "I:.

The following Sections IV-A and IV-B deal with the

definition and computation of "It and "I~, respectively, while
in Section IV-C we present our main theorem regarding the
computation of "I:'

A. Computation of "IP

We define the nonnegative scalar "It as the infimum of
H""-optimization for the system

.

[

x: Ax + Bu + Ew,
Lp. y - x,

z = C2x + D2u.

By definition, "It is clearly equal to "I:' However, we use
the terms "It and "I~ in the next section to conform with the
notation in matrix inequalities of Stoorvogel's theorem. In
what follows,we apply the procedureof [18] for "I: to the
system Lp in the computation of "It. It involves the follow-
ing steps.

Step 1: Transform the system (A, B, C2, D2) into the
SCB described in Section III. To all submatrices and trans-

formations in the SCB of L p, we append the subscript" p"
to signify their relation to the system Lp. Next, we compute

(4.1)

rs~IE= [(Edp)' (E;p)' (Eep)' (Efp)']'. (4.2)

Note that the component associated with x b is missing since
xb is nonexistent for a right-invertible system.

Step 2: If the system (A, B, C2, D2) is of nonminimum
phase2 then solve the following Lyapunov equations

A;apSp + Sp( A;aJ

= [Briap'L;/pro~~][Briap'L;fpro-r~r. (4.3)

(4.4)A;apTp + Tp(A;aJ = Edp(EdJ'

for Sp and Tp. Existence and uniqueness of these solutions
follow from the fact that A(A;a ) e rt+ (i.e., -A;a is ap . p

2A system is said to be of nonminimum phase if at least one of its
invariant zeros is in the closed right-half plane, otherwise it is said to be of
minimum phase.
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stable matrix) since the eigenvalues of Atap are the right-half
plane invariant zeros of the system (A, B, C2, Dz). More-
over, from the property 3.4 of Section III, the pair
(Atap' [Btap' Ltfpro-;';D is controllable when the system
(A, B, Cz, Dz) is stabilizable and right-invertible. The solu-
tion Sp of (4.3) is therefore positive definite and hence
invertible.

Step 3: The scalar "I; is given by

"1 * -p-

VA.nax (TpSp I)

if ( A, B, Cz, Dz) is of nonminimum phase,
0

if (A, B, Cz, Dz) is of minimum phase.

(4.5)

Here, we note that the eigenvalues of (TpSpI) are real and
nonnegative.3

Theorem 4.1: Consider the system Lp given by (4.1).
Then under the Assumption A

1) "I; is the infimum of Hoo-optimizationfor Lp;
2) for "I> "I;, the positive semidefinite matrix P('Y)

given by

P("t) = (rs~I)'[ Pa+~'Y)

O

]
r-I

0 Sp
(4.6)

where

I

(Sp - "I - z Tpr 1

Pa+ ("I) = 0 if ( A , B, Cz, Dz) is of nonminimum phase,

if (A, B, Cz, Dz) is of minimumphase

(4.7)

is the unique solution of the matrix inequality F-y(P( "I)) ~ 0
and satisfies both rank conditions a) and c) of Theorem 3.2.
Moreover, such a soiution P('Y) does not exist when "I < "I;'

Proof: See [18].
Remark 4.1: Note that part 2) of the above theorem

implies that "I: ~ "I;'

The next lemma provides the necessary and sufficient
conditions for "I; = O. .

Lemma 4.1: "I; = 0 iff Im(E) ~ 9*(A, B, Cz, Dz).
Proof' See [18].

B. Computation of 'YQ

As in the definition of "I;, the nonnegative scalar 'Y~ is
defined as the infimum in Hoo-optimization for the dual
system

.

j

x : A' x + C;u + C; w,
LQ' y-x,

z = E' x + D; u.

The determination of 'Y~ follows exactly the procedure de-

3 It is shown in [20] that AB has as many positive, zero, and negative
eigenvalues as A if A is Hermitian and B is Hermitian and positive
definite.

(4.8)

scribedin SectionIV-Afor the computationof "I; but it now
applies to the subsystem LQ of (4.8). For completeness and
to properlydefinematricesrequiredin the computation"I: of
Section IV-C and in our main theorem of Section IV-D, we
reiterate here the three steps involved in the computation of
'Y~

Step 1: Transform the system (A', C;, E', D;) into the
special coordinate basis SCB described in Section III. Again,
we add here the subscript" Q" to all submatrices and trans-
formations in the SCB of the system LQ' Next, we compute

r-1c' = [(E+ )
'

(E- )
'

(E )'
SQ Z aQ aQ CQ (EfQ)']" (4.9)

Note that the component associated with x b is missing
since Xb is nonexistent for a right-invertible system
( A', C;, E', D;). This comes from the Assumption B that
the system (A, E, C1, D1) be left-invertible.

Step 2: If the system (A, E, C1, D1) is of nonminimum
phase, then solve the following Lyapunov equations

AtaQSQ + Sd AtaQ)' = [BtaQ LtfQro-;'~]

. [BtaQ' LtfQro-r~]',

AtaQTQ + TQ(AtaQ)' = EdQ(EdQ)'

(4.10)

(4.11)

for SQ and TQ' As in the computationof "I; of Section
IV-A, these solutions are also unique due to the fact that the
system (A', C;, E', D;) is stabilizable and right-invertible
and has no invariant zeros on the jUJ axis. Moreover, SQ is
positive definite and hence invertible.

Step 3: The scalar 'Y~is given by

*-
'YQ-

Vtmax(TQSQI)

if ( A , E, C1, D I) is of nonminimum phase,
0

if ( A , E, C1' D I) is of minimum phase.

(4.12)

We note that the eigenvalues of (TQSQI) are also real and
nonnegative [20].

Theorem 4.2: Consider the system LQ given by (4.8).
Then under the Assumption B,

1) 'Y~is the infimum of Hoo-optimizationfor LQ;
2) for "I > 'Y~,thepositivesemidefinitematrix Q("I)given

by

Q("t) = (rs~I)'[ Qt~'Y)

O

]
r-I

0 SQ . (4.13)

where

Qt("t) =

(
Z )

-I
SQ - "I - TQ

if (A, E, C1, D1) is of nonminimum phase,
0

if (A, E, C1, D1) is of minimum phase

(4.14)

is the unique solution of the matrix inequality G-y(Q("I)) ~ 0
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and satisfies both rank conditions b) and d) of Theorem 3.2.

Moreover, such a solution Q('Y) does not exist when 'Y< 'YQ'
Proof: This is a dual version of Theorem 4.1.

Remark 4.2: Note that part 2) of the above theorem also
implies that 'Y: ~ 'YQ'

Again, analogous to Lemma 4.1 we have the following.
Lemma 4.2: 'YQ= 0 iff Y+(A, E, C1, D1) ~ Ker(C2).

Proof' This is a dual version of Lemma 4.1.

C. Computation of 'Y:

In this section we provide our main results on a simple and
noniterative procedure for the computation of the exact value
of 'Y:' First, we reformulate the computation of 'Y: in the
following lemma.

Lemma 4.3. Let 'Y;Q= max {'Y;, 'YQ}'Then

'Y: = inf{'Y E ('Y;Q' 00) : f( 'Y) < 'Y2}. (4.15)

where f('Y) = p[P('Y)Q('Y)],and P('Y) and Q('Y)are given
by (4.6) and (4.13), respectively.

Proof' It follows from Remarks 4.1 and 4.2 that 'Y: ~

'Y;Q' Next, given any '9E('Y;Q' 00) such that f('9) < '92,
Le., p[P('9)Q('9)] < '92, then such P('9) and Q('9) as given
by (4.6) and (4.13) satisfy the conditions of Theorem 3.2.
Hence, '9 > 'Y:'Thisconcludesourproof. .

Straightforward computation of 'Y: can be done via an
iterative search algorithm which involves in each step the
multiplication of two matrices P( 'Y)and Q('Y)of dimensions
n X n and the determinationof the spectral radius of the
product P( 'Y)Q( 'Y). This iterative search is costly and usu-
ally involves computation of eigenvalues of stiff matrices
since the product P('Y)Q('Y) could become ill-conditioned as
'Y approaches 'Y;Q from above.4 Hence, the overall proce-
dure tends to be ill-conditioned.

In contrast to the above iterative procedure, here we
present an elegant well-conditioned noniterative algorithm for
the exact computation of 'Y:' First, we derive an explicit
expression for f('Y) using (4.6) and (4.13). Let us denote n;p
and n; the numbers of nonminimum-phase invariant zerosQ
of the systems (A, B, C2, D2) and (A, E, C1, D1), respec-
tively. If min {n;p' n; } > 0, then we can partition the
product of the inverses ~f the SCB state transformations as
follows

r-l (r-l )' =
[

r
Sp SQ * :] (4.16)

where r is of dimensionn;p X n; .
Then it is straightforward to sho~ that the scalar function

f( 'Y)is given by

A.nax[(Sp - 'Y-2Tpr1r(SQ - 'Y-2TQr1r']

ifmin {n;p' n;Q} > 0,f( 'Y)=
0

ifmin {n;p' n;Q} = O.

(4.17)

4 Note that as 'Y gets close to 'Y~, P('Y) contains the inverse of an almost
singular submatrix and, similarly Q( 'Y) contains the inverse of an almost
singular submatrix as 'Y close to 'YQ[see equations (4.6) and (4.13)].
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The function f('Y) of (4.17) is a well-defined mapping from
('Y;Q'oo) to [0,00). Its evaluation is from the minimum
eigenvalue of a matrix of dimension n;p X n;p' which is
normally of a much smaller dimension than the original
product P( 'Y)Q( 'Y). We establish some important properties
of the function f( 'Y)in the following observation.

Observation 4.1: f( 'Y)is a continuous nonnegative nonin-
creasing function of 'Yon ('Y;Q' 00).

Proof' When min{n;p' n;} = 0,f('Y) = 0 for all 'YE
('Y;Q' 00) and the result is tr[vial. For the case where
min{n;p' n;Q} > 0, we first show that P:('Y) = (Sp-
'Y-2Tp)-1 is nonincreasing, i.e., if 'Y2> 'Yl then P:('Y2) :5
P:('Yl)' Recall that Sp> 0 and Tp ~ 0, we have for all

*
'Y2> 'Yl> 'YPQ

('Yi2 - 'Y22)Tp ~ 0

which implies that

Sp - 'Yi2Tp:5 Sp - 'Y22Tp.

Hence,

P:('Y2) :5 P:('Yl)' for 'Y2> 'Yl'

Following the same procedure as above, one can show that
Q;('Y) = (SQ - 'Y-2TQ)-1 is nonincreasing. This implies
that rQ;('Y)r' is also nonincreasing. Then clearly, f('Y) is a
continuous nonnegative nonincreasing function of 'Y on
('Y;Q'oo). .

The function f( 'Y) defined above can be extended. as a
mapping from b;Q'oo) to [0,00) by setting f('Y;Q) =
lim-Y-->-Yf>f('Y). It follows from Observation 4.1 that the limit
f( 'Y;Q) gxists and could be finite or infinite.

Before stating our main result of this section regarding the
computation of 'Y:, we need to establish several important
observations and a lemma.

Observation 4.2: f( 'Y)= 'Y2 has either no solutionor a
unique solution in the interval ('Y;Q' 00).

Proof' The result follows from Observation 4.1 and the
fact that 'Y2is strictly increasing for positive 'Y. .

Lemma 4.4: If f( 'Y)= 'Y2has no solution in the interval

('Y;Q'oo)then 'Y: is equal to 'Y;q' Otherwise, 'Y: is equal to
the unique solution of f( 'Y)= 'Y in the interval ('Y;Q' 00).

Proof' f( 'Y)= 'Y2 has no solution in the interval
('Y;Q'oo) implies that f('Y) < 'Y2 for all 'YE('Y;Q' 00) and
hence according to Lemma 4.3, 'Y: = 'Y;Q' On the other
hand, it is obvious that 'Y: is equal to the unique solution of
f( 'Y) = 'Y2whensucha solutionexists. .

At a first glance, it seems that the solution of f( 'Y) = 'Y2

would involve the rooting of a highly nonlinear algebraic
equation in 'Y. Actually, its solution can be achieved in
one-step. Namely the problem of solving f( 'Y)= 'Y2,if such
a solution exists in the interval ('Y;Q' 00), can be converted to
the problem of calculating the maximum eigenvalue of a
constant matrix. In fact, we also show that, when f( 'Y)= 'Y2
has no solution in the interval ('Y;Q' 00), the maximum
eigenvalue of this matrix is equal to 'Y;Q' which is 'Y: as
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well. Let USdefine

N(-y) :=

(Sp - 'Y-2Tpr1r(SQ - 'Y-2TQ)-lr' - 1'21

ifmin {n;p' n;Q} > 0,

- 1'21

ifmin {n+ n+ } = 0
op' oQ

(4.18)

and

M:=

[

TpSpl + rSQlr'sp 1 -rSQI

]
T. S-Ir' s -I T.S-I

-QQ p QQ

if n;p > 0 and n;Q> 0,

TpSp 1

if n+ > 0 and n+ = 0
Op °Q'

T. S-IQ Q

if n+ = 0 and n+ > 0
Op °Q'

(4.19)

0
if n+ = 0 and n+ = O.

Op' OQ

We have the following observations on the matrices M and
N('Y).

Observation 4.3: Eigenvalues of M are real and nonnega-
tive.

Proof' It is trivial when min {n;p' n;Q} = O. For the
) case where min {n;p' n;Q} > 0, we have

AM = A

[[

I 0

][

Tp+rSQlr' -rSQI

][

Spl 0

]][] 0 TQ - SQ1r' SQ1 0 1

= A

[[

Spl 0
][

1 0

][

Tp+rSQlr' -rsQI

]]
0 1 0 TQ -s-Ir' S-IQ Q

-

[[

Spl 0

][

Tp+rSQlr' -rsQI

]]
- A . (4.20)

0 TQ -sQlr' SQI

Now, it is trivial to verify that both submatrices in (4.20) are
symmetric and positive semidefinite. Then using the result of
[20] (i.e., Theorem 3), it is simple to show that the eigenval-
ues of M are real and nonnegative. .

Observation 4.4:

1) N( 1') has real eigenvalues for all I' E ('YtQ, 00).
2) >-max[N('Y)]= /(1') - 1'2 is continuous and strictly de-

creasing on ('YtQ,oo).
Proof' Again, it is trivial when min {n+o , n; } = o.

p Q

For the case where min {n;p' n;Q} > 0, we have the follow-
ing.

1) It is straightforward to show that (Sp - I' - 2Tp) - I > 0
and (SQ - 'Y-2TQ)-1 > 0 for all 'YE(')'tQ, 00). Hence, all
the eigenvalues of N('Y) are real for I' E ('YtQ,oo).

2) It followsfromObservation4.1. .
Observation 4.5: If min {n;p' n;Q} > 0, then the roots of

det{N(')')] = 0 are real. Moreover, the largest root of

det {N('Y)] = 0 in the interval ('YtQ,oo) is equal to
V~(M) .

Proof' Using the definition of N('Y) in (4.18), we have

det[N('Y)] = (-lr%Pdet['Y21- (Sp-'Y-2Tprl

.r(sQ - 'Y-2TQr1r']
+

(- 1rap

= det [Sp - 'Y-2Tp]

. det ['Y2Sp - Tp - 'Y2r( 'Y2SQ- TQr Ir']
+

( - 1rap

- det [Sp - 'Y-2Tp] det ['Y2SQ- TQ]

[

'Y2Sp - Tp r

]
. det

'Y2r' 'Y2SQ - TQ
+

- (-l)napdet [Sp] det [SQ]

- det [Sp - 'Y-2Tp] det ['Y2SQ- TQ]

'det['Y21-M]. (4.21)

Now it is simple to see that the roots of det [N('Y)] = 0 are

real since all the roots of det b2Sp - Tp] = 0, detb2SQ -
TQ] = 0 and det £1'21- M] = 0 are real. Moreover, it fol-
lows from (4.5) and (4.12) that det[Sp - 'Y-2Tp] *' 0 and
det [1'2SQ -:- TQ] *' 0 for all I' E ('YtQ, 00). Hence the largest
root of det [N('Y)] = 0 in ('YtQ,oo) is equal to the largest
root of det [1'21- M] = 0, whichis equal to v~ (M) ..

of this section is summarized in theThe main result
following theorem.

Theorem 4.3:

1': = V>-max(M)

where M is defined in (4.19).
Proof' The result is obvious for the case where

min{n;p, n;Q} = O. In what follows, we proceed to prove
our claim for the case where min {n;p, n;Q} > O.

First, we will show that 1': is equal to the largest root of
det [N('Y)] = 0 when /(1') = 1'2 has a unique solution in the
interval ('YtQ, 00).It is simple to observe that det[N( 1':)] = 0
since ~ [N('Y:)] = /(1':) - (1':)2= O.Nowsupposethat
there exists a 1'1 such that det[N('YI)] = 0 and 1'1> 1':.
This implies that there exists an eigenvalue of N('YI)' say
Aj[N(')'I)], such that AJN('YI)] '* Amax[N('YI)] and
Aj[N('Yd = O. Thus, we have

>-max[N('YI)] > Aj[N(-YI)] =O=>-max[N('Y:)]

contradicting the findings in Observation 4.4 that >-max[N( 1')]
must be a nonincreasing function. Hence, 1': is the largest
root of det[N('Y)] = 0 and it is equal to V>-max(M) as
shown in Observation 4.5.

Now we consider the situation when /(1') = 1'2 has no
solution in the interval ('YtQ,oo). In this case, clearly we
have 1': = 'YtQ and 0 ::::;/( 'YtQ) ::::;('YtQ)2. The last inequal-
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ity and the definition of N( "I) in (4.18) imply that - ('Y;Q)z

~ ~'i[N('Y;Q)] ~ O. Thus the determinant of N('Y;Q) is
bounded. Evaluating (4.21) at "I = 'Y;Q' we have

det [N( 'Y;Q)] det [Sp - ('Y;QrzTp] det [h;Qf SQ - TQ]

= (-lr;;Pdet [Sp] det [SQ]det [h;Q)z 1 - M].
(4.22)

Note that from (4.5) and (4.12) and the definition of 'Y;Q' we
have

det [Sp - ('Y;QrzTp] det [( 'Y;Q)zSQ - TQ] = 0

and since det[N('Y;Q)] is bounded, it follows from (4.22)
that det ['Y;~I - M] = 0 or ('Y;Q)z is an eigenvalue of M.
Furthermore since det[N('Y)] = 0 and similarly detbZI-
M] = 0 do not have a root in ('Y;Q'oo), hence 'Y;Q
= V~x(M). .

We have the following interesting lemma and corollaries.
Lemma 4.5: Y+(A, E, Cl' Dt) ~ 9*(A, B, CZ' Dz)

iff r = 0, where r is as defined in (4.16).
Proof' It is simple to show that

Y+(A, E, Ct, Dt) = 1m{(rs~t)'[ I~Q}} and

9*(A,B,Cz,Dz) = Ker{[/n;;p o]rs~t}.

Hence, it is straightforwardto verifythat r(A, E, Ct' Dt)
~ 9*(A, B, Cz, Dz) iff

[I + O]r-t(r-t),
[

/n;iQ

]

= r = O.
nap Sp SQ 0

Corollary 4.1: "I: = 'Y;Q if r(A, E, Cl' Dt) ~
9*(A, B, CZ' Dz).

Proof' It follows from Theorem 4.3 and Lemma 4.5..
The condition Y+(A, E, Cl' Dt) ~ 9*(A, B, Cz, Dz)

is not necessary for "I: = 'Y;Q' In fact, Y+(A, E, Ct' Dt)
~ 9*(A, B, Cz, Dz) becomes a necessary and sufficient
conditionfor "I: = 'Y~Qwhen 'Y~Q= 0 as seen in the follow-
ing corollary.

Corollary 4.2: Assume that 'Y~Q= O. Then "I: = 0 iff
r(A, E, Cl' Dt) ~ 9*(A, B, CZ' Dz).

Proof' The sufficientpart of this corollary follows from
Corollary 4.1. We prove the converse part by contradiction.
Suppose that r(A, E, Ct, Dt) ~ 9*(A, B, CZ' Dz) or
r "*o. It follows from Lemmas 4.1 and 4.2 that with the

assumption 'Y~Q= 0, i.e., 'Y~= 'YQ= 0, we have Tp = 0
and TQ = O. Thus

M = [rsQt~' spt -r:Qt)

and "I: = V"\nax (M) > O. This is a contradiction. Hence
the result follows. .
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An interesting question in Roo-optimization problem is
under what conditions the infimum in Roo-optimization via

output feedback be equal to that achieved using state feed-
back. In the following theorem, we provide a necessary and
sufficient condition under which "I: = "I:'

Theorem 4.4: Consider the system 2: given by (2.1).
Assume that both Assumptions A and B hold. Then "I: = "I:

iff

~x(M) =

~(TpSpt)
if ( A , B, Cz, Dz) is of nonminimum

phase,
0

if (A, B, Cz, Dz) is of minimum phase.
.

Proof' It follows from Theorems 4.1 and 4.3. .
Corollary 4.3:
1) If (A, E, Cl' Dt) is of minimum phase, then "I: = "I:'

2) If (A, B, CZ' Dz) is of minimum phase, then "I: = "I:

iff r(A, E, Ct, Dt) ~ Ker(Cz)'
3) If both (A, B, Cz, Dz) and (A, E, Cl' Dt) are of

nonminimum phase, then "It = "I: if r(A, E, Cl' Dt) ~
9*(A, B, CZ' Dz) and 'YQ~ "I;'

Proof' Using the fact "I; = "I:, cases 1) and 2) are
obvious in view of Theorem 4.3 and Lemma 4.2, while case

3)followsdirectlyfromCorollary4.1. .

.
V. CONCLUSION

In this paper, we have presented a simple and noniterative
algorithm for the computation of the infimum in the standard
Roo-optimization problem using output feedback. We have
shown that this infimum is equal to the square root of the
maximum eigenvalue of a constant matrix that can be easily
obtained from the data of the system 2:. Our results are
obtained under the assumptions that the two subsystems 2:p
and 2:Q are right- and left-invertible,respectively,and they
do not have invariant zeros on jw axis. The proposed
algorithm for computing the infimum is applicable to the
general case of singular Roo-optimization problem where no
restrictions have been placed on the direct feedthrough matri-
ces from the control input to the controlled output, and from
the disturbance to the measurement output. Our current re-
search effort is directed toward removing some of the as-
sumptions imposed in this paper on 2:p and 2:Q'
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