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CHARACTERIZATIONOF ALL CLOSED-LOOP
TRANSFER FUNCTION MATRICES IN

H oo-OPTIMIZATION*

A. A. STOORVOGEL,1A. SABERI2ANDB. M. CHEN3

Abstract. In this paper, we derive a characterization of all stable closed loop
systems with H ",-norm strictly less than 1 which we can obtain via a suitable
stabilizing feedback. We give an exact characterization. However,this characteriza-
tion contains relatively implicit constraints on the free parameter. We also
introduce an "approximate" characterization parameterized via a stable system X
with H ",-norm less than 1 (and no other conditions on X). A element of this
approximate characterization can be arbitrarily well approximated by a closed loop
system we can obtain via a suitable stabilizingfeedback.
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1. Introduction

In H 00 control (see e.g., Doyle et aI., 1989;Stoorvogel, 1991;Tadmor, 1990)
it is well-known that suitable controllers are not unique. This is in part because
we in general investigate suboptimal design (make the H 00 norm less than
some a priori given number y) and also because even optimal controllers are in
the MIMO case non-unique.

An interesting question one might therefore ask is the following:character-
ize all closed loop systems with H 00 norm less than y that we can obtain via a
suitable stabilizing feedback. In several papers (see e.g., Doyle et aI., 1989;
Tadmor, 1990)a characterization is given of all time-invariantcontrollers which
stabilize a given linear time-invariantsystem and result in a closed loop system
with H 00 norm strictlyless than y. This can be used in a straightforwardman-
ner to characterize the closed loop systems these controllers generate. Howev-
er, this is done under some assumptions on the direct feedthrough matrices of
the system (the so-called regular case). Without these conditions (the singular
case) necessary and sufficient conditions for the existence of a suitable control-
ler are available (see Stoorvogel, 1991). On the other hand, for this singular
case relatively little is known about closed loop systems one can obtain.
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In this paper, we derive a characterization of all stable closed loop systems
with H00 norm strictlyless than 1 whichwe can obtainvia applyinga suitable
stabilizing feedback to the given system 2:. We can replace 1 by y via simple
scaling. The closed-loop systems are parameterized via a stable system X with
H oo-normless than 1. However, these systems X have to satisfy two other, rela-
tively implicit, extra conditions. Therefore, we also give an approximate charac-
terization. It is the same characterization except that X does not have to satisfy
these extra two conditions; the system X is an arbitrary stable system with H 00

norm strictly less than 1.The trade-off is that it is an approximate characteriza-
tion. For each stable system X with H 00 norm less than 1 we generate a system
which can be arbitrarily well approximated with a closed loop system which we
obtain by applying a suitable stabilizing controller to our system 2:. Conversely
anyclosedloopsystemwith H00 norm strictlyless than 1,whichwe can obtain
by applying a stabilizing controller to 2:, is identical to a system we obtain for a
suitable choice of the parameter X in our characterization.

In other words, we find a simpler characterization of the "closure" (the
approximate set is not actually closed but lies between the set itself and its clo-
sure) of the set of attainable closed loop systems. Finally,we would like to note
that this approximate characterization and the actual characterization are equal
in the regular case.

The formal problem statement will be given in the next section. In Sec. 3,
we will recall some preliminary results. In Sec. 4, we will give an exact charac-
terization of all closed loop systems. Finally, in Sec. 5, we give the much sim-
pler approximate characterization. We conclude with some final remarks in Sec.
6.

2. Problem Statement

We consider the linear, time-invariant,finite-dimensionalsystem

j

i = Ax + Bu + Ew,

2: : y = C1x + Dl w,

Z = C2x + D2u,

(2.1)

where x E (Jl[nis the state, u E (Jl[mis the control input, w E (Jl[lis the un-
known disturbance, y(t) E (Jl[Pis the measured output and z E (Jl[qis the un-
known output to be controlled. A, B, E, C1, C2, Dl and D2 are matrices of
appropriate dimensions. The following assumptions are made:
(a) (A, B) is stabilizable and (A, B, C2, D2) has no invariant zeros on the jw-

axis, and
(b) (A, C1) is detectable and (A, E, C1,D1) has no invariant zeros on the jw-

axis.
Throughout this paper, we will assume that there exists an internally stabilizing
controller of the form

{

V = Kv + Ly,
2:F:

u = Mv + Ny,
(2.2)

such that the H oo-normof the closed-loop transfer function from z to w, Tzw(s),
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is strictly less than 1.To be precise, let us define the sets

c ~ {1:FI 1: X 1:F is stable and II Tzw 1100 < 1} (2.3)

and

T ~ {Tzw I1:FEe}. (2.4 )

Elements of the sets C and T will sometimes be called suitable controllers
and suitable closed loop systems, respectively.The goal of this paper is to char-
acterize the set T, i.e., all the closed-loop transfer function Tzw(s) satisfying
II Tzw 1100 < 1.

3. Preliminary

In this section, we recall some results from Stoorvogel (1991). A central
role in our study of the above problem will be played by the quadratic matrix
inequality.For matrix P E fJIlnxnwe consider the followingmatrix:

F (P) L1
[

ATP + PA + qC2 + PEETp PB + qD2
]= BTp + DTC DTD '

2 2 2 2

If F(P) ;::: 0, we say that P is a solution of the quadratic matrix inequality.
We also define a dual version of this quadratic matrix inequality. For Q E

fJIlnxnwe define the followingmatrix:

G(Q) L1
[

AQ + QAT+ EET + Qqc2Q QC[ + EDT
]= c Q + D ET D DT .1 1 1 1

If G(Q) ;:::0, we say that Q is a solution of the dual quadratic matrix inequality.
In addition to these two matrices, we define two matrices pencils, which play
dual roles

L(P, s) ~ [sI - A - EETp - B],

M(Q, s) ~
[

SI - A_- QqC2
]C1 .

Finally, we define the following two transfer matrices:

Gc/s) ~ C2(sI- A) -IB + D2,

Gdi(s) ~ C1(sI - A) -IE + D1.

Let Q(M) denote the spectral radius of the matrix M. Then the followingtheo-
rem characterizes the existence of suitable controllers.

Theorem 3.1. Consider the system (2.1). Assume that both the subsystem
(A, B, C2' D2) as well as the subsystem (A, E, C1' D1) have no invariant ze-
ros on the imaginary axis. Then, the followingtwo statements are equivalent:
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1. For the system (2.1) there exists a time-invariant, finite-dimensional dynamic
compensator 1:F of the form (2.2), such that the resulting closed-loop sys-
tem, with transfer matrix Tzw(s), is internally stable and has H 00 norm less
than 1, Le., II Tzw 1100 < 1.

2. There exist positive semi-definite solutions P, Q of the quadratic matrix in-
equalities Fy(P) :2:0 and G( Q) :2:0 satisfying (!(PQ) < 1, such that the fol-
lowing rank conditions are satisfied:
(a) rankF(P) = rankR(s)Gci'
(b) rankG(Q) = rankR(s)Gdi'

[

L(P, S)

](c) rank F(P) = n + rankR(s) Gci' 'IS E CO U C+,

(d) rank[M(Q, s) G(Q)] = n + rankR(s) Gdi' 'IS E CO U C+.

Our goal is to characterize the set of all closed loop systems with H 00 norm
less than 1 which we can obtain by applying a suitable stabilizing controller. By
the above theorem, this set is empty if the conditions in part 2 are not met.
Therefore, in the remainder of this paper we will assume that there exist ma-
trices P and Q satisfying the conditions in part 2 of the above theorem. We can
now start with the derivation of the characterization of all suitable closed loop
systems.

Next, we construct a new system,

{

xp,Q = Ap,Qxp,Q + Bp,Q up,Q + Ep,QW,

1:p,Q: YP,Q= Cl,pxp,Q + Dp,Qw,

zp,Q = CZ,pxp,Q + Dpup,Q'

(3.1)

where

[

crp

]F(P) = Di [Cz,P Dp], G(Q) = [~~J [E~ DJ,Q],

such that [Cz,p Dp] and [E~ DJ,Q]are both surjective. Moreover,

Ap,Q ~ A + EETp + (I - QP) -IQCfp Cz,p,

Bp,Q ~ B + (I - QP) -lQcr,PDp,

Ep,Q ~ (I - QP) -lEQ'

Cl,P ~ C1 + Dl ETp

It has been shown in Stoorvogel (1991) that this new system has the following
properties:
1. (Ap,Q'Bp,Q'Cz,P,Dp) is right invertible and minimum phase.
2. (Ap,Q'Ep,Q'Cl,p, Dp,Q)is left invertible and minimum phase.

In Stoorvogel (1991), the transformation to 1:P,Qis done in two stages. In
the first stage (the transformation into a system 1:p), a system 1:u is
constructed which connects 1: and 1:p, Le., the following systems have the
same realization except for some extra stable uncontrollable dynamics on the
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right hand side (Fig. 1). Here the system 2p is given by

l

ip = (A + EETP)Xp+ Bup+ Ewp,

2p: Yp = (C1 + D1ETP)xp + Djwp,

Zp = Cz,pxp+ Dpup,

(3.2)

and 2 u, given in Appendix, is due to its complexity.Moreover, it is shown in
Stoorvogel (1991) that 2 u is inner, Le., the system is stable and the transfer
function of 2ufrom (wu, uu) to (zu, Yu)' say Gu,has the followingproperty:

G~( - so)Gu(so) = Gu(so)G~( - so) = !,

for any SoE C which is not a pole of the system GuCs).Finally,the subsystem
from Wuto Yu has a stable inverse. Similarly,we can connect 2p and 2p,Qvia
some system 2v, which can be defined using a dual argument of 2u.

In this way, we can derive that the original system 2 in (2.1), and the new
system 2 P,Qhave a similar connection. In other words, we can construct a sys-
tem 2c (which is simply the interconnection of 2u and 2v), such that the fol-
lowing two interconnections have the same realization for every controller 2 F

except for some extra stable uncontrollable or unobservable dynamics on the
right hand side (Fig. 2).

Due to the properties of 2u and 2v, it can be easily shown that 2c is inner.
Moreover, by applying Redheffer's lemma (see Doyle et aI., 1989) and its dual
version we can derive the following theorem.

z w

~

~Z:rW

y U

L:F

Fig. 1.

. Yp,Q up,Q :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . -

Fig. 2.
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Theorem 3.2. For any given compensator 2:F of the form (2.2) the follow-
ing two statements are equivalent:
(i) 2:Fapplied to the system 2: defined by (2.1) is internally stabilizing and the

resulting closed loop transfer function from w to z has H ",,-norm less than
1, Le., II Tzw II"" < 1.

(ii) 2:Fapplied to the new system 2:P,Qdefined by (3.1) is internally stabilizing
and the resulting closed loop transfer function from wpQto zpQ, Tz w (s),
has H ",,-normless than 1, Le., II Tz w II"" < 1. ' , P,Q P,QP,Q P,Q

Next, we denote the system inside the dashed box of Fig. 2 by X(s). We can
then simplify the picture (Fig. 3).

Our goal of this paper is to characterize all suitable closed-loop systems
2: x 2:F as in the left of Fig. 3, Le., the set T as defined in the previous section.
By the previous theorem if the closed loop system on the left in Fig. 3 is stable
and has H ",,-normstrictly less than 1 then X, defined to be equal to the dashed
box in Fig. 2, is stable and has H ",,-normstrictly less than 1. Our goal is to
show the "converse": for any stable system X with H ",,-normstrictly less than 1
the interconnection on the right hand side of Fig. 3 is asymptoticallystable and
has H ",,-normstrictly less than 1. Moreover, we can find a system 2:F,such that
the two interconnections in Fig. 3 are both stable and arbitrarily close in
H ",,-norm.In the next section, we will show for which systems X we can make
the interconnections equal. In See, 5, we show that for all strictly proper X
which are stable and have H ",,-normstrictly less than 1 we can always make
the interconnections arbitrarily close in H ",,-norm,

We would like to conclude this section by stressing that the construction of
2:c is an straightforward application of the results in Stoorvogel (1991). It is
only because of space limitations that we do not give this explicit construction
in this paper.

~ZLW

Y u

LF

~
WXE1ZX

Fig. 3.

4. Exact Characterization

In this section, we will characterize the set T defined in (2.4).We first give
the following result which is a straightforward application of the results in the
previous section.

Lemma 4.1. Let X be a stable system described by

{

Xx = Axxx + Bxwx,
X:

Zx = Cxxx + Dx WX,
(4.1)

where Ax is stable and the transfer matrix of X has H ",,-normstrictly less than
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1.Then the interconnection 2:c x 2:xas given on the right hand side in Fig. 3 is
internally stable and the resulting closed-loop transfer function from we to Zc
has H oo-normless than 1.

For a system X satisfying the conditions of the above lemma we define the
followingauxiliary system:

Xa =
[~x AO J

xa +
[
BO

J
u +

[
:x

J
w,

P,Q P,Q P,Q

2:a:i y = [0 Cl,p]xa+ Dp,Qw,

z = [Cx - Cz,P]Xa- Dpu + Dxw.

(4.2)

For economy of notation, let us define

A = [~x A~,J,

-

[

0

]

-

[

Bx

]
B= E=

Bp,Q , Ep,Q

and

c\= [0 Cl,p], Dl = Dp,Q' (;2 = [Cx - CZ,P], D2 = - Dp.

In order to proceed we need a number of definitions.

Definition 4.1. Let 2: = (A, B, C, D). By Tg(2:),we denote the smallest
subspace T of qcn for which there exists a linear mapping K, such that the
followingconditions are satisfied:

(A - KC)T ~ T, Im(B - KD) ~ T,

and such that A - KG!qcnIT is asymptotically stable. Similarly,by Vg(2:)we
denote the largest subspace V for which there exists a mapping F, such that
the followingconditions are satisfied:

(A - BF)V ~ V, (C - DF)V = {a},

and such that A - BFIV is asymptoticallystable.

Definition 4.2. Let Xe denote the set of systems X satisfying the conditions
of Lemma 4.1, such that the corresponding auxiliary system 2:asatisfies the
followingconditions:
1. Tg(i:di) ~ Vg(i:ci)' -
2. There exists a matrix N, such that

([

A E
] [

8
]

- - -
)

- -

(;2 Dx + D2 N[ C1 Dl] (Tg(2:di) EBqcq) ~ (Vg(2:ci) EB{O}).

-,1--- - -,1----Here 2:ci = (A, B, C2' D2) and 2:di= (A, E, C1' D1).

Next, we note that since the matrix Ax is asymptotically stable and because
of the properties of 2:P,Qas given in the previous section, it is simple to verify

(4.3)



572 A. A. STOORVOGEL, A. SABERI AND B. M. CHEN

that
1. (A, B, (;2' jj2) is right invertible and minimum phase, and
2. (A, E, (;1' j\) is left invertible and minimum phase.
This immediately implies that (A, B) is stabilizableand (A, C\) is detectable.
Moreover, these conditions combined with the Conditions 1 and 2 given in Defi-
nition 4.2 guarantee (see Stoorvogel and van der Woude, 1991)that for the sys-
tem La the disturbance decoupling with measurement feedback and internal
stabilityis solvable.In otherwords,there exists a compensatorLF of the form
(2.2), such that the interconnection La XLF is internally stable and.its transfer
matrix is equal to O.

Therefore, if we define the set

Te ~ {Tzcwc IX E XeL (4.4)

then we have the followingresult.

Theorem 4.1. The set T defined by (2.4) and the set Te defined by (4.4)
are equal, i.e., T = Te.

Proof (~): Let Tzw(s) E T. Hence, by definition, there exists a controller
LF E C, which makes the closed-loop system on the left of Fig. 2 internally
stable. It then follows from Theorem 3.2 that such a controller makes the
closed-loop system inside the dashed box on the right of Fig. 2 internally stable
and yields II TZP.QwP.Q 1100 < 1.Next, defineX to be equal to the dashed box of Fig.
2. It is trivial to see that II X II 00 = II TZP.QwP.Q 1100< 1 and that this system L F solves
the disturbance decoupling problem with measurement feedback and internal
stability for the related auxiliary system La. It then follows from Stoorvogel
and van der Woude (1991) that X must be, such that the corresponding auxilia-
ry system La satisfies the two conditions in Definition 4.2. Hence, X E Xe and
Tz W = Tzw E T e.

c (~): Conversely, assume that Tz w E Te. By definition, there exists a sys-c c
tern X of the form (4.1), such that IIXlloo< 1 and the conditions in Definition
4.2 hold. Hence, by Stoorvogel and van der Woude (1991), the disturbance de-
coupling problem with measurement feedback and internal stability is solvable
for the corresponding auxiliary system La. Hence, there exists a stabilizing
controllerLF' such that the resultingsysteminsidethe dashedbox of Fig.2 is
equal to X. By Theorem 3.2, we have LF E C. Moreover, the corresponding
Tzw = Tz wET.c c

5. 'Almost' Characterization

It turns out that it is easier to define a bigger set Ta which contains set T
and transfer matrices that are not in T are arbitrarily close to the set T. To be
more precise, for each elementof Ta and for any positivescalar,say E,there
exists an element of T, such that the difference between these two transfer
matrices has H oo-normless than E.Next, we willgive a precise definition of the
set Ta.

Definition 5.1. Let Xa denote the set of systems X of the form (4.1) where
Ax is asymptotically stable, II X II 00 < 1 and Dx = D2ND1 for some constant ma-
trix N.
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Moreover, define the set Ta by,

Ta ~ {Tz w IXEXaLc c (5.1)

Now we can derive the following theorem.

Theorem 5.1.
relationship:

The set T of (2.4) and the set Ta of (5.1) has the following

T ~ Ta ~ T, (5.2)

where the closure of the set T is with respect to the topology induced by the
H co-norm. In other words, for any E > 0 and for any Tz w ETa, there exists ac c
TzwE T, such that II Tzw - Tz w II co < E.c c

Proof
(Part 1) It is trivial to verify that Xe ~ Xa. Hence, by definition, T = Te

~ Ta.
(Part 2) For any Tz w ETa, again by definition, there exists a system X ofc c

the form (4.1) with Ax stable, II X II co < 1 and, moreover, there exists a matrix
N, such that Dx = DzNDl' Since the range of Dz and Dp are equal and since
the kernel of Dp.Qand Dl are equal there exists a matrix N, such that

Dx = DzNDl = DpNDp.Q= i\( - N)D1. (5.3)

Finally, recall the followingproperties:
1. (4, i!, ~z, izz) is right invertible and of minimum phase, and
2. (A, E, C1, D1) is left invertible and of minimum phase.
It follows from Ozcetin et al. (1991; 1992) that the Hco-almostdisturbance de-
coupling problem with internal stability for the corresponding auxiliary system
L:ais solvable. Hence, there exists L:F,such that the corresponding closed-loop
system inside the dashed box of Fig. 2, which we denote by Xf) is internally
stable and is arbitrarily close to X in H co-norm.Let Tzw(s)and Tz w (s) be the
closed-looptransfer matrices of the systems on the left and right rgspectively in
Fig. 2. It is straightforward since L:c is stable that by making the difference
XF - X small enough that Tzw(s) is also arbitrarily close to Tz w (s) in
H co-norm.More specifically,for any E > 0, there exists L:F,such that tbe cor-
responding Tzw satisfies II Tzw - Tz w II co < E. Furthermore, II Tzw II co < 1 and
hence, Tzw E T. This completes the pr~of of the theorem.

6. Conclusion

In this paper, we have given a characterization of all stable closed loop sys-
tems we can obtain via a suitable feedback. The closed loop systems are pa-
rameterized via a stable system X with H co-normless than 1. An exact
characterization requires an extra constraint on X which is relatively difficult.
However, if we are satisfied with an approximate characerization then the sys-
tem X has to satisfy only one extra constraint which is very simple.

No explicit characterization of all suitable controllers is given. It is our be-
lief that a simple characterization of all controllers as given in Doyle et al.
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(1989) and Tadmor (1990) cannot be given in the singular case. This still re-
mains an interesting open problem.

Construction of suitable controllers in the singular case can be done via
solving an almost disturbance decoupling problem. Algorithms can e.g., be
found in Ozcetin et al. (1991;1992).
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Appendix: Construction of l: u

It is well-knownthat there exist orthogonal transformations U and V of ap-
propriate dimensions (for example, using singular value decomposition tech-
nique), such that.

UD2 VT = [ ~ ~] ,

where Dis invertible. Because these orthogonal transformations do not change
the norm II z II, hereafterwithoutloss of generality,we assumethat D2is in the
above form. Moreover, let us partition Band C2as

B = [Bl B2] and
C2 = [~J

Let

Fa = [ - Do-lel].
It is easy to see that

C2+ D2Fa = [gJ
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We now choose a basis of the state space q}(n. Let q}(n= Xl EBX2 EBX3
with X2 = Tg(2:ci) n {vi C2v E Im(D2)}, X2 EBX3 = Tg(2:ci) and X3 arbitrary,
where 2:ci§! (A, B, C2, D2). It is shown in Stoorvogel (1991)that in this new
coordinate,

Then system 2:u is given by

2:u:

Xu = Axu + [.811 .812]uU+ E1Wu,

Yu = - EfP1xu + Wu,

Zu = (g~)xu + (~ ~ )uu,

where

A §!A11-A13(Cf3C23)-1(Af3P1 + Cf3C21) -B11(DTD)-lBEP1'

C1 §! - (DT) -lBE P1'

C2 §! C21 - C23(Cf3 C23) -1(Af3P1 + Cf3C21),

- LI A 1B11 = B11D- ,

B12 §!A13(Cf3 C23)-lCf3 - PI Cf1[I - C2/Cf3 C23)-lCf3]'

Here t denotes the Moore-Penrose inverse.

.. .. . . . . o. .. . o ... . . . .

[All 0 A'3 ] [Bll 0] E [:],
A + BFo = A21 A22 A23 ' B = B21 B22 '

A31 A32 A33 B31 B32

C2 + D2Fo = [
0

J, [PI

0

no P= 0
21 0
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