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Abstract: A simple and noniterative procedure for
the computation of the exact value of the infimum
in the singular H oo-optimisation problem is pre-
sented, as a continuation of our earlier work. Our
problem formulation is general and we do not
place any restrictions in the finite and infinite zero
structures of the system, and the direct feed-
through terms between the control input and the
controlled output variables, and between the dis-
turbance input and the measurement output vari-
ables. Our method is applicable to a class of
singular H oo-optimisation problems for which the
transfer functions from the control input to the
controlled output and from the disturbance input
to the measurement output satisfy certain geomet-
ric conditions. In particular, the paper extends the
result of earlier work by allowing these two trans-
fer functions to have invariant zeros on the jw-
aXIS.

Notation

AT = transpose of A
AH = complex conjugate transpose of A
I = identity matrix
IR = set of real numbers
C = whole complex plane
C - = open left-halfcomplexplane
C + = open right-half complex plane
CO = imaginary axisjw
lTma)A) = maximumsingularvalue of A
A(A) = set of eigenvalues of A
Amax(A)= maximum eigenvalue of A where A(A) c IR
p(A) = spectral radius of A
Ker (V) = kernel of V
1m (V) = image of V

We define the following subspaces:
1'9(A, B, C, D) is the maximal subspace of IRnwhich is
(A + BF)-invariant and contained in Ker (C + DF)
such that the eigenvalues of (A + BF) 11'9 are con-
tained in C9 ~ C for some F.
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Y9(A, B, C, D) is the minimal (A + KC)-invariant sub-
space of IRncontaining 1m (B + KD) such that the
eigenvalues of the map which is induced by (A + KC)
on the factor space IRn/Y9are contained in C9 ~ C for
some K.

For the cases C9 = C, C9= C- and C9= COU C+ we
replace the index g in 1'9 and Y9 by *, - and +, respec-
tively.

1 Introduction

This paper is a continuation of our earlier work [1-3] in
non iterative computation of the infimum in H 00-

optimisation problem. In our most recent work [3], a
noniterative algorithm to compute the infimum (hereafter
denoted by y:) for a class of H 00 -optimisation for which
the transfer functions from the control input to the con-
trolled output and from disturbance input to the meas-
urement output have no invariant zeros of the jw-axis
and also satisfy certain geometric conditions. In this
paper, we extend our previous work in Reference 3 by
removing the contraints on the invariant zeros of these
transfer functions. A similar attempt has been made in a
very recent paper [4], however, the results reported are
basically restricted to the case of H oo-optimisation
problem using state feedback. This work complements
the one in Reference 4 by considering the general case of
H oo-optimisation via measurement output feedback. We
show that the infimum y: is equal to the square root of
the maximum eigenvalues of a constant matrix, which
can be easily obtained from the data of the given H 00-

optimisation problem. Our algorithm for the computa-
tion of y: has been implemented efficiently in a Matlab-
software environment for numerical solutions [5].

2 Problem formulation

Consider the linear system

{

X= Ax + Bu + Ew

L: y = C1x + D1w
Z= Czx + Dzu

(1)

This work is supported in part by Boeing Com-
mercial Airplane Group and in part by NASA
Langley Research Center under grant contract
NAG-I-iliO.
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where x E [Rnis the state, U E [Rmis the input, WE [RPis
the disturbance, Y E [R' is the measurement output and
Z E [Rqis the controlled output. Without loss of gener-
ality, assume that both [C2, D2] and [ET, Df] are of full
rank. Let I;,w(s)denote the transfer function matrix from
the disturbance w to the controlled output z. The stand-
ard H oo-optimal control problem is concerned with the
construction of stabilising feedback control laws that
minimise the H oo-normof I;,w(s).Define

y:: = inf {III;,w(s)1100where u(s) = Fo(s)y(s) for any
proper transfer function matrix Fo(s)which inter-
nally stabilises the system of eqn. I}

For the case that y = x, i.e. H oo-optimisation via state
feedback, relabel y: as y: to signify that the infimum is
taken over all stabilising state feedback laws. We give a
simple and noniterative procedure for determining y:.
The method is applicable to the general system of eqn. I
satisfying the following assumptions:

AI: (A, B) is stabilisable

A2: 1m (E) S; Y-(A, B, C2, D2) + g-(A, B, C2, D2)

BI: (A, C1)is detectable

B2: Ker (C2) ;2 Y-(A, E, C1D1)n g-(A, E, C1, D1)

Assumptions Al and BI are necessary for any total prob-
lems, hence assumptions A2 and B2 are basically the
main conditions in this paper. If (A, B, C2, D2) and (A, E,
C1, D1) are, respectively, right- and left-invertible, then
assumptions A2 and B2 are automatically satisfied.

Remark 2.1: It might be helpful to interpret our condi-
tions A2 and B2 in the context of 'block characterisation'
of the H 00 optimal control problem,which stemsfrom the
frequency-domain approach in early 1980s. This block
characterisation in the frequency-domain approach was
considered to be an indicator of the degree of the 'com-
plexity' of the problem, although in our opinion, such a
block characterisation is dependent on proof technique
and cannot be used as a true measure of the complexity
of the problem. At any rate, first recall the definition of
this block characterisation. We denote P 1(s) and Pis) as
the Rosenbrock system matrices of the systems (A, B, C2,
D2)and (A, E, C1, D1) respectively, namely,

Pl(S) =
[

S1 - A

C2

B

J [
S1 - A E

JD2' P2(S) = C1 D1

The H 00optimum control problem is said to be
(a) general one block if both P1(s) and pI(s) have

maximal row normal rank
(b) general two block if precisely one of the matrices

P1(S)and Pi{s) has maximal row normal rank
(c) general four block if none of the matrices P1(S)and

Pi{s) has maximal row normal rank.

Finally, the definition of so-called one, two and four-
block Nehari H 00 control problem is the same as the pre-
ceding definitions with the exception that no zeros in
CO u {<XJ}in the systems (A, B, C2, D2) and (A T, cf, ET,
Df) are allowed. Now it is easy to verify that the class of
H 00 optimal control problems considered here, namely
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the class of problems that satisfy conditions A2 and B2
are in fact a subset of the general four-block problem.
Moreover, they subsume as special cases the one block
Nehari problem and the general one block problem.

3 Special co-ordinate basis

We recall the definition of the special co-ordinate basis
(SCB) for a linear time-invariant non strictly proper
system [6]. Such a co-ordinate basis has a distinct feature
of explicitly displaying the finite and infinite zero struc-
tures of a given system as well as other system geometric
properties. It is instrumental in the derivation of the
method described in Section 4.

In what follows, we recapitulate the main results in a
theorem and some properties of the special co-ordinate
basis while leaving detailed derivation and proofs to be
found in References 6 and 7. Consider the system
described by

{

X = Ax + Bu + Ew

Z = Cx + Du
(2)

It can be easily shown that using singular value decom-
position one can always find an orthogonal transform-
ation U and a nonsingular matrix V that put the direct
feedthrough matrix D into the following form

D = UDV = [1 ~o ~J
(3)

where mo is the rank of D. Without loss of generality one
can assume that the matrix D in eqn. 2 has the form as
shown in eqn. 3. Thus the system in eqn. 2 can be rewrit-
ten as

X= Ax + [Bo B1{::J+ Ew

[;:J= [~:} + [1~o ~I::J (4)

where Bo, B1, Co and C1 are the matrices of appropriate
dimensions. The inputs Uoand U1and the outputs Zo and
Z1are those of the transformed system, namely

u = v[::J and [;:J= Uz

The H oo-norm of the system transfer function T.w(s) is
unchanged when an orthogonal transformation is applied
on the output z, and under any nonsingular transform-
ations on the states and control inputs. We have the fol-
lowing main theorem:

Theorem 3.1 (SCB): There exist nonsingular transform-
ations ra, ro and ri such that

r [(
+

)
T T

(
O

)
T

(
-

)
T T T

]
T

X = s Xa , Xb, Xa , Xa , Xc , x f

[
T T

]
T r [

T T T
]

T
Zo, Z1 = 0 Zo, zf' Zb

[
T T

]
T r [

T T T
]

T
Uo, U1 = i Uo, uf' Uc
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B=rs-l[Bo

B6a 0

BOb 0

B~a 0
BOa 0

Boc 0

BOf Bf

0

0

0
0

Bc
0

B1]r; =

-

[
c
]

[

C6a COb C~a COa COc COf

]
C = r-1 0 r = 0 0 0 0 0 C

° C s f

1 0 ~ 0 000

and

[

Imo 0 0

]15 = rol Dr; = ~ ~ ~

where Jc(Aa-:')E C -, Jc(A~a)E Co, Jc(Ad;,)E C +, (Acc, BJ is
controllable, (Abb' Cb) is observable and the subsystem
(Af f' Bf' Cf) is invertible with no invariant zeros.

The proof of this theorem can be found in References
6 and 7. In what follows, we state some important
properties of the SCB which are pertinent to our present
work. For further details regarding SCB and its proper-
ties, see Reference 8.

Property 3.1: The given system (A, B, C, D) is right-
invertible if and only if Xb and hence Zb are nonexistent,
left-invertible if and only if Xc and hence Uc are non-
existent, invertible if and only if both Xc and Xb are non-
existent.

Property 3.2: Jc(Aa-:')E C -, Jc(A~a)E Co and Jc(Ad;,)E C +

are respectively the stable, jw and unstable invariant
zeros of (A, B, C, D).

Property 3.3: The pair (A, B) is stabilisable if and only if
(Acon,Bcon)is stabilisable where

-

[

Aa: L:i, Cb 0

]
Aoon- 0 A~ 0

0 L~b Cb A~a [

B6a L:f

]
Boon= BOb Lbf

B~a L~f

There are interconnections between the SCB and various
invariant and almost invariant geometric subspaces. In
the following we list the geometrical interpretations of
some state vector components of SCB.
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(6)

Property 3.4:

x;; EBx~EBx: EBXcspans -r*(A, B, C, D)

x;; EBXcspans -r-(A, B, C, D)

(7)

X~ EBx: EBXc spans -r+(A, B, C, D)

XCEBXf spans 9'*(A, B, C, D)

xa- EBXc EBxf spans 9'+(A, B, C, D)

x~EBxa+ EBXc EBxf spans 9'-(A, B, C, D)

(8) 4 Computational algorithm for 'I:

In this Section, we present our main result, namely, the
noniterative algorithm for computational of the infimum
in H oo-optimisation for plants with invariant zeros on the
jw-axis. First, we denote Lp and LQ, respectively, as the
subsystems (A, B, C2, D2) and (AT, Cf, ET, Df) to
conform with the notations in our previous work and the
work of Stoorvogel [9, 10], which plays a significant role
in the development of our results in References 1-3. In
what follows, we introduce a step-by-step procedure to
compute y: . .

Step 1: Transform the system (A, B, C2, D2) irito the
special co-ordinate basis (SCB) described in Section 3. To
all submatrices and transformations in the SCB of Lp, we
append the subscript p to signify their relation to the
system Lp. Next we compute

rspl E = [(E;;/)T (EbP)T (E~pl (E;;pl (Ecp)T (E fP)TJT

(10)

It is simple to verify from the properties of SCB that
assumption A2 implies EbP= O.Then definethe matrices

(9)

(11)
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and

Ad;, L:i, Cb 0 0 0 L:f Cf
0 Abb 0 0 0 Lbf Cf

A = rs-l(A - BoCoWs = I
0 Lb cb Aa 0 0

Lf C f I (5)
0 L;;;'Cb 0 Aa-:' 0 LCf

Bc Ec LCbCb Bc Ea BcEc-;' Acc Lcf C f

B f EJa Bf E fb BfEla B f E fa BfEfc Aff

[A:"

L:i,p CbP

AU
Axp = 0 AbbP

0 LbP CbP

[Bt., Lt.,]
Bxp = BObP LbfP

BaP LfP

[E.i]
Exp = E:p

Eap



and

[

0 0 0

]
CxP = raP 0 0 0

0 CbP 0

[

I mop 0

]Dxp = raP ~ CJPOCJP

By some simple algebra, it is straightforward to show
that

C;p[I - Dxp(D;pDxp)-lD;p]Cxp

[

0 0 0

]
-T-

= 0 CbPCbP 0
0 0 0

for some full row rank Cbp,

Axp - Bxp(D;p Dxp)-lD;pCxp

[

+ -+ -

]

Aaap La';! CbP 0
= 0 AbbP 0

0 L~bPCbp A~aP

and

Bxp(D;p Dxp)-l B;p

[

+ -+

][

+ -+

]

T
BOap LaJP BOap LaJP

= BObP ~bJP BObP ~bJP

B~aP L~JP B~aP L~JP- - -+ - -
for some appropriate LabP, L~bP' LaJP":'LbJP_and L~JP' It
can easily be verified that the pair (AbbP, CbP) is obser-
vable provided that (AbbP' CbP)is observable.

Step 2: Define

[
+ -+ -

]- Aaap LabP CbP
Ap - -

0 AbbP

-+

]~abP

LbJP

(15)

[
BcibP

Bp = BObP

and

Cp = [0 CbP] (16)

Then solve for the unique positive definite solution Sp of
the algebraic matrix Riccati equation,

ApSp + SpA~ - BpB~ + SpC~CpSp = 0

together with the matrix Tpdefined by

(17)

Tp = [T~p ~J
where T"apis the unique solution of the algebraic matrix
Lyapunov equation,

Aa:pT"ap+ T"ap(Aa:pf = Ea+p(EaiY (18)

It is simple to verify from the properties of SCB that
under assumption AI, (Ap, Bp) is stabilisable and (-Ap,
Cp) is detectable since 2(Aa:)E C+ and (AbbP' CbP) is
observable. Hence the existence and uniqueness of Sp and
T"apfollow from results of Reference 11. Next, solve the
unique solution Ypof the following Sylvester equation,

(Ap + Sp C~ Cp)Yp + Yp(A~aPf+ Sp C~(L~bP)T

- Bp[B~aP L~JPY= 0 (19)
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(12)

Denote the set of eigenvalues of A~aPwith nonnegative
imaginary part as {jWl, ..., jWkp} and for i = 1, ... ,kp,
choose complex matrices V;p, whose columns form a
basis of the eigenspace {x E C"~pIXH(jWiI - A~aP)= O}
where n~pis the dimension of A~aP'Then define

Fip = V::'([B~aPL~Jp][B~aPL~JPY+ L~bP(L~bPf

- [(L:bpf + Cp YPY[(L~bPf + Cp Yp])V;p (20)

(13)

for i = 1, ..., kp, and

Fp = blockdiag {FlP'"'' Fkpp}

It is shown in Reference 12 that Fp > O.Also, define

Gp = blockdiag {[Vfp E~p(E~p)TV1P]'...,

[V~p E~p(E~pfVkpp]} (22)

Step 3: Transform the system (AT, cf, ET, Df) into the
special co-ordinate basis (SCB) described in Section 3.
Here we add the subscript Qto all submatrices and trans-
formations in the SCB of the system LQ' Next compute

rS(/cr = [(Ea+Qf(EbQf (E~Qf (Ea-Qf (EcQf (EJQ)Y

(23)

It is simple to show from the properties of SCB that
assumption B2 implies EbQ= O.Then definethe matrices

(21)

(14)

(24)

and

[

0 0 0

]
CxQ = roQ 0 0 0

0 CbQ 0

[

1mOQ 0

]DxQ = roQ ~ CJQOCJQ
(25)

By some simple algebra, it is straightforward to show
that

C;Q[I - DxQ(D;QDxQ)-lD;Q]CxQ

[

0 0 0

]
= 0 CfQCbQ 0

0 0 0 (26)

for some full row rank CbQ'

AxQ - BxQ(D;QDxQ)-lD;QCxQ

[

+ -+ -

]

AaaQ LabE CbQ 0

= 0 AbbQ 0

0 L~bQCbQ A~aQ
(27)
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[A.,Q

L:i,Q CbQ

AU
AxQ = 0 AbbQ

0 LbQ CbQ

[B'.Q LQ]
BxQ = BObQ LbJQ

BaQ LJQ

[E]
ExQ = E:Q

EaQ



and

BxQ(D~Q DxQ)-l B~Q

[

+ -+

][

+ -+

]

T
BOaQ LafQ BOaQ LafQ

= BObQ ~bfQ BObQ ~bfQ

B~aQ L~fQ B~aQ L~fQ- - -+ - -
for some appropriate LabQ,L~bQ'LafQ.zLbf~ and L~fQ' It
can easily be verified that the pair (AbbQ' CbQ)is obser-
vable provided that (AbbQ'CbQ)is observable.

Step 4: Define

[
+ -+ -

J
- AaaQ LabQ CbQ

AQ - -
0 AbbQ

-+

J
~afQ

LbfQ

(28)

BQ = [
BriaQ

BObQ

and

CQ= [0 CbQJ (29)

then solve for the unique positive definite solution SQof
the algebraic matrix Riccati equation,

AQSQ + SQA~ - BQB~ + SQC~CQSQ = 0

together with the matrix TQdefinedby

T, = [T"aQ O

JQ 0 0

(30)

where T"aQis the unique solution of the algebraic matrix
Lyapunovequation,

Aa:Q T"aQ+ T"aQ(Aa:Q)T= E:Q(Ea+Q)T (31)

Again, the existence and uniqueness of SQ and T"aQfollow
from assumption B2 and the properties of SCB. Next,
solve the unique solution YQ of the following Sylvester
equation,

(AQ + SQC~ CQ)YQ+ YQ(A~aQ)T+ SQC~(L~bQ)T

- BQ[B~aQ L~fQY = 0 (32)

Denote the set of eigenvalues of A~aQwith non-negative
imaginary part as UW1' ..., jWkQ}and for i = 1, ..., kQ'
choose complex matrices V;Q' ~hose columns form a
basis of the eigenspace {x E cnaQIXH(jWJ- A~aQ)= O}
where n~Qis the dimension of A~aQ'Then define

FiQ = V~([B~aQ L~fQJ[B~aQ L~fQY + L~bQ(L~bQl
-0 T T -0 T

- [(LabQ) + CQ YQJ [(LabQ) + CQ YQJ)V;Q (33)

for i = 1, . . . , kQ' and

F Q = blockdiag {F 1Q' . . . , FkQQ}

Again, it can be shown that FQ> O.Also, define

GQ= blockdiag {[VfQ E~dE~Q)TV1QJ,...,

[VfQQE~Q(E~Ql~QQJ} (35)

Step 5: Define

np = dim {lRn/9"+(A,B, Cz, Dz)} - n~p

and

nQ= dim {j/+(A, E, C1' D1)} - n~Q
We introduce a matric
satisfies the following

r-1 (r-1 )T = [
r *

Jsp sQ * *

r of dimension np x nQ that
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and define a constant matrix

~

GPF;;l 0
0 T. S -1 + rs-1 s -1

M = p p Q p
0 -T, s-lrT s -1

Q Q p

0 0 j-. JQ Q

(37)

0

-rsQ1
T, S-lQ Q

0

We have the following main theorem.

Theorem 4.1: Consider the system L given by eqn. 1.
Then under assumptions AI, A2, Bl and B2, the infimum
of H ",,-optimisation for L is

Y: = vf[Amax(M)] (38)

Proof: Following the results of Scherer [4J (e.g. Theorem
6), it can be shown that

Y> yp = max {vf[Amax(TpS;;l)J,vfCAmax(GpF;;l)J}(39)

if and only if the following algebraic Riccati inequality,

[Axp - Bxp(D~p Dxp)-l Dxp CxpJX

+ X[Axp - Bxp(D~pDxp)-lDxpCxpY

+ y-ZExpE~p + XCxp[I - Dxp(D~pDxp)-lD~pJ

x CxpX - Bxp(D~pDxp)-lB~p < 0

has a positive definite solution. Then it follows from the
results of References 4 and 12 and some simple algebraic
manipulations that for y > yp, the positive semidefinite
matrix P(y) given by

P(y) = (rsp1l[(Sp - y;ZTp)-l

is the lower limit point of the set

~Jrsp1
(40)

{P > 013F: (A + BFlP + P(A + BF)

+ y-ZPEETp + (Cz + DzF)T(CZ + DzF) < O}

Moreover, such a P(y) does not exist when y < yp. By
dual reasoning, one can shown that

(34)

y > y~ = max {vf[Amax(TQSQ1)J, vf[Amax(GQFQ1)J} (41)

if and only if the following algebraic Riccati inequality,

[AxQ - BxQ(D~QDxQ)-lDxQCxQJZ

+ Z[AxQ - BxQ(D~QDxQ)-lDxQCxQY

+ y-ZExQE~Q+ ZCxQ[I - DxQ(D~QDxQ)-lD~QJ

x CxQZ - BxQ(D~QDxQ)-lB~Q< 0

has a positive definite solution. And for y > y~, the posi-
tive semidefinitematrix Q(y)givenby

Q(y)= (rS{/)T[(SQ - y;ZTQ)-l ~Jrs(/

is the lower limit point of the set

(42)

{Q > 013K: (A + KC1}Q + Q(A + Kc1l

+ y-zQCr Cz Q + (E + KD1)(E + KD1)T < O}

Again, such a Q(y) does not exist when y < y~. Now
define

YPQ = max {vf[AmaATp s;; 1)], vf[AmaATQSQ1)J}

and

(43)

(36)
Yeou = sup {y E(ypQ' 00) Ip[P(y)Q(y)] < yZ} (44)
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where P(y) and Q(y) are as given in eqns. 40 and 42,
respectively. Then following the results of Scherer [4J, it
can easily be shown that

y: = max {Ycou' ~[Jcmax(GpF;l)J, ~[Jcmax(GQFQ1)J}

(45)

Also, using the results of Chen, Saberi and Ly [2, 3J, it
can be shown that

{ [

T. S-l + rs-1 rTs-l - rS-1

J}

1/Z
-Jc PP Q P Q 46

Yeou - max T. s-lrTs-l T. S-l ()- Q Q P Q Q

Hence, the result of Theorem 4.1 follows.

5 Example

We illustrate our main result in the following example.
Consider a given system characterised by

0 1 1
000

A=IO 1 0
1 1 1
1 1 1

0 0
0 0

B = 11 0
0 0
0 1

[
-1 11

C1= 1 2

Dl = [~ ~J

-1 1
0 1
0 1
0 1

1 O~

1 1
0 0

E = I0 0
2 1

1 2~

-21.876238 -4.2239 -2.425699

J321

[

0 0
0 0

Cz = 0 1
0 0

1 0 O

J [

1 O

J

00100
0 0 0 Dz= 0 0
10000

Step 1: It is simple to verify that the subsystem (A, B,
Cz, Dz) is left-invertible with two invariant zeros at Ij
and assumption A2 is satisfied. Applying SCB transform-
ation to (A, B, Cz, Dz),

000
1.3660254 0.3660254 0

rsp = I 0.1988066 1.9900945 0
001
000

[
-01614784 0.2246812

JAp = 0.6026457 -0.8385216

B = [0.6040578 -0.1762197

JP 0.4723969 0.4878984

- [
1.3544397 0.2665382

JCp - 0.2665382 2.0058434

[
0 O

J [
0 - 1

J
E - AO -

bP - 0 0 aaP - 1 0

Lo = [
0.9489977 1.0485243

JabP - 0.9489977 - 1.0485243

-1 0
0 0
0 0
0 0
0 1
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and

-
[

0 I

J [
2 I

J[B~aP L~JPJ= 0 -1 E~p= -1 -1

Following the procedure in Section 4,

- [
0.6180716

Sp - -0.2516670

Tp = [~ ~J

[
-0.6928337

Yp = -0.3161228
and

-0.2516670

J0.7339429

-0.0822109

J0.3068152

FP = 2.3885733 Gp = 3.5

Step 2: The subsystem (A, E, C1' D1) is invertible and
of nonminimum phase with invariant zeros at {0.078944,
Ij2.302011, -4.095803}. Hence, assumption B2 is auto-
matically satisfied. Applying the SCB transformation to
(AT, cf, ET, Df),

0.2148444
0.5503097

rsQ = I -0.7990597
-0.0941402
-0.0603521

0.0018481
0.6645646

-0.7456317
- 0.0440333

0.0210926

0.2169145
-0.6352193
-0.5938518

0.3437855
-0.2803500

0.0698280 0.2
0.8023543 0.4

-0.5805731 0.6
0.0892284 0.4

- 0.0795282 0.2

AQ = A~Q = 0.0789442

BQ = [2.3596219 -0.1725085J

CQ =0

Ea+Q= [0.1593412 0.0009204 0.0116587 0.1593412J

and

AO = [
0.8733954 -14.3566212

JaaQ 0.4222493 -0.8733953

-
[

13.8502316 -1O.8089077

J
BO LO -

[OaQ aJQJ - 0.3251762 -1.3752299

[
-1.9958628 6.3511003

EO -
aQ - - 0.5082606 0.0920508

-0.7973732 -1.9958628

J-0.4908900 -0.5082606

Following the procedure in Section 4,

SQ= 35.4527292

TQ= 0.3224810

YQ= [ - 5.2529064 93.6614674J

and

FQ = 8.4694885 GQ= 35.4527292
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and obtain

y: = ~[AmaxCM)]= 1.2104998

6 Conclusion

We have extended the results of References 2 and 3 and
presented a simple noniterative algorithm for the compu-
tation of the infimum for a class of H oo-optimisation
problem. We have shown that this infimum is equal to
the square root of the maximum eigenvalue of a constant
matrix that can be easily obtained from the system
matrices of L. Our results are obtained under the
assumptions that the two subsystems Lp and LQ satisfy
certain geometric conditions. The proposed algorithm for
computing the infimum is applicable to the general case
of singular H oo-optimisation problem where no
restrictions have been placed on finite zeros and infinite
zeros of Lp and LQ and the direct feedthrough terms in L.
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Step 3: Evaluate

1.4653098 0 0 0 0

0 -0.0000103 - 0.0000451 0.0003744 0

M=I 0 0.0000632 0.0002763 -0.0022958 0

0 -0.0002503 -0.0010946 0.0090961 0

0 0 0 0 0.2110284


