Noniterative computation of infimum in \boldsymbol{H}_{∞} optimisation for plants with invariant zeros on the $j \omega$-axis

B.M. Chen
A. Saberi

Indexing terms: Control theory, Optimisation

Abstract

A simple and noniterative procedure for the computation of the exact value of the infimum in the singular H_{∞}-optimisation problem is presented, as a continuation of our earlier work. Our problem formulation is general and we do not place any restrictions in the finite and infinite zero structures of the system, and the direct feedthrough terms between the control input and the controlled output variables, and between the disturbance input and the measurement output variables. Our method is applicable to a class of singular H_{∞}-optimisation problems for which the transfer functions from the control input to the controlled output and from the disturbance input to the measurement output satisfy certain geometric conditions. In particular, the paper extends the result of earlier work by allowing these two transfer functions to have invariant zeros on the $j \omega$ axis.

Notation

$A^{T} \quad=$ transpose of A
$A^{H} \quad=$ complex conjugate transpose of A
$I \quad=$ identity matrix
$\mathbb{R} \quad=$ set of real numbers
$\mathbb{C} \quad=$ whole complex plane
$\mathbb{C}^{-} \quad=$ open left-half complex plane
$\mathbb{C}^{+} \quad=$ open right-half complex plane
$\mathbb{C}^{o} \quad=$ imaginary axis $j \omega$
$\sigma_{\max }(A)=$ maximum singular value of A
$\lambda(A) \quad=$ set of eigenvalues of A
$\lambda_{\text {max }}(A)=$ maximum eigenvalue of A where $\lambda(A) \subset \mathbb{R}$
$\rho(A) \quad=$ spectral radius of A
$\operatorname{Ker}(V)=$ kernel of V
$\operatorname{Im}(V)=$ image of V
We define the following subspaces:
$\mathscr{V}^{g}(A, B, C, D)$ is the maximal subspace of \mathbb{R}^{n} which is $(A+B F)$-invariant and contained in $\operatorname{Ker}(C+D F)$ such that the eigenvalues of $(A+B F) \mid \mathscr{V}^{g}$ are contained in $\mathbb{C}_{g} \subseteq \mathbb{C}$ for some F.

[^0]$\mathscr{S}^{g}(A, B, C, D)$ is the minimal $(A+K C)$-invariant subspace of \mathbb{R}^{n} containing $\operatorname{Im}(B+K D)$ such that the eigenvalues of the map which is induced by $(A+K C)$ on the factor space $\mathbb{R}^{n} / \mathscr{S}^{g}$ are contained in $\mathbb{C}_{g} \subseteq \mathbb{C}$ for some K.
For the cases $\mathbb{C}_{g}=\mathbb{C}, \mathbb{C}_{g}=\mathbb{C}^{-}$and $\mathbb{C}_{g}=\mathbb{C}^{0} \cup \mathbb{C}^{+}$we replace the index g in \mathscr{V}^{g} and \mathscr{S}^{g} by $*,-$ and + , respectively.

1 Introduction

This paper is a continuation of our earlier work [1-3] in noniterative computation of the infimum in H_{∞} optimisation problem. In our most recent work [3], a noniterative algorithm to compute the infimum (hereafter denoted by γ_{o}^{*}) for a class of H_{∞}-optimisation for which the transfer functions from the control input to the controlled output and from disturbance input to the measurement output have no invariant zeros of the $j \omega$-axis and also satisfy certain geometric conditions. In this paper, we extend our previous work in Reference 3 by removing the contraints on the invariant zeros of these transfer functions. A similar attempt has been made in a very recent paper [4], however, the results reported are basically restricted to the case of H_{∞}-optimisation problem using state feedback. This work complements the one in Reference 4 by considering the general case of H_{∞}-optimisation via measurement output feedback. We show that the infimum γ_{o}^{*} is equal to the square root of the maximum eigenvalues of a constant matrix, which can be easily obtained from the data of the given $H_{\infty}{ }^{-}$ optimisation problem. Our algorithm for the computation of γ_{o}^{*} has been implemented efficiently in a Matlabsoftware environment for numerical solutions [5].

2 Problem formulation

Consider the linear system

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}=A x+B u+E w \tag{1}\\
y=C_{1} x+D_{1} w \\
z=C_{2} x+D_{2} u
\end{array}\right.
$$

This work is supported in part by Boeing Commercial Airplane Group and in part by NASA Langley Research Center under grant contract NAG-1-1210.
where $x \in \mathbb{R}^{n}$ is the state, $u \in \mathbb{R}^{m}$ is the input, $w \in \mathbb{R}^{p}$ is the disturbance, $y \in \mathbb{R}^{r}$ is the measurement output and $z \in \mathbb{R}^{q}$ is the controlled output. Without loss of generality, assume that both $\left[C_{2}, D_{2}\right]$ and $\left[E^{T}, D_{1}^{T}\right]$ are of full rank. Let $T_{z w}(s)$ denote the transfer function matrix from the disturbance w to the controlled output z. The standard H_{∞}-optimal control problem is concerned with the construction of stabilising feedback control laws that minimise the H_{∞}-norm of $T_{z w}(s)$. Define
$\gamma_{o}^{*}:=\inf \left\{\left\|T_{z w}(s)\right\|_{\infty}\right.$ where $u(s)=F_{o}(s) y(s)$ for any proper transfer function matrix $F_{o}(s)$ which internally stabilises the system of eqn. 1\}

For the case that $y=\mathrm{x}$, i.e. H_{∞}-optimisation via state feedback, relabel γ_{o}^{*} as γ_{s}^{*} to signify that the infimum is taken over all stabilising state feedback laws. We give a simple and noniterative procedure for determining γ_{o}^{*}. The method is applicable to the general system of eqn. 1 satisfying the following assumptions:
$\mathrm{A} 1:(A, B)$ is stabilisable
A2: $\operatorname{Im}(E) \subseteq \mathscr{V}^{-}\left(A, B, C_{2}, D_{2}\right)+\mathscr{S}^{-}\left(A, B, C_{2}, D_{2}\right)$
$\mathrm{B} 1:\left(A, C_{1}\right)$ is detectable
B2: $\operatorname{Ker}\left(C_{2}\right) \supseteq \mathscr{V}^{-}\left(A, E, C_{1} D_{1}\right) \cap \mathscr{S}^{-}\left(A, E, C_{1}, D_{1}\right)$
Assumptions A1 and B1 are necessary for any total problems, hence assumptions A2 and B2 are basically the main conditions in this paper. If $\left(A, B, C_{2}, D_{2}\right)$ and $(A, E$, C_{1}, D_{1}) are, respectively, right- and left-invertible, then assumptions A2 and B2 are automatically satisfied.

Remark 2.1: It might be helpful to interpret our conditions A2 and B2 in the context of 'block characterisation' of the H_{∞} optimal control problem, which stems from the frequency-domain approach in early 1980s. This block characterisation in the frequency-domain approach was considered to be an indicator of the degree of the complexity' of the problem, although in our opinion, such a block characterisation is dependent on proof technique and cannot be used as a true measure of the complexity of the problem. At any rate, first recall the definition of this block characterisation. We denote $P_{1}(s)$ and $P_{2}(s)$ as the Rosenbrock system matrices of the systems $\left(A, B, C_{2}\right.$, D_{2}) and (A, E, C_{1}, D_{1}) respectively, namely,

$$
P_{1}(s)=\left[\begin{array}{cc}
s I-A & B \\
C_{2} & D_{2}
\end{array}\right], \quad P_{2}(s)=\left[\begin{array}{cc}
s I-A & E \\
C_{1} & D_{1}
\end{array}\right]
$$

The H_{∞} optimum control problem is said to be
(a) general one block if both $P_{1}(s)$ and $P_{2}^{T}(s)$ have maximal row normal rank
(b) general two block if precisely one of the matrices $P_{1}(s)$ and $P_{2}^{T}(s)$ has maximal row normal rank
(c) general four block if none of the matrices $P_{1}(s)$ and $P_{2}^{T}(s)$ has maximal row normal rank.

Finally, the definition of so-called one, two and fourblock Nehari H_{∞} control problem is the same as the preceding definitions with the exception that no zeros in $\mathbb{C}^{0} \cup\{\infty\}$ in the systems $\left(A, B, C_{2}, D_{2}\right)$ and $\left(A^{T}, C_{1}^{T}, E^{T}\right.$, $\left.D_{1}^{T}\right)$ are allowed. Now it is easy to verify that the class of H_{∞} optimal control problems considered here, namely
the class of problems that satisfy conditions A2 and B2 are in fact a subset of the general four-block problem. Moreover, they subsume as special cases the one block Nehari problem and the general one block problem.

3 Special co-ordinate basis

We recall the definition of the special co-ordinate basis (SCB) for a linear time-invariant nonstrictly proper system [6]. Such a co-ordinate basis has a distinct feature of explicitly displaying the finite and infinite zero structures of a given system as well as other system geometric properties. It is instrumental in the derivation of the method described in Section 4.

In what follows, we recapitulate the main results in a theorem and some properties of the special co-ordinate basis while leaving detailed derivation and proofs to be found in References 6 and 7. Consider the system described by

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u+E w \tag{2}\\
z=C x+D u
\end{array}\right.
$$

It can be easily shown that using singular value decomposition one can always find an orthogonal transformation U and a nonsingular matrix V that put the direct feedthrough matrix D into the following form

$$
\bar{D}=U D V=\left[\begin{array}{cc}
I_{m_{0}} & 0 \tag{3}\\
0 & 0
\end{array}\right]
$$

where m_{0} is the rank of D. Without loss of generality one can assume that the matrix D in eqn. 2 has the form as shown in eqn. 3. Thus the system in eqn. 2 can be rewritten as

$$
\begin{align*}
& \dot{x}=A x+\left[\begin{array}{ll}
B_{0} & B_{1}
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]+E w \\
& {\left[\begin{array}{l}
z_{0} \\
z_{1}
\end{array}\right]=\left[\begin{array}{l}
C_{0} \\
C_{1}
\end{array}\right] x+\left[\begin{array}{cc}
I_{m_{0}} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]} \tag{4}
\end{align*}
$$

where B_{0}, B_{1}, C_{0} and C_{1} are the matrices of appropriate dimensions. The inputs u_{0} and u_{1} and the outputs z_{0} and z_{1} are those of the transformed system, namely

$$
u=V\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right] \quad \text { and }\left[\begin{array}{l}
z_{0} \\
z_{1}
\end{array}\right]=U z
$$

The H_{∞}-norm of the system transfer function $T_{s w}(s)$ is unchanged when an orthogonal transformation is applied on the output z, and under any nonsingular transformations on the states and control inputs. We have the following main theorem:

Theorem 3.1 (SCB): There exist nonsingular transformations Γ_{a}, Γ_{o} and Γ_{i} such that

$$
\begin{aligned}
x & =\Gamma_{s}\left[\left(x_{a}^{+}\right)^{T}, x_{b}^{T},\left(x_{a}^{o}\right)^{T},\left(x_{a}^{-}\right)^{T}, x_{c}^{T}, x_{f}^{T}\right]^{T} \\
{\left[z_{0}^{T}, z_{1}^{T}\right]^{T} } & =\Gamma_{o}\left[z_{0}^{T}, z_{f}^{T}, z_{b}^{T}\right]^{T} \\
{\left[u_{0}^{T}, u_{1}^{T}\right]^{T} } & =\Gamma_{i}\left[u_{0}^{T}, u_{f}^{T}, u_{c}^{T}\right]^{T}
\end{aligned}
$$

and

$$
\bar{A}=\Gamma_{s}^{-1}\left(A-B_{0} C_{0}\right) \Gamma_{s}=\left[\begin{array}{cccccc}
A_{a a}^{+} & L_{a b}^{+} C_{b} & 0 & 0 & 0 & L_{a f}^{+} C_{f} \tag{5}\\
0 & A_{b b} & 0 & 0 & 0 & L_{b f} C_{f} \\
0 & L_{a b}^{o} C_{b} & A_{a a}^{o} & 0 & 0 & L_{a f}^{o} C_{f} \\
0 & L_{a b}^{-} C_{b} & 0 & A_{a a}^{-} & 0 & L_{a f}^{-} C_{f} \\
B_{c} E_{c a}^{+} & L_{c b} C_{b} & B_{c} E_{c a}^{o} & B_{c} E_{c a}^{-} & A_{c c} & L_{c f} C_{f} \\
B_{f} E_{f a}^{+} & B_{f} E_{f b} & B_{f} E_{f a}^{o} & B_{f} E_{f a}^{-} & B_{f} E_{f c} & A_{f f}
\end{array}\right]
$$

$$
\begin{gather*}
\bar{B}=\Gamma_{s}^{-1}\left[\begin{array}{ll}
B_{0} & B_{1}
\end{array}\right] \Gamma_{i}=\left[\begin{array}{ccc}
B_{0 a}^{+} & 0 & 0 \\
B_{0 b} & 0 & 0 \\
B_{0 a}^{o} & 0 & 0 \\
B_{0 a}^{-} & 0 & 0 \\
B_{0 c} & 0 & B_{c} \\
B_{0 f} & B_{f} & 0
\end{array}\right] \tag{6}\\
\bar{C}=\Gamma_{o}^{-1}\left[\begin{array}{l}
C_{0} \\
C_{1}
\end{array}\right] \Gamma_{s}=\left[\begin{array}{cccccc}
C_{0 a}^{+} & C_{0 b} & C_{0 a}^{o} & C_{0 a}^{-} & C_{0 c} & C_{0 f} \\
0 & 0 & 0 & 0 & 0 & C_{f} \\
0 & C_{b} & 0 & 0 & 0 & 0
\end{array}\right] \tag{7}
\end{gather*}
$$

and

$$
\bar{D}=\Gamma_{0}^{-1} D \Gamma_{i}=\left[\begin{array}{ccc}
I_{m_{0}} & 0 & 0 \tag{8}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

where $\lambda\left(A_{a a}^{-}\right) \in \mathbb{C}^{-}, \lambda\left(A_{a a}^{o}\right) \in \mathbb{C}^{o}, \lambda\left(A_{a a}^{+}\right) \in \mathbb{C}^{+},\left(A_{c c}, B_{c}\right)$ is controllable, $\left(A_{b b}, C_{b}\right)$ is observable and the subsystem $\left(A_{f f}, B_{f}, C_{f}\right)$ is invertible with no invariant zeros.

The proof of this theorem can be found in References 6 and 7. In what follows, we state some important properties of the SCB which are pertinent to our present work. For further details regarding SCB and its properties, see Reference 8.

Property 3.1: The given system (A, B, C, D) is rightinvertible if and only if x_{b} and hence z_{b} are nonexistent, left-invertible if and only if x_{c} and hence u_{c} are nonexistent, invertible if and only if both x_{c} and x_{b} are nonexistent.

Property 3.2: $\lambda\left(A_{a a}^{-}\right) \in \mathbb{C}^{-}, \lambda\left(A_{a a}^{o}\right) \in \mathbb{C}^{o}$ and $\lambda\left(A_{a a}^{+}\right) \in \mathbb{C}^{+}$ are respectively the stable, $j \omega$ and unstable invariant zeros of (A, B, C, D).

Property 3.3: The pair (A, B) is stabilisable if and only if ($A_{\text {con }}, B_{\text {con }}$) is stabilisable where

$$
A_{c o n}=\left[\begin{array}{ccc}
A_{a a}^{+} & L_{a b}^{+} C_{b} & 0 \tag{9}\\
0 & A_{b b} & 0 \\
0 & L_{a b}^{o} C_{b} & A_{a a}^{o}
\end{array}\right] \quad B_{c o n}=\left[\begin{array}{cc}
B_{0 a}^{+} & L_{a f}^{+} \\
B_{0 b} & L_{b f} \\
B_{0 a}^{o} & L_{a f}^{o}
\end{array}\right]
$$

There are interconnections between the SCB and various invariant and almost invariant geometric subspaces. In the following we list the geometrical interpretations of some state vector components of SCB.

4 Computational algorithm for γ_{o}^{*}

In this Section, we present our main result, namely, the noniterative algorithm for computational of the infimum in H_{∞}-optimisation for plants with invariant zeros on the $j \omega$-axis. First, we denote Σ_{P} and Σ_{Q}, respectively, as the subsystems $\left(A, B, C_{2}, D_{2}\right)$ and $\left(A^{T}, C_{1}^{T}, E^{T}, D_{1}^{T}\right)$ to conform with the notations in our previous work and the work of Stoorvogel $[9,10]$, which plays a significant role in the development of our results in References 1-3. In what follows, we introduce a step-by-step procedure to compute γ_{o}^{*}.

Step 1: Transform the system $\left(A, B, C_{2}, D_{2}\right)$ into the special co-ordinate basis (SCB) described in Section 3. To all submatrices and transformations in the SCB of Σ_{P}, we append the subscript ${ }_{P}$ to signify their relation to the system Σ_{P}. Next we compute

$$
\begin{equation*}
\Gamma_{s P}^{-1} E=\left[\left(E_{a P}^{-1}\right)^{T}\left(E_{b P}\right)^{T}\left(E_{a P}^{o}\right)^{T}\left(E_{a P}^{-}\right)^{T}\left(E_{c P}\right)^{T}\left(E_{f P}\right)^{T}\right]^{T} \tag{10}
\end{equation*}
$$

It is simple to verify from the properties of SCB that assumption A2 implies $E_{b P}=0$. Then define the matrices

$$
\begin{align*}
& A_{x P}=\left[\begin{array}{ccc}
A_{a a P}^{+} & L_{a b P}^{+} C_{b P} & 0 \\
0 & A_{b b P} & 0 \\
0 & L_{a b P}^{o} C_{b P} & A_{a a P}^{o}
\end{array}\right] \\
& B_{x P}=\left[\begin{array}{ll}
B_{0 a P}^{+} & L_{0 a P}^{+} \\
B_{0 b P} & L_{b f P} \\
B_{0 a P}^{o} & L_{a f P}^{o}
\end{array}\right] \\
& E_{x P}=\left[\begin{array}{c}
E_{a P}^{+} \\
E_{b P} \\
E_{a P}^{o}
\end{array}\right] \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
& C_{x P}=\Gamma_{o P}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & C_{b P} & 0
\end{array}\right] \\
& D_{x P}=\Gamma_{o P}\left[\begin{array}{cc}
I_{m o P} & 0 \\
0 & C_{f P} C_{f P}^{T} \\
0 & 0
\end{array}\right] \tag{12}
\end{align*}
$$

By some simple algebra, it is straightforward to show that

$$
\begin{align*}
& C_{x P P}^{T}\left[I-D_{x P}\left(D_{x P}^{T} D_{x P}\right)^{-1} D_{x P}^{T}\right] C_{x P} \\
& \quad=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \tilde{C}_{b P}^{T} \tilde{C}_{b P} & 0 \\
0 & 0 & 0
\end{array}\right] \tag{13}
\end{align*}
$$

for some full row rank $\tilde{C}_{b P}$,

$$
\begin{align*}
& A_{x P}-B_{x P}\left(D_{x P}^{T} D_{x P}\right)^{-1} D_{x P}^{T} C_{x P} \\
& \quad=\left[\begin{array}{ccc}
A_{a a P}^{+} & \tilde{L}_{a b P}^{+} \tilde{C}_{b P} & 0 \\
0 & \tilde{A}_{b b P} & 0 \\
0 & \tilde{L}_{a b P}^{o} \tilde{C}_{b P} & A_{a a P}^{o}
\end{array}\right] \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
& B_{x P}\left(D_{x P}^{T} D_{x P}\right)^{-1} B_{x P}^{T} \\
& \quad=\left[\begin{array}{lll}
B_{\text {oap }}^{+} & \tilde{L}_{a f P}^{+} \\
B_{0 b P} & \tilde{L}_{b f P}^{o} \\
B_{a a P}^{o} & \tilde{L}_{a f P}^{s}
\end{array}\right]\left[\begin{array}{ll}
B_{o a P}^{+} & \tilde{L}_{a f P}^{+} \\
B_{o b P}^{+} & \tilde{L}_{b p} \\
B_{o a p}^{o} & \tilde{L}_{a f P}^{o}
\end{array}\right]^{T} \tag{15}
\end{align*}
$$

for some appropriate $\tilde{L}_{a b P}, \tilde{L}_{a b P}^{o}, \tilde{L}_{a f P}^{+}, \tilde{L}_{b f P}$ and $\tilde{L}_{a f P}^{o}$. It can easily be verified that the pair ($\tilde{A}_{b b P}, \tilde{C}_{b P}$) is observable provided that $\left(A_{b b P}, C_{b P}\right)$ is observable.

Step 2: Define

$$
\begin{aligned}
& A_{P}=\left[\begin{array}{cc}
A_{a a P}^{+} & \tilde{L}_{a b P}^{+} \tilde{C}_{b P} \\
0 & \tilde{A}_{b b P}
\end{array}\right] \\
& B_{P}=\left[\begin{array}{cc}
B_{0 b P}^{+} & \tilde{L}_{a b P}^{+} \\
B_{0 b P} & \tilde{L}_{b f P}
\end{array}\right]
\end{aligned}
$$

and

$$
C_{P}=\left[\begin{array}{ll}
0 & \tilde{C}_{b P} \tag{16}
\end{array}\right]
$$

Then solve for the unique positive definite solution S_{P} of the algebraic matrix Riccati equation,

$$
\begin{equation*}
A_{P} S_{P}+S_{P} A_{P}^{T}-B_{P} B_{P}^{T}+S_{P} C_{P}^{T} C_{P} S_{P}=0 \tag{17}
\end{equation*}
$$

together with the matrix T_{P} defined by

$$
T_{P}=\left[\begin{array}{cc}
T_{a a P} & 0 \\
0 & 0
\end{array}\right]
$$

where $T_{a a P}$ is the unique solution of the algebraic matrix Lyapunov equation,

$$
\begin{equation*}
A_{a a P}^{+} T_{a a P}+T_{a a P}\left(A_{a a P}^{+}\right)^{T}=E_{a P}^{+}\left(E_{a P}^{+}\right)^{T} \tag{18}
\end{equation*}
$$

It is simple to verify from the properties of SCB that under assumption $\mathrm{A} 1,\left(A_{P}, B_{P}\right)$ is stabilisable and $\left(-A_{P}\right.$, $\left.C_{P}\right)$ is detectable since $\lambda\left(A_{a a}^{+}\right) \in \mathbb{C}^{+}$and $\left(\tilde{A}_{b b P}, \tilde{C}_{b P}\right)$ is observable. Hence the existence and uniqueness of S_{P} and $T_{a a P}$ follow from results of Reference 11. Next, solve the unique solution Y_{P} of the following Sylvester equation,

$$
\begin{align*}
&\left(A_{P}+S_{P} C_{P}^{T} C_{P}\right) Y_{P}+Y_{P}\left(A_{a a P}^{o}\right)^{T}+S_{P} C_{P}^{T}\left(\tilde{L}_{a b P}^{o}\right)^{T} \\
&-B_{P}\left[B_{0 a P}^{o} \quad \tilde{L}_{a f P}^{o}\right]^{T}=0 \tag{19}
\end{align*}
$$

Denote the set of eigenvalues of $A_{a a P}^{o}$ with nonnegative imaginary part as $\left\{j \omega_{1}, \ldots, j \omega_{k P}\right\}$ and for $i=1, \ldots, k_{P}$, choose complex matrices $V_{i P}$, whose columns form a basis of the eigenspace $\left\{x \in \mathbb{C}^{n_{a P}^{o}} \mid x^{H}\left(j \omega_{i} I-A_{a a P}^{o}\right)=0\right\}$ where $n_{a P}^{o}$ is the dimension of $A_{a a P}^{o}$. Then define

$$
\begin{align*}
& F_{i P}=V_{i P}^{H}\left(\left[\begin{array}{lll}
B_{0 a P}^{o} & \tilde{L}_{a f P}^{o}
\end{array}\right]\left[\begin{array}{ll}
B_{0 a P}^{o} & \tilde{L}_{a f P}^{o}
\end{array}\right]^{T}+\tilde{L}_{a b P}^{o}\left(\tilde{L}_{a b P}^{o}\right)^{T}\right. \\
& \left.-\left[\left(\tilde{L}_{a b P}^{o}\right)^{T}+C_{P} Y_{P}\right]^{T}\left[\left(\tilde{L}_{a b P}^{o}\right)^{T}+C_{P} Y_{P}\right]\right) V_{i P} \tag{20}
\end{align*}
$$

for $i=1, \ldots, k_{P}$, and

$$
\begin{equation*}
F_{P}=\operatorname{blockdiag}\left\{F_{1 P}, \ldots, F_{k P P}\right\} \tag{21}
\end{equation*}
$$

It is shown in Reference 12 that $F_{P}>0$. Also, define

$$
\begin{align*}
& G_{P}=\operatorname{blockdiag}\left\{\left[V_{1 P}^{H} E_{a P}^{o}\left(E_{a P}^{o}\right)^{T} V_{1 P}\right], \ldots,\right. \\
& \left.\quad\left[V_{k_{p} P}^{H} E_{a P}^{o}\left(E_{a P}^{o}\right)^{T} V_{k P P}\right]\right\} \tag{22}
\end{align*}
$$

Step 3: Transform the system $\left(A^{T}, C_{1}^{T}, E^{T}, D_{1}^{T}\right)$ into the special co-ordinate basis (SCB) described in Section 3. Here we add the subscript ${ }_{Q}$ to all submatrices and transformations in the SCB of the system Σ_{Q}. Next compute

$$
\begin{equation*}
\Gamma_{s Q}^{-1} C_{2}^{T}=\left[\left(E_{a Q}^{+}\right)^{T}\left(E_{b Q}\right)^{T}\left(E_{a Q}^{o}\right)^{T}\left(E_{a Q}^{-}\right)^{T}\left(E_{c Q}\right)^{T}\left(E_{f Q}\right)\right]^{T} \tag{23}
\end{equation*}
$$

It is simple to show from the properties of SCB that assumption B2 implies $E_{b Q}=0$. Then define the matrices

$$
\begin{align*}
& A_{x Q}=\left[\begin{array}{ccc}
A_{a a Q}^{+} & L_{a b Q}^{+} C_{b Q} & 0 \\
0 & A_{b b Q} & 0 \\
0 & L_{a b Q}^{o} C_{b Q} & A_{a a Q}^{o}
\end{array}\right] \\
& B_{x Q}=\left[\begin{array}{ll}
B_{0 a Q}^{+} & L_{a f Q}^{+} \\
B_{0 b Q} & L_{b f Q} \\
B_{0 a Q}^{o} & L_{a f Q}^{o}
\end{array}\right] \\
& E_{x Q}=\left[\begin{array}{c}
E_{a Q}^{+} \\
E_{b Q} \\
E_{a Q}^{o}
\end{array}\right] \tag{24}
\end{align*}
$$

and

$$
\begin{align*}
& C_{x Q}=\Gamma_{o Q}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & C_{b Q} & 0
\end{array}\right] \\
& D_{x Q}=\Gamma_{o Q}\left[\begin{array}{cc}
I_{m_{0} Q} & 0 \\
0 & C_{f Q} C_{f Q}^{T} \\
0 & 0
\end{array}\right] \tag{25}
\end{align*}
$$

By some simple algebra, it is straightforward to show that

$$
\begin{align*}
& C_{x Q}^{T}\left[I-D_{x Q}\left(D_{x Q}^{T} D_{x Q}\right)^{-1} D_{x Q}^{T}\right] C_{x Q} \\
& \quad=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \tilde{C}_{b Q}^{T} \tilde{C}_{b Q} & 0 \\
0 & 0 & 0
\end{array}\right] \tag{26}
\end{align*}
$$

for some full row rank $\tilde{C}_{b Q}$,

$$
\begin{align*}
A_{x Q} & -B_{x Q}\left(D_{x Q}^{T} D_{x Q}\right)^{-1} D_{x Q}^{T} C_{x Q} \\
& =\left[\begin{array}{ccc}
A_{a a Q}^{+} & \tilde{L}_{a b Q}^{+} \tilde{C}_{b Q} & 0 \\
0 & \tilde{A}_{b b Q} & 0 \\
0 & \tilde{L}_{a b Q}^{o} \tilde{C}_{b Q} & A_{a a Q}^{o}
\end{array}\right] \tag{27}
\end{align*}
$$

and

$$
\begin{align*}
& B_{x Q}\left(D_{x Q}^{T} D_{x Q}\right)^{-1} B_{x Q}^{T} \\
& \quad=\left[\begin{array}{ll}
B_{0 a Q}^{+} & \tilde{L}_{a f Q}^{+} \\
B_{0 b Q} & \tilde{L}_{b f Q} \\
B_{0 a Q}^{o} & \tilde{L}_{a f Q}^{o}
\end{array}\right]\left[\begin{array}{ll}
B_{0 a Q}^{+} & \tilde{L}_{a f Q}^{+} \\
B_{0 b Q} & \tilde{L}_{b f Q} \\
B_{0 a Q}^{o} & \tilde{L}_{a f Q}^{o}
\end{array}\right]^{T} \tag{28}
\end{align*}
$$

for some appropriate $\tilde{L}_{a b Q}, \tilde{L}_{a b Q}^{o}, \tilde{L}_{a f Q}^{+}, \tilde{L}_{b f Q_{\widetilde{Z}}}$ and $\tilde{L}_{a f Q}^{o}$. It can easily be verified that the pair ($\tilde{A}_{b b Q}, \widetilde{C}_{b Q}$) is observable provided that $\left(A_{b b Q}, C_{b Q}\right)$ is observable.

Step 4: Define

$$
\begin{aligned}
& A_{Q}=\left[\begin{array}{cc}
A_{a a Q}^{+} & \tilde{L}_{a b Q}^{+} \tilde{C}_{b Q} \\
0 & \tilde{A}_{b b Q}
\end{array}\right] \\
& B_{Q}=\left[\begin{array}{ll}
B_{0 a Q}^{+} & \tilde{L}_{a f Q}^{+} \\
B_{0 b Q} & \tilde{L}_{b f Q}
\end{array}\right]
\end{aligned}
$$

and

$$
C_{Q}=\left[\begin{array}{ll}
0 & \tilde{C}_{b Q} \tag{29}
\end{array}\right]
$$

then solve for the unique positive definite solution S_{Q} of the algebraic matrix Riccati equation,

$$
\begin{equation*}
A_{Q} S_{Q}+S_{Q} A_{Q}^{T}-B_{Q} B_{Q}^{T}+S_{Q} C_{Q}^{T} C_{Q} S_{Q}=0 \tag{30}
\end{equation*}
$$

together with the matrix T_{Q} defined by

$$
T_{Q}=\left[\begin{array}{cc}
T_{a a Q} & 0 \\
0 & 0
\end{array}\right]
$$

where $T_{a a Q}$ is the unique solution of the algebraic matrix Lyapunov equation,

$$
\begin{equation*}
A_{a a Q}^{+} T_{a a Q}+T_{a a Q}\left(A_{a a Q}^{+}\right)^{T}=E_{a Q}^{+}\left(E_{a Q}^{+}\right)^{T} \tag{31}
\end{equation*}
$$

Again, the existence and uniqueness of S_{Q} and $T_{a a Q}$ follow from assumption B2 and the properties of SCB. Next, solve the unique solution Y_{Q} of the following Sylvester equation,

$$
\left.\begin{array}{rl}
\left(A_{Q}+S_{Q} C_{Q}^{T} C_{Q}\right) Y_{Q}+Y_{Q}\left(A_{a a Q}^{o}\right)^{T}+S_{Q} C_{Q}^{T}\left(\tilde{L}_{a+Q}^{o}\right)^{T} \\
& -B_{Q}\left[B_{0 a Q}^{o}\right. \tag{32}\\
\tilde{L}_{a f Q}^{o}
\end{array}\right]^{T}=0
$$

Denote the set of eigenvalues of $A_{a a Q}^{o}$ with non-negative imaginary part as $\left\{j \omega_{1}, \ldots, j \omega_{k_{Q}}\right\}$ and for $i=1, \ldots, k_{Q}$, choose complex matrices $V_{i Q}$, whose columns form a basis of the eigenspace $\left\{x \in \mathbb{C}^{n_{a Q}^{o}} \mid x^{H}\left(j \omega_{i} I-A_{a a Q}^{o}\right)=0\right\}$ where $n_{a Q}^{o}$ is the dimension of $A_{a a Q}^{o}$. Then define

$$
\begin{align*}
F_{i Q}= & V_{i Q}^{H}\left(\left[\begin{array}{ll}
B_{0 a Q}^{o} & \tilde{L}_{a f Q}^{o}
\end{array}\right]\left[\begin{array}{ll}
B_{0 a Q}^{o} & \tilde{L}_{a f Q}^{o}
\end{array}\right]^{T}+\tilde{L}_{a b Q}^{o}\left(\tilde{L}_{a b Q}^{o}\right)^{T}\right. \\
& -\left[\left(\left(\tilde{L}_{a b Q}^{o}\right)^{T}+C_{Q} Y_{Q}\right]^{T}\left[\left(\tilde{L}_{a b Q}^{o}\right)^{T}+C_{Q} Y_{Q}\right]\right) V_{i Q} \tag{33}
\end{align*}
$$

for $i=1, \ldots, k_{Q}$, and

$$
\begin{equation*}
F_{Q}=\text { blockdiag }\left\{F_{1 Q}, \ldots, F_{k_{Q Q}}\right\} \tag{34}
\end{equation*}
$$

Again, it can be shown that $F_{Q}>0$. Also, define

$$
\begin{align*}
& G_{Q}=\text { blockdiag }\left\{\left[V_{1 Q}^{H} E_{a Q}^{o}\left(E_{a Q}^{o}\right)^{T} V_{1 Q}\right], \ldots,\right. \\
& \tag{35}\\
& \left.\left[V_{k_{Q Q}}^{H} E_{a Q}^{o}\left(E_{a Q}^{o}\right)^{T} V_{k_{Q Q}}\right]\right\}
\end{align*}
$$

Step 5: Define

$$
n_{P}=\operatorname{dim}\left\{\mathbb{R}^{n} / \mathscr{S}^{+}\left(A, B, C_{2}, D_{2}\right)\right\}-n_{a P}^{o}
$$

and

$$
n_{Q}=\operatorname{dim}\left\{\mathscr{V}^{+}\left(A, E, C_{1}, D_{1}\right)\right\}-n_{a Q}^{o}
$$

We introduce a matric Γ of dimension $n_{P} \times n_{Q}$ that satisfies the following

$$
\Gamma_{s P}^{-1}\left(\Gamma_{s Q}^{-1}\right)^{T}=\left[\begin{array}{ll}
\Gamma & \star \tag{36}\\
\star & \star
\end{array}\right]
$$

and define a constant matrix

$$
M=\left[\begin{array}{cccc}
G_{P} F_{P}^{-1} & 0 & 0 & 0 \tag{37}\\
0 & T_{P} S_{P}^{-1}+\Gamma S_{Q}^{-1} S_{P}^{-1} & -\Gamma S_{Q}^{-1} & 0 \\
0 & -T_{Q} S_{Q}^{-1} \Gamma^{T} S_{P}^{-1} & T_{Q} S_{Q}^{-1} & 0 \\
0 & 0 & 0 & G_{Q} F_{Q}^{-1}
\end{array}\right]
$$

We have the following main theorem.
Theorem 4.1: Consider the system Σ given by eqn. 1 . Then under assumptions A1, A2, B1 and B2, the infimum of H_{∞}-optimisation for Σ is

$$
\begin{equation*}
\gamma_{o}^{*}=\sqrt{ }\left[\lambda_{\max }(M)\right] \tag{38}
\end{equation*}
$$

Proof: Following the results of Scherer [4] (e.g. Theorem 6), it can be shown that

$$
\begin{equation*}
\gamma>\gamma_{P}^{*}=\max \left\{\sqrt{ }\left[\lambda_{\max }\left(T_{P} S_{P}^{-1}\right)\right], \sqrt{ }\left[\lambda_{\max }\left(G_{P} F_{P}^{-1}\right)\right]\right\} \tag{39}
\end{equation*}
$$

if and only if the following algebraic Riccati inequality,

$$
\begin{aligned}
{\left[A_{x P}-\right.} & \left.B_{x P}\left(D_{x P}^{T} D_{x P}\right)^{-1} D_{x P} C_{x P}\right] X \\
& +X\left[A_{x P}-B_{x P}\left(D_{x P}^{T} D_{x P}\right)^{-1} D_{x P} C_{x P}\right]^{T} \\
+ & \gamma^{-2} E_{x P} E_{x P}^{T}+X C_{x P}\left[I-D_{x P}\left(D_{x P}^{T} D_{x P}\right)^{-1} D_{x P}^{T}\right] \\
\times & C_{x P} X-B_{x P}\left(D_{x P}^{T} D_{x P}\right)^{-1} B_{x P}^{T}<0
\end{aligned}
$$

has a positive definite solution. Then it follows from the results of References 4 and 12 and some simple algebraic manipulations that for $\gamma>\gamma_{P}^{*}$, the positive semidefinite matrix $P(\gamma)$ given by

$$
P(\gamma)=\left(\Gamma_{s P}^{-1}\right)^{T}\left[\begin{array}{cc}
\left(S_{P}-\gamma^{-2} T_{P}\right)^{-1} & 0 \tag{40}\\
0 & 0
\end{array}\right] \Gamma_{s P}^{-1}
$$

is the lower limit point of the set

$$
\begin{aligned}
& \left\{P>0 \mid \exists F:(A+B F)^{T} P+P(A+B F)\right. \\
& \left.\quad+\gamma^{-2} P E E^{T} P+\left(C_{2}+D_{2} F\right)^{T}\left(C_{2}+D_{2} F\right)<0\right\}
\end{aligned}
$$

Moreover, such a $P(\gamma)$ does not exist when $\gamma<\gamma_{P}^{*}$. By dual reasoning, one can shown that

$$
\begin{equation*}
\gamma>\gamma_{Q}^{*}=\max \left\{\sqrt{ }\left[\lambda_{\max }\left(T_{Q} S_{Q}^{-1}\right)\right], \sqrt{ }\left[\lambda_{\max }\left(G_{Q} F_{Q}^{-1}\right)\right]\right\} \tag{41}
\end{equation*}
$$

if and only if the following algebraic Riccati inequality,

$$
\begin{aligned}
& {\left[A_{x Q}-B_{x Q}\left(D_{x Q}^{T} D_{x Q}\right)^{-1} D_{x Q} C_{x Q}\right] Z} \\
& \quad+Z\left[A_{x Q}-B_{x Q}\left(D_{x Q}^{T} D_{x Q}\right)^{-1} D_{x Q} C_{x Q}\right]^{T} \\
& \quad+\gamma^{-2} E_{x Q} E_{x Q}^{T}+Z C_{x Q}\left[I-D_{x Q}\left(D_{x Q}^{T} D_{x Q}\right)^{-1} D_{x Q}^{T}\right] \\
& \quad \times C_{x Q} Z-B_{x Q}\left(D_{x Q}^{T} D_{x Q}\right)^{-1} B_{x Q}^{T}<0
\end{aligned}
$$

has a positive definite solution. And for $\gamma>\gamma_{Q}^{*}$, the positive semidefinite matrix $Q(\gamma)$ given by

$$
Q(\gamma)=\left(\Gamma_{s Q}^{-1}\right)^{T}\left[\begin{array}{cc}
\left(S_{Q}-\gamma^{-2} T_{Q}\right)^{-1} & 0 \tag{42}\\
0 & 0
\end{array}\right] \Gamma_{s Q}^{-1}
$$

is the lower limit point of the set

$$
\begin{aligned}
\{Q> & 0 \mid \exists K:\left(A+K C_{1}\right) Q+Q\left(A+K C_{1}\right)^{T} \\
& \left.+\gamma^{-2} Q C_{2}^{T} C_{2} Q+\left(E+K D_{1}\right)\left(E+K D_{1}\right)^{T}<0\right\}
\end{aligned}
$$

Again, such a $Q(\gamma)$ does not exist when $\gamma<\gamma_{Q}^{*}$. Now define

$$
\begin{equation*}
\gamma_{P Q}=\max \left\{\sqrt{ }\left[\lambda_{\max }\left(T_{P} S_{P}^{-1}\right)\right], \sqrt{ }\left[\lambda_{\max }\left(T_{Q} S_{Q}^{-1}\right)\right]\right\} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{c o u}=\sup \left\{\gamma \in\left(\gamma_{P Q}, \infty\right) \mid \rho[P(\gamma) Q(\gamma)]<\gamma^{2}\right\} \tag{44}
\end{equation*}
$$

where $P(\gamma)$ and $Q(\gamma)$ are as given in eqns. 40 and 42 , respectively. Then following the results of Scherer [4], it can easily be shown that

$$
\begin{equation*}
\gamma_{o}^{*}=\max \left\{\gamma_{c o u}, \sqrt{ }\left[\lambda_{\max }\left(G_{P} F_{P}^{-1}\right)\right], \sqrt{ }\left[\lambda_{\max }\left(G_{Q} F_{Q}^{-1}\right)\right]\right\} \tag{45}
\end{equation*}
$$

Also, using the results of Chen, Saberi and Ly [2, 3], it can be shown that

$$
\gamma_{c o u}=\left\{\lambda_{\max }\left[\begin{array}{cc}
T_{P} S_{P}^{-1}+\Gamma S_{Q}^{-1} \Gamma^{T} S_{P}^{-1} & -\Gamma S_{Q}^{-1} \tag{46}\\
-T_{Q} S_{Q}^{-1} \Gamma^{T} S_{P}^{-1} & T_{Q} S_{Q}^{-1}
\end{array}\right]\right\}^{1 / 2}
$$

Hence, the result of Theorem 4.1 follows.

5 Example

We illustrate our main result in the following example. Consider a given system characterised by

$$
\begin{aligned}
& A=\left[\begin{array}{lllrl}
0 & 1 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right] \\
& B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] \quad E=\left[\begin{array}{ll}
1 & 1 \\
0 & 0 \\
0 & 0 \\
2 & 1 \\
1 & 2
\end{array}\right] \\
& C_{1}=\left[\begin{array}{lll}
-1 & 11 & -21.876238 \\
1 & 2
\end{array}\right. \\
& D_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
& C_{2}
\end{aligned}
$$

Step 1: It is simple to verify that the subsystem $(A, B$, C_{2}, D_{2}) is left-invertible with two invariant zeros at $\pm j$ and assumption A2 is satisfied. Applying SCB transformation to $\left(A, B, C_{2}, D_{2}\right)$,

$$
\begin{aligned}
\Gamma_{s P} & =\left[\begin{array}{lllrl}
0 & 0 & 0 & -1 & 0 \\
1.3660254 & 0.3660254 & 0 & 0 & 0 \\
0.1988066 & 1.9900945 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
A_{P} & =\left[\begin{array}{rrr}
-01614784 & 0.2246812 \\
0.6026457 & -0.8385216
\end{array}\right] \\
B_{P} & =\left[\begin{array}{ll}
0.6040578 & -0.1762197 \\
0.4723969 & 0.4878984
\end{array}\right] \\
C_{P} & =\left[\begin{array}{ll}
1.3544397 & 0.2665382 \\
0.2665382 & 2.0058434
\end{array}\right] \\
E_{b P} & =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] A_{a a P}^{o}=\left[\begin{array}{lr}
0 & -1 \\
1 & 0
\end{array}\right] \\
\tilde{L}_{a b P}^{o} & =\left[\begin{array}{lll}
0.9489977 & 1.0485243 \\
-0.9489977 & -1.0485243
\end{array}\right]
\end{aligned}
$$

and

$$
\left[\begin{array}{ll}
B_{0 a P}^{o} & \tilde{L}_{a f P}^{o}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
0 & -1
\end{array}\right] \quad E_{a P}^{o}=\left[\begin{array}{rr}
2 & 1 \\
-1 & -1
\end{array}\right]
$$

Following the procedure in Section 4,

$$
\begin{aligned}
S_{P} & =\left[\begin{array}{rr}
0.6180716 & -0.2516670 \\
-0.2516670 & 0.7339429
\end{array}\right] \\
T_{P} & =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
Y_{P} & =\left[\begin{array}{rr}
-0.6928337 & -0.0822109 \\
-0.3161228 & 0.3068152
\end{array}\right]
\end{aligned}
$$

and

$$
F_{P}=2.3885733 \quad G_{P}=3.5
$$

Step 2: The subsystem $\left(A, E, C_{1}, D_{1}\right)$ is invertible and of nonminimum phase with invariant zeros at $\{0.078944$, $\pm j 2.302011,-4.095803\}$. Hence, assumption B2 is automatically satisfied. Applying the SCB transformation to $\left(A^{T}, C_{1}^{T}, E^{T}, D_{1}^{T}\right)$,
and

$$
\begin{aligned}
& A_{a a Q}^{o}=\left[\begin{array}{ll}
0.8733954 & -14.3566212 \\
0.4222493 & -0.8733953
\end{array}\right] \\
& {\left[B_{0 a Q}^{o}\right.} \\
& \left.\tilde{L}_{a f Q}^{o}\right]=\left[\begin{array}{rr}
13.8502316 & -10.8089077 \\
0.3251762 & -1.3752299
\end{array}\right] \\
& E_{a Q}^{o}=\left[\begin{array}{ll}
-1.9958628 & 6.3511003 \\
-0.5082606 & 0.0920508
\end{array}\right.
\end{aligned}
$$

$$
\left.\begin{array}{ll}
-0.7973732 & -1.9958628 \\
-0.4908900 & -0.5082606
\end{array}\right]
$$

Following the procedure in Section 4,

$$
\begin{aligned}
S_{Q} & =35.4527292 \\
T_{Q} & =0.3224810 \\
Y_{Q} & =\left[\begin{array}{ll}
-5.2529064 & 93.6614674
\end{array}\right]
\end{aligned}
$$

and

$$
F_{Q}=8.4694885 \quad G_{Q}=35.4527292
$$

$$
\begin{aligned}
& \Gamma_{s Q}=\left[\begin{array}{rr}
0.2148444 & 0.0018481 \\
0.5503097 & 0.6645646 \\
-0.7990597 & -0.7456317 \\
-0.0941402 & -0.0440333 \\
-0.0603521 & 0.0210926
\end{array}\right. \\
& \left.\begin{array}{rrr}
0.2169145 & 0.0698280 & 0.2 \\
-0.6352193 & 0.8023543 & 0.4 \\
-0.5938518 & -0.5805731 & 0.6 \\
0.3437855 & 0.0892284 & 0.4 \\
-0.2803500 & -0.0795282 & 0.2
\end{array}\right] \\
& \begin{array}{l}
A_{Q}=A_{a a Q}^{+}=0.0789442 \\
B_{Q}=\left[\begin{array}{llll}
2.3596219 & -0.1725085
\end{array}\right] \\
C_{Q}=0 \\
E_{a Q}^{+}=\left[\begin{array}{llll}
0.1593412 & 0.0009204 & 0.0116587 & 0.1593412
\end{array}\right]
\end{array}
\end{aligned}
$$

Step 3: Evaluate
$M=\left[\begin{array}{rrrrr}1.4653098 & 0 & 0 & 0 & 0 \\ 0 & -0.0000103 & -0.0000451 & 0.0003744 & 0 \\ 0 & 0.0000632 & 0.0002763 & -0.0022958 & 0 \\ 0 & -0.0002503 & -0.0010946 & 0.0090961 & 0 \\ 0 & 0 & 0 & 0 & 0.2110284\end{array}\right]$
and obtain

$$
\gamma_{o}^{*}=\sqrt{ }\left[\lambda_{\max }(M)\right]=1.2104998
$$

6 Conclusion

We have extended the results of References 2 and 3 and presented a simple noniterative algorithm for the computation of the infimum for a class of H_{∞}-optimisation problem. We have shown that this infimum is equal to the square root of the maximum eigenvalue of a constant matrix that can be easily obtained from the system matrices of Σ. Our results are obtained under the assumptions that the two subsystems Σ_{P} and Σ_{Q} satisfy certain geometric conditions. The proposed algorithm for computing the infimum is applicable to the general case of singular H_{∞}-optimisation problem where no restrictions have been placed on finite zeros and infinite zeros of Σ_{P} and Σ_{Q} and the direct feedthrough terms in Σ.

7 References

1 CHEN, B.M., SABERI, A., and LY, U.: 'Exact computation of the infimum in H_{∞}-optimization via state feedback', Control Theory Adv. Technol., 1992, 8, (1), pp. 17-35

2 CHEN, B.M., SABERI, A., and LY, U.: 'Exact computation of the infimum in H_{∞}-optimization via output feedback', IEEE Trans., 1992, AC-37, (1), pp. 70-78
3 CHEN, B.M., SABERI, A., and LY, U.: 'A non-iterative method for computing the infimum in H_{∞}-optimization', Int. J. Control, 1992, 56, (6), pp. 1399-1418
4 SCHERER, C.: ' H_{∞}-optimization without assumptions on finite or infinite zeros', SIAM J. Control Optim., 1992, 30, (1), pp. 143-166
5 CHEN, B.M., SABERI, A., and LIN, Z.-L.: 'Linear control toolbox'. Washington State University report EE/CS 0098, 1991
6 SABERI, A., and SANNUTI, P.: 'Squaring down of non-strictly proper systems', Int. J. Control, 1990, 51, (3), pp. 621-629
7 SANNUTI, P., and SABERI, A.: 'A special coordinate basis of multivariable linear systems - Finite and infinite zero structure, squaring down and decoupling', Int. J. Control, 1987, 45, (5), pp. 1655-1704
8 SABERI, A., CHEN, B.M., and SANNUTI, P.: 'Theory of LTR for nonminimum phase systems, recoverable target loops, recovery in a subspace - Part 1: analysis', Int. J. Control, 1991, 53, (5), pp. 10671115
9 STOORVOGEL, A.A.: 'The singular H_{∞}-Control problem with dynamic measurement feedback', SIAM J. Control Optim., 1991, 29, (1), pp. 160-184

10 STOORVOGEL, A.A., and TRENTELMAN, H.L.: 'The quadratic matrix inequality in singular H_{∞}-control with state feedback', SIAM J. Control Optim., 1990, 28, (5), pp. 1190-1208

11 RICHARDSON, T.J., and KWONG, R.H.: 'On positive definition solutions to the algebraic Riccati equations', Syst. Control Lett., 1986, 7, pp. 99-104
12 SCHERER, C.: ‘ H_{∞}-control by state-feedback for plants with zeros on the imaginary axis', SIAM J. Control Optim., 1992, 30, (1), pp. 123-142

[^0]: C) IEE, 1993

 Paper 9645D (C8), received 21st September 1992
 B.M. Chen is with the Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
 A. Saberi is with the School of Electrical Engineering \& Computer Science, Washington State University, Pullman, WA 99164-2752, USA

