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Assignment of Complete Structural Properties
of Linear Systems via Sensor Selection

Xinmin Liu, Member, IEEE, Zongli Lin, Fellow, IEEE, and Ben M. Chen, Fellow, IEEE

Abstract—For � � � , the problem of structural assign-
ment via sensor selection is to find an output equation, � �

, such that the resulting system � � has the pre-spec-
ified structural properties, such as the finite and infinite zero struc-
tures as well as the invertibility properties. In this paper, we estab-
lish a set of necessary and sufficient conditions under which a com-
plete set of system structural properties can be assigned, and an ex-
plicit algorithm for constructing the required matrix pair � �.

Index Terms—Actuator selection, finite zeros, infinite zeros, Kro-
necker invariants, linear systems, sensor selection, structural as-
signment.

I. INTRODUCTION

T HE problem of assigning structural properties of a linear
system via sensor selection [1] is, for a linear system

(1)

to find a system output

(2)

such that the resulting system has all the pre-spec-
ified structural properties, such as the finite and infinite zero
structures and the invertibility properties [2]. Such a problem
is also referred to as the sensor selection problem. Another
problem that is dual to the sensor selection problem is the
actuator selection problem, which is, for a given matrix pair

, to find a matrix pair such that the resulting
system has the desired structural properties.

Recall that the system matrix pencil is defined
for the system characterized by (1), (2) or the quadruple

(3)

The structural assignment problem can thus be viewed as a ma-
trix pencil completion problem. That is, for given and , find
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and such that has the pre-specified Kronecker in-
variants [3].

Solutions to the sensor and actuator selection problems would
build a linkage between achievable control performances and
hardware implementation, and provide a foundation upon
which trade-offs can be incorporated in an early stage of overall
engineering design process. Traditionally, control theory views
actuators and sensors as a part of system dynamics and focuses
only on analysis and control design for the system under a given
set of actuators and sensors located at their fixed locations. It
is now widely recognized that achievable control performances
hinge on the selection of sensors and actuators along with their
locations, which together with the plant dynamics, determine
the structural properties of the overall system. Indeed, very
often, significant performance improvement can be achieved
by simple relocation of some of the sensors and actuators. For
example, it is well understood that it is troublesome to deal with
systems with nonminimum-phase finite zeros in control system
design. However, the designer is fortunately able to remove the
troublesome nonminimum-phase finite zeros and obtain better
performance by appropriately adding or relocating sensors or
actuators.

The selection of sensors and actuators and their locations also
arises in a variety of other applications, such as flexible struc-
tures [4]–[7], distributed processes [8]–[10], wireless networks
[11], fault detection and isolation [12], and maneuvering targets
tracking [13].

The complete set of invariants of matrix pencils under nonsin-
gular transformations are captured by Kronecker invariants as
finite and infinite elementary divisors, and column and row min-
imal indices [3]. A numerically stable algorithm for computing
Kronecker invariants can be found in [14]. In 1973, by taking
a geometric approach, Morse [2] established that the structure
of a linear system is completely characterized by a set of in-
variant factors and three sets of integers, , and , all
of which are invariant under nonsingular state, input and output
transformations, state feedback and output injection. In partic-
ular, the invariant factors represents the finite zero structure
of the system, represents its infinite zero structure, and
and characterize its right and left invertibility properties re-
spectively. We note that Morse index lists , , and
coincide with the Kronecker invariants of system matrix pencil
(3). In particular, is the finite elementary divisors, and
are respectively the column and row minimal indices, and is
related to the infinite elementary divisors.

The problem of structural assignment was first studied
by Rosenbrock in [1], in which finite zeros are assigned by
choosing the output matrices. Indeed, most results on the
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structural assignment have pertained to the assignment of finite
zero (invariant zero or transmission zero) structures (see, e.g.,
squaring down [15]–[19], feedforward [20], structured additive
transformations [21]). The finite zero assignment can be treated
as a pole assignment problem with state or output feedback
[22]–[24]. Boley and Dooren [25] studied the problem of zero
placement for an arbitrary matrix pencil by the addition of new
rows or columns and shown how additional rows or columns
can be appended to place as many zeros as possible.

In 1995, [26] proposed a technique which is capable of simul-
taneously assigning finite and infinite zero structures. Recently,
we made an attempt to deal with the assignment of a complete
set of system structures, including finite and infinite zero struc-
tures and invertibility structures [27]. In particular, in [27], we
identified a set of sufficient conditions, and under these condi-
tions developed an algorithm that leads to the assignment of a
complete set of structural properties.

The structural assignment problem was solved in [28] in
terms of homogeneous invariant factors when the underlying
field is infinite. However, as pointed out in [29], it is very
difficult to extract from the relations provided in [28] a set of
necessary and sufficient conditions that ensure the existence of

and such that the system has the prescribed
infinite elementary divisors. Motivated by this observation,
[29] adopted a similar strategy as in [1] to present a set of
necessary and sufficient conditions under which an infinite zero
structure can be assigned. More recently in [30], we established
a set of necessary and sufficient conditions for the assignability
of a set of structural properties which includes finite zeros,
infinite zeros and row minimal indices, and provided an explicit
algorithm to construct the required matrices.

We also note that there are many results on a related matrix
pencil completion problem [31], [32]. This problem is, for

, to find matrix pencils , and
, such that

has the pre-specified Kronecker invariants. Dodig in [33], [34]
gave a set of simple and explicit necessary and sufficient condi-
tions for the existence of a matrix pencil with prescribed Kro-
necker invariants and a regular subpencil. These results in gen-
eral do not apply to the structural property assignment problem
considered in this paper, in which only constant matrices and

, rather than matrix pencils , and , can
be selected.

In this paper, we will establish a set of necessary and suffi-
cient conditions for the assignability of a complete set of struc-
tural properties, including the finite and infinite zeros properties
and the invertibility properties, and will develop a numerical al-
gorithm for the explicit construction of the required pair .
As a result, we give a complete solution to sensor and actuator
selection problems.

The remainder of this paper is organized as follows. Section II
includes some background materials. Section III presents some
preliminary results which will lead to our main results in
Section IV. Section V contains some examples that illustrate

various aspects of the results of this paper. Section VI concludes
the paper.

Throughout the paper, we use to de-
note a set and an ordered set. Set minus
between two sets and is denoted as . For any

, denotes
the elements of in the non-increasing order. Similarly,

denotes the elements of in the non-de-
creasing order. For two polynomials and , denotes “
divides ,” and denotes the degree of . For an integer ,
denote

II. BACKGROUND MATERIALS

Definition 2.1: [35] For , , if

or, equivalently

When , is said to be majorized by (or, majorizes
). This notation and terminology were originally introduced in

[36].
Definition 2.2: [35] For , , if

When , is said to be weakly supermajorized by .
Equivalently, we write .

Definition 2.3: For , , if

Next we recall the equivalence of matrix pencils [3]. For a
matrix pencil , there exist nonsingular matrices and

such that

(4)

where is in the Jordan canonical form, and has the
following pencils as its diagonal blocks

. . .
. . .
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, . , , is an
bidiagonal pencil, and , , is an

bidiagonal pencil, i.e.,

. . .

. . .

. . .
. . .

Finally, is nilpotent and in Jordan canonical form, and
has the following pencils as its diagonal blocks

. . .
. . .

. Then, invariant factors of are finite elemen-
tary divisors. The sets and
are column and row minimal indices, respectively. Lastly,

are the infinite elementary
divisors. The form (4) is called the Kronecker canonical form.

In what follows, we recall the controllability indices and the
nice basis indices of a pair with and

. There exists only finite elementary divisors and row min-
imal indices in the matrix pencil . The zeros of
finite elementary divisors are the set of uncontrollable modes,
while row minimal indices are the controllability indices of the
pair . The controllability indices can also be computed
from

...
...

...

where is the th column of , and is a non-negative integer.
Search for linearly independent columns of from left
to right and rearrange them as

The controllability indices of the pair are defined as
. If , the system is

controllable.
Consider an ordered set of non-negative integers

, we define a function as

...
...

...

When , items related to are eliminated from
.

Definition 2.4: [37] The ordered set of non-negative integers
is called the indices of a nice basis asso-

ciated with a controllable pair if is nonsin-
gular.

It is obvious that if is the indices of a nice basis, then
.

We next recall some properties of the controllability indices
of the pair . Define

and let . We have

It means that the controllability indices can be determined by ,
. It can be verified that the following equation:

holds for nonsingular and and state
feedback . Thus, the controllability indices of

are invariant under state and input transformations and
state feedback.

Lemma 2.1: For and , there exist
nonsingular and , and state feedback

such that

(5)

with

where is the set of uncontrollable modes, and
is the controllability indices with

.
The controllability indices and the nice basis indices of a ma-

trix pair have the following majorization relationship.
Lemma 2.2: [38] Consider a controllable pair with

controllability indices . Let be the indices of a nice basis
associated with . Then, .

The following lemma gives the relationship between invariant
factors and the eigenvalue structure of a matrix.

Lemma 2.3: [3] Let and its eigenvalues be ,
, with the sizes of their Jordan blocks being ,

, , where
. Then, the invariant factors of are given by

where if .
For an , its eigenvalues are self-conjugated. Thus

its invariant factors , , have real coefficients,
and their factors are or , where .

Lemma 2.4: [39] Let and be its
invariant factors. Then, there exists a such that
the pair is controllable with controllability indices
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, where are positive, if
and only if

Indeed, the conditions in Lemma 2.4 are equivalent to

Next, we recall the structural decomposition of the system
. Sannuti and Saberi [40], [41] developed an

algorithm to construct input, state and output transformations
that decompose the system into a normal form, which explicitly
displays all the structural properties as identified by Morse
[2]. A toolkit [42] in MATLAB environment containing such a
normal form is currently available online. The implemented
in the toolkit [42] is based on a numerically stable algorithm
recently reported in [43], together with an enhanced procedure
reported in [44].

By [2], [40], [41], we have the following result.
Lemma 2.5: Consider

(6)

where , and . There exist nonsingular
transformations , and , and
feedback such that (See equation at bottom of page)

� �

� �

� �

� �

� �

� �
�

�� ��

�� ��
�

� � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

(7)

where

(8)

(9)

(10)

(11)

(12)

Remark 2.1: The finite zero structure of (Morse index )
is given by the invariant factors of . The left invertibility

structure is given by , and the right invert-
ibility structure is given by . The system

has infinite zeros of order 0. The infinite zeros
of orders greater than 0 are given by .
That is, each corresponds to an infinite zero of order . Also,

is left invertible if is empty, right invertible if is empty,
invertible if both and are empty, and degenerate if both
and are present.

Remark 2.2: Based on (7), the Kronecker canonical form of
the system matrix pencil can be computed easily. In particularly,
We first apply output injection to the system, i.e. left
multiple both sides of (7) with

to remove the terms , , , ,
, , , , and in (7), and then

use permute operations in columns and rows. In Kro-
necker canonical form, finite elementary divisors are given
by the invariant factors of , row minimal indices are
given by , column minimal indices given
by , and the infinite elementary divisors

[44].

III. PRELIMINARY RESULTS

The problem of assigning controllability indices is, for a
given , to find a , such that the pair has the prescribed
controllability indices and the uncontrollable mode structure.
Based on the invariant factors of a matrix, Zaballa [39] iden-
tified a set of necessary and sufficient conditions under which
the controllability indices are assignable. In what follows, we
establish a set of necessary and sufficient conditions for
to have the prescribed controllability indices in term of the
eigenstructure of . Such a new approach to establishing nec-
essary and sufficient conditions will facilitate our development
of an explicit algorithm for structural assignment in the next
section. By Lemmas 2.3 and 2.4, we have the following lemma.

Lemma 3.1: Let and its eigenvalues be ,
, with the sizes of their Jordan blocks being ,
, , where

(13)

and let be a set with non-negative integers and
. Then, there exists a such that the pair has

controllability indices if and only if

(14)

where undefined ’s are set to be zero.
Note that (14) implies that .
Consider an as in Lemma 3.1, the algebraic mul-

tiplicity of its eigenvalue is . Thus, the set of
eigenvalues of , including repeated ones, is given by
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Let be a self-conjugated subset of

where . There exists a such that

(15)

with .
Now we consider a special decomposition in the form of (15).

There exists a such that

with

Rewrite

There exists a permutation matrix such that

where

with . There exist , , such that

Thus, the eigenstructure of are given by , ,
with the sizes of their Jordan blocks being , ,

, as

It is obvious that . Since is self-conjugated,
there exists a such that

(16)

where the eigenstructure of is the same as that of . We
denote the eigenstructure of in (16) as

It is obvious that in (16) contains Jordan blocks with larger
sizes, while contains Jordan blocks with smaller sizes. Sup-
pose the eigenstructure of in (15) are given by ,

, with the sizes of their Jordan blocks being ,
, . Then we have the following rela-

tionship:

(17)

where , and the undefined ’s and
’s are set to zero.

Theorem 3.1: Let and its eigenvalues be ,
, with the sizes of their Jordan blocks being ,
, . Let be a set of complex scalars

and be a set with nonnegative integers. Then, there exists a
such that the pair has the set of unobservable

modes , and the observability indices , if and only if
is self-conjugated, and

(18)

where and the undefined ’s are set to be
zero.

Proof: Necessity: There exists a such that

where is observable. It is obvious that the set of un-
observable modes is self-conjugated.

Denote the eigenvalues of by with the sizes of their
Jordan blocks being , , . By
Lemma 3.1, we have

Therefore, (18) is obtained by (17).
Sufficiency: We will give a constructive proof. We decompose
as in (16)

where , and the eigenvalues of are given by
with the sizes of their Jordan blocks being , ,

. By Lemma 3.1, there exists a such that the
pair is observable with as its observability indices.
Let . Then, the pair has observability in-
dices and the set of unobservable modes .

Next, we extend the definition of the indices of nice basis to
a pair that might not be controllable.

Definition 3.1: Consider a pair with ,
and controllability indices . An ordered set of non-neg-

ative integers is called the indices of a
nice basis (of controllable subspace) associated with , if

.
By decomposing the pair into controllable and un-

controllable parts, and using Lemma 2.2, we have the following
lemma.
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Lemma 3.2: Consider the pair with controllability in-
dices . Let be the indices of a nice basis (of controllable sub-
space) associated with . Then, .

In what follows, we show how to extend a full column rank
subspace to a nice basis.

Lemma 3.3: Consider the pair . Let be an ordered
set such that is of full column rank. Then there exist
the indices of a nice basis of , such that .

Proof: We can extend to a nice basis
of in the following way. For , find the
smallest such that is linearly dependent on

. Then, for ,
find the smallest such that is linearly dependent on

. Continue in this way, until we find an
element ordered set . Obviously, . By the construction,

is of full column rank, and is linearly
dependent on the columns of , i.e.,

(19)

where . By (19), it can be proven that

for , , . Thus,

Therefore, is the indices of a nice basis associated with
.

Next lemma follows from Lemma 3.2 and Lemma 3.3 di-
rectly.

Lemma 3.4: Consider the pair with controllability in-
dices . Let be an ordered set such that is of full
column rank. Then .

The following definition will simplify the description of our
main results in the next section.

Definition 3.2: Let ,
and be three sets

of non-decreasing nonnegative integers. Define
as a reordered set of relating to as follows. First,
elements in are defined by the elements of as

.

The remaining elements of are defined by the elements
of as follows. Let

which is in the non-decreasing order, and let

In other words, the ordered set are obtained by replacing
elements of with those of and . First, starting from the
largest to the smallest, replace each element of for the last
original element in that is not larger than itself. After that,

Fig. 1. Relationship among � , � , � , � and �.

replace the elements of for the remaining elements of in the
non-decreasing order.

Remark 3.1: Note that is well-defined if and
only if .

Example 3.1: Let , and
. We can define .

Similarly, for , and ,
. On the other hand, if ,

and , it can be verified that
is not well-defined.

The following lemma is crucial in developing our main results
in the next section.

Lemma 3.5: Consider and

(20)

(21)

where , and , , , and are in the
forms of (8)–(12) with ,

. Denote , . Let
be a set of integers with

. Let .
Then, there exist , , , , , and ,
such that has controllability indices and the set of
uncontrollable modes if

1) The ordered set is well-defined and

(22)

2) .

Proof: Inequality (22) implies that
. Thus, (see Fig. 1). The controllability indices of

depend on the choice of , , , ,
and . If all these matrices are equal to zero, then the

controllability indices of are the set .
The element set are defined as follows. The elements

of are first defined from :

.
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The remaining of are defined as follows.
Let

By Fig. 1,

Define

.

By the definition of , we have

(23)

Define

If is defined from , will be said to be associated with .
Otherwise, if is defined from , will be said to be associ-
ated with .

By the definition, we have

and

The integers , , which are associ-
ated with , can be negative, zero or positive. However, due to
(23), the integers , , which are associated
with , can only be zero or positive.

We partition , , , and as fol-
lows:

where

Under the conditions of Lemma 3.5, we assign , ,
, , and by the following steps.

Algorithm 1

Initial Step: Let ; ; ; ; ;
; ; ; ; ,

; and .

Step R: Find the next such that . Let . If
, let .

Case 1. If ,

Sub-case 1.1. If , assign
to

be controllable. Let and .

Sub-case 1.2. If , find the smallest with
. If is associated with , find a such that

, and let the -th element of
be nonzero. Otherwise, if is associated with , find
an such that , and let the -th
element of be nonzero. If , let

, , , and go back to
Case 1. If , let and .

Case 2. If , find an such that .

Sub-case 2.1. If , assign
to be

controllable. Let and .

Sub-case 2.2. If , find the smallest with
. If is associated with , find a such that

, and let the -th element of
be nonzero. Otherwise, if is associated with , find
an such that , and let the -th
element of be nonzero. If , let

, , , and go back to
Case 2. If , let and .

If , go to Step R.

End.

We assign and the undefined elements in the lower trian-
gular partition of arbitrarily. It can be verified that, with the
resulting , , , , and , the pair

has the controllability indices and the set of uncon-
trollable modes given by .

This completes the proof of Lemma 3.5.
Example 3.2: Let , and . We would

like to search for a pair in the form of (20) with the con-
trollability indices . The conditions in Lemma
3.5 are satisfied. By Algorithm 1, we have

Similarly, let , and . By Algorithm
1, we have

such that the pair has the controllability indices
.
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Fig. 2. Relationship among � , � , � , � , � , � and �.

IV. MAIN RESULTS

The following theorem deals with the assignment of infinite
zeros and the column minimal indices. It generalizes the result
of [29], where only the infinite zeros is considered.

Theorem 4.1: Consider a pair with ,
, and its controllability indices ,

. Let be a nonnegative integer, and
, be two sets of non-

decreasing positive integers. Let . Then, there
exist and such that the system has infinite
zeros of order 0, and Morse index lists and if
and only if,

1) ;
2) The ordered set is well-defined and

(24)

Proof: Necessity: By Lemma 2.5, there exist nonsingular
, and , and feedback gain such that (7) holds. It is

obvious that

Also, we have

Thus, the necessity of Condition 1) is proven. The necessity of
Condition 1) is depicted in Fig. 2 with . It is
obvious that .

We will next show the necessity of Condition 2). Define
. Let be the th column of , . Thus,

, , are related to , and ,
, are related to . It can be verified that

(25)

Let

It can be verified that

(26)

where

and is an matrix with the elements in the inverse di-
agonal being 1 s, and all the other elements being 0 s. Clearly,

is of full column rank. Thus, by Lemma 3.4

(27)

Consequently, we have

(28)

From (25), we obtain . Similarly, we have
. Thus, is well-de-

fined.
Delete the repeated elements of and rearrange the remaining

elements as with .
Define

for . Obviously

(29)

If we can show

(30)

then we can prove (24) in the following way. Consider the subset
. Suppose that elements in this

subset come from , then , for . The
remaining part of this subset, i.e., ,
come from , and are in the non-decreasing order. As a result,
there exists a , , such that

. (31)

By (28), (29), (30) and (31), we obtain

And thus, we have (24).
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Now we only need to prove (30). We divide the proof into two
cases: and .

In the case that

Thus, by (27), we have

Next, we consider the case of . The proof of (30)
for this case is a little involved. We define an element ordered
set as follows:

,

Let , and if
is of full column rank, let . Let

, and if is
of full column rank, let . Continue in this way for all

for from 1 through , we define , . Let
be the number of elements in which are not bigger than

. Denote all rows of with as .
Because of (25), all rows of associated with
are included in .

Similarly, we define an element ordered set as follows:
search for linearly independent columns of
from left to right and rearrange them as

Denote

Let , and if
is of full column rank, let . Let

, and if is
of full column rank, let . Continue in this way for
all for from 1 through , we define , .
It is obviously that there are elements in which are not
bigger than . By the above construction, we have the
following relation among subspaces:

(32)

(33)

where is an element ordered set with the first ele-
ments being and the remaining elements being .
Therefore, by (32) and (33),

Therefore, , , includes three parts:
1) elements contained in the first elements of

;
2) elements of ;
3) , .

Thus

Consider , we obtain

We also have

(34)

Since is of full column rank and consider (34),
by Lemma 3.4, we obtain

And thus

This complete the proof of (30).
Sufficiency: We will give an algorithm that would yield the

desired matrices and .

Algorithm 2

1) By Lemma 2.1, find nonsingular state and input
transformations and , and feedback such that
(5) holds.

2) By Lemma 3.5, find in the form of (20) with
the controllability indices and the set of uncontrollable
modes given by . Assign and

as follows:

(35)
where is in the form of (12). The system

has the desired structural properties.
3) By Lemma 2.1, find nonsingular state and input

transformations and , and feedback such that
is transformed into (5). Let

(36)
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(37)

End.

By Algorithm 2, we have

Thus, the system can be transformed into
by using state and input transformations and

state feedback. We finally obtain a set of the desired as

This completes the proof of Theorem 4.1.
Remark 4.1: If is an empty set, the conditions of Theorem

4.1 can be reduced to the condition of [29], in which only the
assignment of infinite zeros is considered.

The following theorem deals with the assignment of a com-
plete set of structural properties.

Theorem 4.2: Consider the pair with ,
, its controllability indices ,

, and the set uncontrollable modes
given by . Let the eigenvalues of be ,

, with the sizes of their Jordan blocks being ,
, . Let , , , and be non-

negative integers, be a set with self-conjugated complex
scalars, and , and

be three sets of non-decreasing positive
integers. Let . Then, there exist and such
that the system has finite zeros , infinite
zeros of order 0, and the Morse index lists , and

if and only if
1) ;
2) , where

, is the number of el-
ements in ,

and the undefined
’s are set to be zero;

3) The ordered set is well-defined and

(38)

4) .
Proof: Necessity: The necessity of Conditions 1) and 3)

follows directly from Theorem 4.1. Condition 4) is necessary
for dimensional compatibility.

The necessity of Condition 2) can be proven by using The-
orem 3.1. Consider in the form of (7). The eigenvalues
of

can be changed by using state feedback. This means that the
eigenstructure of uncontrollable modes is entirely contained
in with

Suppose that the eigenvalues of are given by ,
, with the sizes of their Jordan blocks being ,

, . Then, by Lemma 3.1 and (17)

Sufficiency: We will establish the sufficiency by construction.
We first consider the pair in the form of (20). Denote

(39)

Following Algorithm 1, we assign such that
eigenvalues of are in , and the remaining

eigenvalues are distinct and not in . By Theorem 3.1, we
can assign such that has its the set of unobserv-
able modes contained in , and its observability indices is ,
which satisfies Condition 2).

Similar to Algorithm 2, instead of assigning and in the
forms of (35), we now assign

(40)
To show that the system has the desired

structural properties, we find nonsingular such that

where . Since is observable, there exists
an , , such that

Therefore, the Sylvester equation

has a unique solution . Let

We obtain
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Thus, the system has finite zeros and
infinite zeros of order 0. Its infinite zeros of order greater than 0
are , the right invertibility indices are , and the left invertibility
indices are .

We thus obtain a set of the desired as

where and are in the forms of (36) and (37). This completes
the proof of Theorem 4.2.

Remark 4.2: The most important step in the constructive al-
gorithm in the proof of Theorems 4.1 and 4.2 is the construc-
tion of . The pair has a pre-specified set of
uncontrollable modes and controllability indices, and it also has
a form similar to as in (7). Thus, it is easy to assign

such that the system has the desired
Morse index lists. In other words, plays a role that
links a matrix pair with certain controllability indices and a ma-
trix quadruple with a certain set of Morse index lists. The con-
struction of in Lemma 3.5 is not unique, and any ma-
trix pair provides such a linkage can serve as . As will
be seen in Example 5.5, in some situations, could be
constructed by only small adjustments in the model of system
dynamics.

Remark 4.3: If the uncontrollable mode matrix is cyclic,
which means that the Jordan form of has one Jordan block
associated with each distinct eigenvalue, then Condition 2) in
Theorem 4.2 can be simplified. More specially, we can assign

such that is cyclic, thus the majorization constraint with
respect to can be removed. Therefore, Condition 2) in Theorem
4.2 simplifies to

2) , where and is self-
conjugated.

Remark 4.4: In Theorem 4.2, we only consider the algebraic
multiplicity of finite zeros. We can also take into account the
geometric multiplicity of finite zeros. Suppose that the desired
eigenstructure of finite zeros is given by , then
the assignment of this finite zero structure and the left invert-
ibility structure is a little more involved, as and in the
constructive algorithm in Lemma 3.5 can no longer be chosen
freely. In particular, for to be assignable, it is required that
there exist and such that in (39) can be transformed
into

and , where ,
, , are the sizes of the Jordan

blocks associated with and
, . In this case, we can assign in (40)

as , where is observable with ob-
servability indices . Following the algorithm in Theorem 4.2,
we obtain the desired .

Remark 4.5: In our earlier algorithm [27], in order to be as-
signable, the desired orders of infinite zeros must be equal to or
less than the elements in the controllability indices of ,

Fig. 3. Graphical summary of the structural assignment.

and the desired right invertible indices must be equal to the el-
ements in controllability indices of . In our current algo-
rithm, no such constraints are imposed.

Note that in Theorems 4.1 and 4.2, the necessary and suffi-
cient conditions are given only in terms of the controllability
indices and uncontrollable modes . Fig. 3 summarizes in
a graphical form our assignment of a complete set of structural
properties. In Theorem 4.1, we focus only on the structural as-
signment of , and , while in Theorem 4.2, we consider
the assignment of a complete set of structural properties by as-
signing the additional properties and .

V. EXAMPLES

In this section, we will present several examples to illustrate
various scenarios of the structural assignment problem. These
examples also show how our results generalize the existing re-
sults in the literature.

We first consider an example where the required structural
properties are determined to be not assignable.

Example 5.1: Consider a pair with controllability in-
dices . Let and , and define

. Condition 2) in Theorem 4.1 is not
satisfied, Thus, there do not exist such that the resulting

has and .
The following example considers the assignment of all four

structural properties.
Example 5.2: Consider the linear system (1) with

We would like to choose and such that the resulting system
has a finite zero at 1, , , and

infinite zeros structure .
Following the constructive algorithm in the proof of Theorem

4.2, we proceed as follows:
1) By Lemma 2.1, the pair has an uncontrollable mode

0 and controllability indices {1, 2}, and can be transformed
into (5) by
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2) By Lemma 3.5, find

Assign

The resulting system has the desired
structural properties.

3) By Lemma 2.1, find

to transform into the form of (5). By (36), (37),

Thus, the desired output matrices are given by

The following example considers the assignment of and
, whose elements are bigger than the elements in . The ex-

plicit algorithm in [27] cannot deal with this situation.
Example 5.3: Consider

It is controllable with controllability indices . We
would like to assign output matrices and such that the re-
sulting system has and , but
no finite zeros.

It is easy to verify that conditions in Theorem 4.2 are satisfied.
Assign

It can be verified that the pair has controllability in-
dices and the system has the
desired structural properties. Following Algorithm 2, we obtain
the desired as

The following example considers the assignment of finite
zeros with or without pre-specified eigenstructure.

Example 5.4: Consider a pair with

Obviously, the following has the same uncontrollable
eigenstructure and controllability indices as those of

We can assign and such that has finite zeros
, and by letting

The resulting and are given by

But there do not exist and such that the system
has the specific structure of the finite zeros

and . Indeed, after the assignment
of finite zeros, only identity matrix in is left to be assigned
as . But, as observed in Remark 4.4, such an assignment re-
quires that , which obviously cannot be satisfied here.
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We can however assign and such that has
finite zeros , and ,
by letting

The desired and are given by

Yet there do not exist and , such that has
the finite zeros and . Indeed, to as-
sign finite zeros , can only be chosen as . And for this
fixed , there does not exist such that the pair

is controllable. Therefore, there do not exist the re-
quired .

Finally, we consider the problem of sensor selection for a
mechanical system.

Example 5.5: Consider a benchmark problem for robust con-
trol of a flexible mechanical system (see Fig. 4). The problem is
to control the displacement of the third mass by applying a force
to the first mass. The dynamic model of the system is given by

where , and are respectively the positions of Mass 1
(with a mass of ), Mass 2 (with a mass of ) and Mass
3 (with a mass of ), and are spring constants, is
the input force, and and are the disturbances, such as
friction forces and unmeasured external forces. The output to
be controlled is the position of the third mass. For simplicity,
we choose and . Thus, the
system is represented by

(41)

Although simple in nature, this problem provides an inter-
esting example on how sensor selection can affect the perfor-
mance of the resulting control system. It is simple to verify that
the subsystem is of minimum-phase and invertible.
Hence, the disturbance can be decoupled from the output to

Fig. 4. Three-mass-two-spring flexible mechanical system.

be controlled, i.e., , to an arbitrarily small degree by state feed-
back [44]. Our objective is to identify a measurement output, or
the sensor locations, such that a feedback of the measurement
output would yield the same performance as the state feedback.
This can be made possible by choosing a measurement output

such that the subsystem is left invertible
and of minimum-phase [44]. Thus, at least two measurements
are needed.

The pair is in (41) is controllable with controllability
indices .

Suppose we are to assign such that is invertible
with infinite zeros {2, 4}. The is already in the form of
the required in Theorem 4.2. is simply given by

which means that the positions of Mass 1 and Mass 3
are measured. It can be verified that the almost disturbance de-
coupling is achievable by measurement feedback.

Next, we assign such that is invertible with
infinite zeros {2, 2}. Similarly, we assign

In this case, the positions of Mass 2 and Mass 3 are measured,
and the finite zeros of the resulting system are . The sub-
system is of weakly minimum phase. The almost
disturbance decoupling is achievable, but the controller is more
complicated, as the system is only weakly minimum phase. For
this reason, we would like to assign such that the system

has finite zeros with negative real parts. We assign

Note that is the same as , except that the (2,2) entry is now
. The pair has controllability indices {2, 4} and

has eigenvalues at for .
Assign
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By Algorithm 2, we obtain

The resulting system is now invertible with infinite
zeros {2, 2} and stable finite zeros
for any .

On the other hand, if the positions of Mass 1 and Mass 2 are
measured, i.e.,

the subsystem is not invertible, and thus, the almost
disturbance decoupling cannot be achieved.

VI. CONCLUSION

In this paper, we have revisited and provided a complete solu-
tion to the classical problem of structural assignment for linear
systems. We considered a complete set of structural properties,
including the finite and infinite zero structures and the invert-
ibility structure. We established a set of necessary and sufficient
conditions under which these structural properties are assign-
able. An algorithm to construct the desired output matrices that
result in the prescribed structural properties was also given. Sev-
eral numerical examples were worked out in detail to illustrate
various scenarios in the assignment of structural properties.
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