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Abstract—A robust controller design for a piezoelectric bi-
morph nonlinear actuator is considered in this paper. The non-
linear dynamics of the actuator are first linearized using the
stochastic equivalent linearization method and reformulated into
a standard almost disturbance decoupling problem. Then a ro-
bust controller, which is explicitly parameterized by two tuning
parameters, is carried out using a so-called asymptotic time-scale
and eigenstructure assignment approach. The parameterized con-
troller can be tuned by adjusting the parameters to achieve
disturbance decoupling and other design goals for the problem
that we consider. Simulation results of time-domain responses
show that the design is very successful in terms of steady-state
tracking error and settling time as well as other performances.

Index Terms—Actuators, disturbance decoupling,HHH111 control,
piezoelectric devices, robust control, suboptimal control.

I. INTRODUCTION TO THE PROBLEM

PIEZOELECTRICITY is a fundamental process in electro-
mechanical energy conversion. It relates electric polar-

ization to mechanical stress/strain in piezoelectric materials.
Under the direct piezoelectric effect, an electric charge can be
observed when the materials are deformed. The converse or
the reciprocal piezoelectric effect is when the application of
an electric field can cause mechanical stress/strain in the piezo
materials. There are numerous piezoelectric materials available
today with PZT (lead zirconate titanate), PLZT (lanthanum
modified lead zirconate titanate), and PVDF (piezoelectric
polymeric polyvinylidene fluoride) to name a few (see [11]).

Piezoelectric structures are widely used in applications that
require electrical to mechanical energy conversion coupled
with size limitations, precision, and speed of operation. Typ-
ical examples are micro-sensors, micro-positioners, speakers,
medical diagnostics, shutters and impact print hammers. In
most applications, bimorph or stack piezoelectric structures
are used because of the relatively high stress/strain to input
electric field ratio (see [11]).

The present work is motivated by the possibility of apply-
ing piezoelectric micro-actuators in magnetic recording. The
exponential growth of area densities seen in magnetic disk
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Fig. 1. Structure of a piezoelectric bimorph actuator: 1—base, 2—piezoelec-
tric bimorph beams, 3—moving plate, and 4—guides.

drives means that data tracks and data bits are being placed at
closer proximity than ever before. The 25 000 TPI (tracks-per-
inch) track densities envisaged at the turn of the century mean
that the positioning of the read/write (R/W) heads must be
accomplished to within 1 to 2 micro-in error in track following.
The closed-loop positioning servo will also be required to have
a bandwidth in excess of 1 to 2 kHz to be able to maintain
this accuracy at the high spindle speeds required for channel
data transfer rates which will be in excess of 200 Mb/s. Such
a performance is clearly out of reach with the present voice
coil motor (VCM) actuators used in disk drive access systems.

A dual actuator was successfully demonstrated by Tsuchiura
et al. of Hitachi [18]. In [18], a fine positioner based on a
piezoelectric structure was mounted at the end of a primary
VCM stage to form the dual actuator. The higher bandwidth
of the fine positioner allowed the R/W heads to be accurately
positioned. There have been other instances where electromag-
netic (see [13]) and electrostatic (see [9]) micro-actuators have
been used for fine positioning of R/W heads.

The focus of this paper is to concentrate on the control issues
involved in dealing with the nonlinear hysteresis behavior
displayed by most piezoelectric actuators. More specifically,
we consider a robust controller design for a piezoelectric
bimorph actuator as depicted in Fig. 1. A scaled up model
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Fig. 2. Piezoelectric bimorph actuator plant with controller.

of this piezoelectric actuator, which is targeted for use in
the secondary stage of a future dual actuator for magnetic
recording, was actually built and modeled by Low and Guo
[11]. It has two pairs of bimorph beams which are subjected
to bipolar excitation. The dynamics of the actuator were
identified in [11] as a second-order linear model coupled with
a hysteresis. The linear model is given by

(1)

where , , , and are the tangent mass, damping, stiffness,
and effective piezoelectric coefficients, whileis the input
voltage that generates excitation forces to the actuator system.
The variable is the displacement of the actuator and it is
also the only measurement we can have in this system. It
should be noted that the working range of the displacement
of this actuator is within m. The variable is from the
hysteretic nonlinear dynamics [11] and is governed by

(2)

where , , and are some constants that control the shapes of
the hysteresis. For the actuator system that we are considering
in this paper, the above coefficients are identified as follows:

kg
Ns/m
N/m

m/V (3)

For a more detailed description of this piezoelectric actuator
system and the identifications of the above parameters, we
refer interested readers to the work of Low and Guo [11]. Our
goal of this paper is to design a robust controller as in Fig. 2
that meets the following design specifications.

1) The steady-state tracking errors of the displacement
should be less than 1% for any input reference signals
that have frequencies ranging from 0 to 30 Hz as the
actuator is to be used to track certain color noise type
of signals in disk drive systems.

2) The 1% settling time should be as fast as possible (we
are able to achieve a 1% settling time less than 0.003
s in our design).

3) The control input signal should not exceed 112.5
V because of the physical limitation of the piezoelectric
materials.

Our approach is as follows: we first use the stochastic equiv-
alent linearization method proposed in Chang [2] to obtain a
linearized model for the nonlinear hysteretic dynamics. Then
we reformulate our design into a problem of an almost
disturbance decoupling problem in which the disturbance input
is the reference input and the error difference between the
hysteretic dynamics and that of its linearized model, while
the controlled output is simply the double integration of the
tracking error. Thus, our task becomes to design a controller
such that when it is applied to the piezoelectric actuator, the
overall system is asymptotically stable, and the controlled
output, which is corresponding to the tacking error, is as small
as possible and decays as fast as possible.

The outline of this paper is as follows: In Section II,
a first-order linearized model is obtained for the nonlinear
hysteresis using the stochastic equivalent linearization method.
Simulation result is also given to show the matching between
the nonlinear and linearized models. In Section III, we formu-
late our controller design into a standard almost disturbance
decoupling problem by properly defining the disturbance input
and the controlled output. Two integrators are augmented
into the original plant to enhance the performance of the
overall system. Then a robust controller that is explicitly
parameterized by certain tuning parameters and that solves
the proposed almost disturbance decoupling problem is carried
out using a so-called asymptotic time-scale and eigenstructure
assignment technique. In Section IV, we present the final
controller and simulation results of our overall control system
using MATLAB SIMULINK. We also obtain an explicit
relationship between the peak values of the control signal and
the tuning parameters of the controller as well as an explicit
linear relationship of the maximum trackable frequency, i.e,
the corresponding tracking error can be settled to 1%, versus
the tuning parameters of the controller. The simulation results
of this section clearly show that all the design specifications are
met and the overall performance is very satisfactory. Finally,
in Section V, we draw our concluding remarks and discuss
some implementation issues.

II. L INEARIZATION OF THE

NONLINEAR HYSTERETIC DYNAMICS

We will proceed to linearize the nonlinear hysteretic dy-
namics of (2) in this section. As pointed out in [2], basically
there are three methods available in the literature to linearize
the hysteretic type of nonlinear systems. These are 1) the
Fokker–Planck equation approach (see, for example, [7]); 2)
the perturbation techniques (see, for example, [8] and [12]);
and 3) the stochastic linearization approach. All of them have
certain advantages and limitations. However, the stochastic
linearization technique has the widest range of applications
compared to the other methods. This method is based on the
concept of replacing the nonlinear system by an “equivalent”
linear system in such a way that the “difference” between these
two systems is minimized in a certain sense. The technique was
initiated by Booton [1]. In this paper, we would just follow the
stochastic linearization method given in Chang [2] to obtain a
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linear model of the following form:

(4)

for the hysteretic dynamics of (2), where and are
the linearization coefficients and are to be determined. The
procedure is quite straightforward and proceeds as follows:
First we introduce a so-called “difference” functionbetween

of (2) and of (4)

(5)

Then minimizing , where is the expectation operator,
with respect to and , we obtain

(6)

from which the stochastic linearization coefficientsand
are determined. It turns out that if and are of zero means
and jointly Gaussian, then and can be easily obtained.
Let us assume that and have a joint probability density
function

(7)

where is the normalized covariance of and , and
and are the standard deviation of and , respectively.
Then the linearization coefficients and can be expressed
as the following:

(8)

and

(9)

where , , , and are given by

(10)

(11)

and

(12)

After many iterations, we found that a sinusoidal excitation
with frequencies ranging from 0–100 Hz (the expected

working frequency range) and peak magnitude of 50 V, which
has a standard deviation of , would yield a suitable
linearized model for (2). For this excitation, we obtain

,

(13)

(14)

and

(15)

The stochastic linearization model of the nonlinear hysteretic
dynamics of (2) is then given by

(16)

For future use, let us define the linearization error as

(17)

Fig. 3 shows the open-loop simulation results of the nonlinear
hysteresis and its linearized model, as well as their error for a
sine wave input signal with a peak value of 5 V. The results
are quite satisfactory. Here we should note that because of the
nature of our approach in controller design later in the next
section, the variation of the linearized model within certain
range, which might result in larger linearization error,, will
not affect much the overall performance of the closed-loop
system. We will formulate as a disturbance input and our
controller will automatically reject it from the output response.

III. A N ALMOST DISTURBANCE

DECOUPLING PROBLEM AND ITS SOLUTION

This section is the heart of this paper. We will first formu-
late our control system design for the piezoelectric bimorph
actuator into a standard almost disturbance decoupling
problem, and then apply the results of Chenet al. [5] to
check the solvability of the proposed problem. Finally, we
will utilize the results of Ozcetinet al. [14] as well as Chenet
al. [6] to find an internally stabilizing controller that solves the
proposed almost disturbance decoupling problem. Of course,
most importantly, the resulting closed-loop system and its
responses should meet all the design specifications as listed
in Section I. To do this, we will have to convert the dynamic
model of (1) with the linearized model of the hysteresis into
a state-space form. Let us first define a new state variable

(18)

Then from (16), we have

(19)

Substituting (17) and (18) into (1), we obtain

(20)

The overall controller structure of our approach is then
depicted Fig. 4. Note that in Fig. 4 we have augmented two
integrators after , the tracking error between the displacement

and the reference input signal. We have observed a very
interesting property of this problem, i.e., the more integrators
that we augment after the tracking error, the smaller tracking
error we can achieve for the same level of control input.
Because our control input is limited to the range from

to V, it turns out that two integrators are needed
in order to meet all the design specifications. It is clear to see
that the augmented system has an order of five. Next, let us
define the state of the augmented system as

(21)

and the measurement output

(22)
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Fig. 3. Responses of the hysteresis and its linearized model to a sine input signal:h (solid), ^h (dashed), andeh (dash-dotted).

i.e., the original measurement of displacement plus two
augmented states. The auxiliary disturbance input is

(23)

and the output to be controlled,, is simply the double
integration of the tracking error. The state-space model of the
overall augmented system is then given by

(24)

with

(25)

(26)

(27)

and

(28)

The almost disturbance decoupling problem is to design
a parameterized proper controller of the form

(29)

which has the following properties.

1) Internal Stability: There exist scalars and
such that for all and ,
the closed-loop system comprisingand the controller

is asymptotically stable. That is for all
and , the following matrix:

(30)

has all its eigenvalues in the open left-half complex
plane.
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Fig. 4. Augmented linearized model with disturbance decoupling controller.

2) Disturbance Rejection:The -norm of the closed-
loop transfer function matrix from the disturbance input

to the output to be controlled, say ,
satisfying

as and
(31)

where the -norm of is defined as
usual as

(32)
and where denotes the largest singular value.

We also say that the controller of (29) solves
the almost disturbance decoupling problem for of (24)
if the above two conditions are satisfied. The problem of
almost disturbance decoupling was first introduced by Willems
(see [19] for a recent result and related references). It has
many applications. Recently, Stoorvogel [17] had obtained
a very interesting interconnection between the optimal
control problem and the disturbance decoupling problem. The
necessary and sufficient conditions under which the almost
disturbance decoupling problem for is solvable, i.e., there

exists a parameterized controller that satisfies the above men-
tioned two properties, can be found in [19] for strictly proper
systems and in [5] for general nonstrictly proper systems.
The solution for the general almost disturbance decoupling
problem, if existent, can be found in Ozcetinet al. [14]. In
fact, one can also obtain such a controller using the technique
of the so-called closed-loop transfer recovery design proposed
in Chenet al. [6]. We will discuss this issue further later when
it comes to designing the controller.

For the problem that we are considering here, it is simple to
verify using the Linear Systems Toolbox [10] that the system

of (24) has the following properties.

1) The subsystem is invertible and of
minimum phase with one invariant zero at . It
also has one infinite zero of order 4.

2) The subsystem is left invertible and of
minimum phase with one invariant zero at and
two infinite zeros of orders 1 and 2, respectively.

Then it follows from [19] or [5] that the almost dis-
turbance decoupling problem for this is solvable. In fact,
following the results of Ozcetinet al. [14] or Chenet al. [6],
one can design either a full-order observer-based controller
or a reduced order observer-based controller to solve this
problem. For the full-order observer-based controller, the order
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Fig. 5. Maximum singular values of the closed-loop transfer functionTzw("1; "2; s).

of the disturbance decoupling controller (see Fig. 4) will be 5
and the order of the final overall controller (again see Fig. 4)
will be 7 (the disturbance decoupling controller plus two
integrators). On the other hand, if we use a reduced order
observer in the disturbance decoupling controller, the total
order of the resulting final overall controller will be reduced
to 4. From the practical point of view, the latter is much
more desirable than the former. Thus, in what follows we
will only focus on the controller design based on a reduced
order observer. For the disturbance decoupling problem, we
can separate our controller design into two steps.

1) In the first step, we assume that all five states ofin (24)
are available and then design a static and parameterized
state feedback control law

(33)

such that it solves the almost disturbance decoupling
problem for the state feedback case, i.e., , by
adjusting the tuning parameter to an appropriate
value.

2) In the second step, we follow the procedure of Chen
et al. [6] to design a reduced order observer-based
controller. It has a parameterized reduced order observer
gain matrix that can be tuned to recover the
performance achieved by the state feedback control law
in the first step.

We will use the asymptotic time-scale and eigenstructure
assignment (ATEA) design method proposed in Ozcetinet al.
[14] and Chenet al. [6] to construct both the state feedback
law and the reduced order observer gain. The ATEA design
method is decentralized in nature. It was initiated by Saberi
and Sannuti [15] while the detailed proof of the algorithm,

especially the multi time-scale case, was completed in Chen
[3]. It uses the special coordinate basis [16] of the given
system. The specified finite eigenstructure of the closed-loop
system is assigned appropriately by working with subsystems
which represent the finite zero structure of the given system.
Similarly, the specified asymptotically infinite eigenstructure
of the closed-loop system is assigned appropriately by working
with the subsystems which represent the infinite zero structure
of the given system. Unfortunately, because of the complexity
of the algorithm and the background materials involved in
it, it is impossible to present the detailed procedure of the
ATEA method here in this paper. We refer the interested
readers to Ozcetinet al. [14] and Chenet al. [6] for details.
We would like to note that in principle, one can also apply
the ARE (algebraic Riccati equation) based optimization
technique (see for example Zhou and Khargonekar [20]) to
solve this problem. However, because the numerical conditions
of our system, , are very bad, we are unable to obtain
any satisfactory solution from the ARE approach. We cannot
get any meaningful solution for the associated -ARE in
MATLAB. In this sense and at least for this problem, the
ATEA method is much more powerful than the ARE one. The
software realization of the ATEA algorithm can be found in
the Linear Systems and Control Toolbox developed by Chen
[4]. The following is a closed-form solution of the static state
feedback parameterized gain matrix obtained using the
ATEA method in (34), shown at the bottom of the next page,
where is the tuning parameter that can be adjusted to
achieve almost disturbance decoupling. It can be verified that
the closed-loop system matrix, is asymptotically
stable for all and the closed-loop transfer function
from the disturbance to the controlled output, ,
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Fig. 6. Parameter1=" versus the maximum peak ofu in worst initial error situations.

satisfying

as (35)

The next step is to design a reduced order observer-based
controller that will recover the performance of the above
state feedback control law. First, let us perform the following
nonsingular (permutation) state transformation to the system

of (24):

(36)

where

(37)

such that the transformed measurement matrix has the form of

(38)

Clearly, the first three states of the transformed system, or
, , and of the original system in (24), need not be

estimated as they are already available from the measurement

output. Let us now partition the transformed system as follows:

(39)

(40)

Also, we partition (41) and (42), shown at the bottom of the
next page. Then the reduced-order observer-based controller
(see Chenet al. [6]) is given as in the form of (29) with

(43)

(34)
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(44)

(45)

(46)

where is the parameterized reduced order observer
gain matrix and is to be designed such that
is asymptotically stable for sufficiently small and also

as (47)

Again, using the procedure of Chenet al. [6] and the software
package of Chen [4], we obtained the following parameterized
reduced order observer gain matrix:

(48)

Then the explicitly parameterized matrices of the state-space
model of the reduced order observer-based controller are given
by that shown in (49)–(54), shown at the bottom of the page.

The overall closed-loop system comprising the system
of (24) and the above controller would be asymptotically
stable as long as and . In fact, the
closed-loop poles are exactly located at , two pairs
at , and . The plots of the
maximum singular values of the closed-loop transfer function
matrix from the disturbance to the controlled output ,
namely , for several pairs of and , i.e.,

, , and ,
in Fig. 5 show that as and become smaller and smaller,
the norms of are also smaller and smaller.
Hence, almost disturbance decoupling is indeed achieved.
These are the properties of our control system in the frequency
domain. We will address in the next section its time domain
properties, which of course are much more important as all
the design specifications are in the time domain.

IV. FINAL CONTROLLER AND SIMULATION

RESULTS OF THEOVERALL CONTROL SYSTEMS

In this section, we will put our design in the previous
section into a final controller as depicted in Fig. 2. It is
simple to derive the state-space model of the final overall
controller by observing its interconnection with the disturbance
decoupling controller of (29) (see Fig. 3). We
will also present simulation results of the responses of the
overall design to several different types of reference input
signals. They clearly show that all the design specifications are
successfully achieved. Furthermore, because our controller is
explicitly parameterized by two tuning parameters, it is very
easy to be adjusted to meet other design specifications without
going through all over again from the beginning. This will also
be discussed in the following.

As mentioned earlier, the final overall controller of our
design will be order of four, of which two are from the
disturbance decoupling controller and two from the augmented
integrators. It has two inputs: one is the displacementand
the other is the reference signal. It is straightforward to

(41)

(42)

(49)

(50)

(51)

and

(52)

where

(53)

and

(54)
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Fig. 7. Parameter1=" versus the maximum frequency ofr that has 1% tracking error.

Fig. 8. Simulation block diagram for the overall piezoelectric actuator control system.
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Fig. 9. Responses of the displacement and the 30-Hz cosine reference signal.

verify that the state-space model of the final overall controller
is given by (55)–(59), shown at the bottom of the page. There
are some very interesting and very useful properties of the
above parameterized controller. After repeatedly simulating
the overall design, we found that the maximum peak values
of the control signal is independent of the frequencies of
the reference signals. It is only dependent on the initial error
between displacement, , and the reference,. The larger
the initial error is, the bigger peak occurs in. Because the
working range of our actuator is within m. We will
assume that the largest magnitude of the initial error in any
situation should not be larger that m. This assumption is

zero before the system is to track any reference and hence the
magnitude of initial tracking error can never be larger than

m. Let us consider the worst case, i.e., the magnitude of
the initial error is m and also for simplicity of presentation,
we now set the two tuning parameters to be equal, i.e.,

. Then interestingly, we are able to obtain a
clear relationship between the tuning parameter and the
maximum peak of . The result is plotted in Fig. 6. We also
found that the tracking error is independent of initial errors.
It only depends on the frequencies of the references, i.e.,
the larger frequency the reference signalhas, the larger
tracking error occurs. Again, we can obtain a simple and

(55)

(56)

(57)

(58)

and

(59)
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(a)

(b)

Fig. 10. Tracking error for the 30-Hz cosine reference signal: (a) tracking error from 0 to 0.004 s and (b) tracking error from 0.004 to 0.1 s.

linear relationship between the tuning parameterand the
maximum frequency that a reference signal can have such that
the corresponding tracking error is no larger than 1%, which
is one of our main design specifications. The result is plotted
inFig. 7.

Clearly, from Fig. 6, we know that due to the constraints
on the control input, i.e., it must be kept within112.5 V,
we have to select our controller with .

From Fig. 7, we know that in order to meet the first design
specification, i.e., the steady-state tracking errors should be
less than 1% for reference inputs that have frequencies up to 30
Hz, we have to choose our controller with .
Hence, the final controller as given in (55)–(59) will meet all
the design goals for our piezoelectric actuator system. i.e., (1)
and (2), for all . Let us choose

. We obtain the overall controller as in the
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(a)

(b)

Fig. 11. Control signal for the 30-Hz cosine reference signal: (a) control signal from 0 to 0.004 s and (b) control signal from 0.004 to 0.1 s.

form of (55) with (60)–(63)

(60)

(61)

(62)
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Fig. 12. Responses of the displacement and the 34-Hz sine reference signal.

Fig. 13. Tracking error for the 34-Hz sine reference signal.

and

(63)

The simulation results presented in the following are done
using the MATLAB SIMULINK package, which is widely
available everywhere these days. The SIMULINK simulation

block diagram for the overall piezoelectric bimorph actuator
system is given in Fig. 8. Two different reference inputs are
simulated using the Runge–Kutta method in SIMULINK with
a minimum step size of 10 ms and a maximum step size
of 100 ms as well as a tolerance of 10. These references
are: 1) a cosine signal with a frequency of 30 Hz and peak
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Fig. 14. Control signal for the 34-Hz sine reference signal.

magnitude of 1 m, and 2) a sine signal with a frequency of
34 Hz and peak magnitude of 1m. The results for the cosine
signal are given in Figs. 9–11. In Fig. 9, the solid-line curve
is and the dash-dotted curve is the reference. The tracking
error and the control signal corresponding to this reference are
respectively given in Figs. 10 and 11. Similarly, Figs. 12–14
are the results corresponding to the sine signal. All these results
show that our design goals are fully achieved. To be more
specific, the tracking error for a 30-Hz cosine wave reference
is about 0.8%, which is better than the specification, and the
worst peak magnitude of the control signal is less than 90 V,
which is of course less than the saturated level, i.e., 112.5
V. Furthermore, the 1% tracking error settling times for both
cases are less than s.

Finally, we note that because the piezoelectric actuator
is designed to be operated in a small neighborhood of its
equilibrium point, the stability properties of the overall closed-
loop system of the nonlinear piezoelectric bimorph actuator
should be similar to those of its linearized model. This fact
can also be verified from simulations. In fact, the performance
of the actual closed-loop system is even better than that of its
linear counterpart.

V. CONCLUDING REMARKS

We have designed an explicitly parameterized controller
for a piezoelectric bimorph actuator, which has a nonlinear
hysteresis. Our controller design was based on a so-called
asymptotic time-scale and eigenstructure assignment technique
of Chenet al. [6] and Ozcetinet al. [14]. The overall control
system of our design turned out to be very successful and all
design specifications were fully achieved. Currently, we are
focusing on the implementation issues of our controller to the

real actuator system. We are planning to realize it using an
AT&T DSP32C (50 MHz). Of course, they are many things
needed to be taken care of in a real implementation. These
would be our future tasks.
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