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Abstract. A complete analysis of loop transfer recovery (LTR) using full order
observer based controllers for general nonstrictly proper systems is considered.
The given system need not be left invertible and of minimum phase. Our analysis of
LTR focuses on four fundamental issues. The first issue is concerned with what can
and what cannot be achieved for a given system and for an arbitrarily specified
target loop transfer function. On the other hand, the second issue is concerned with
the development of necessary and/or sufficient conditions a target loop has to
satisfy so that it can either exactly or asymptotically be recovered for a given
system while the third issue is concerned with the development of necessary and/or
sufficient conditions on a given system such that it has at least one, either exactly
or asymptotically, recoverable target loop. The fourth issue deals with a generaliza-
tion of all the above three issues when recovery is required over a subspace of the
control space. It concerns with generalizing the traditional LTR concept to sensitiv-
ity recovery over a subspace and deals with method(s) to test whether projections
of target and achievable sensitivity and complimentary sensitivity functions onto a
given subs pace match each other or not. Such an analysis pinpoints the limitations
of the given system for. the recovery of arbitrarily specified target loops via full
order observer based controllers. These limitations are the consequences of the
structural properties (i.e., finite and infinite zero structure, and invertibility) of the
given system. Also, the conditions developed here on a target loop transfer
function for its recoverability, turn out to be constraints on its finite and infinite
zero structure as related to the corresponding structure of the given system.
Furthermore, the analysis given here discovers a multitude of ways in which
freedom exists to shape the loops in a desired way as close as possible to the target
shapes. Also, possible pole zero cancellations between the eigenvalues of the
controller and the input and/or output decoupling zeros of the given system are
characterized.

Key Words~Loop transfer recovery, robust control.

1. Introduction

In classical as well as modern feedback control system design, many
performance and robust stability objectives can be cast in terms of maximum
magnitude or maximum singular values of some particular closed-looptransfer
functions, e. g., sensitivity and complimentary sensitivity functions at certain
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points in a closed-loop. A principle idea of "loop shaping" is that such magnitude
or singular value requirements on some closed-loop transfer functions can be
directly determined by corresponding singular values of certain related open-
loop transfer functions. A prominent design methodology for multivariable
systems which is based on such loop shaping concepts is LQG/LTR. Historically,
LQG/LTR design philosophy involves two steps. The first step is to design a
state feedback law that yields an open-loop transfer function which accommo-
dates satisfactorily the given design specifications on the required sensitivity
functions. Such an open-loop transfer function is called a target open-loop
transfer function. The second step, called loop transfer recovery (LTR),
involves the design of an output feedback control law such that the resulting
open-loop transfer function would be either exactly or approximately the same
as the target open-loop transfer function. In other words, the idea of LTR is to
come up with a measurement feedback compensator, typically observer based,
to recover a specific open-loop transfer function prescribed in terms of a state
feedback gain.

The above mentioned loop transfer recovery (LTR) procedure as a multivari-
able robust control design tool has gained significance since the seminal work of
Doyle and Stein (1979). It has been studied by a number of authors including
Athans (1986), Chen et al. (1990; 1991 a; b), Doyle and Stein (1981), Goodman
(1984), Matson and Maybeck (1991), Niemann and Jannerup (1990), Niemann et
al. (1991), Ridgely and Banda (1986), Saberi et al. (1991 a; b), Sogaard-
Andersen (1989), Sogaard-Andersen and Niemann (1989), Saberi and Sannuti
(1990 a), Stein and Athans (1987) and Zhang and Freudenberg (1990). Earlier
literature on LTR concentrates on left invertible and minimum phase systems
since this is the only class of systems for which asymptotic LTR is possible for
an arbitrarily specified target loop transfer function. A variety of issues arise in
analyzing the LTR mechanism in nonminimum phase systems. Recent works,
Chen et al. (1991 b), Niemann and Jannerup (1990), Saberi et al. (1991 a; b) and
Zhang and Freudenberg (1990), focus on some of these issues. For example, the
issues discussed in Saberi et al. (1991 a) and Chen et al. (1991 b) include, (a)
Characterizing the available freedom in designing controllers for a given system
and for an arbitrarily specified target loop transfer function, (b) Development of
necessary and/or sufficient conditions a target loop has to satisfy so that it can
either exactly or asymptotically be recovered for a given system, (c) Develop-
ment of necessary and/or sufficient conditions on a given system such that it has
at least one recoverable (either exactly or asymptotically) target loop and (d)
Development of methodes) to test whether recovery is possible in a given
subspace of the control space or not, i.e., to test whether projections of target
and achievable sensitivity and complimentary sensitivity functions onto a given
subspace match each other or not, and in so doing generalizing the traditional
notion of LTR. The theory developed in Saberi et al. (1991 a) to analyze the
issues (a), (b) and (d) is fairly complete when full order observer based
controllers are used and when strictly proper systems which are not necessarily
left invertible and of minimum phase are considered. On the other hand, when
general controllers which are not necessarily observer based are used, Chen et
al. (1991 b) develops the necessary and sufficient conditions on a strictly proper
system so that it has at least one, either exactly or asymptotically, recoverable
target loop. As far as design is concerned, there exists essentially three
methods of designing observer based controllers for LTR. These methods are,
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(1) Kalman filter formalism (Doyle and Stein, 1979), (2) direct eigenstructure
placement method (Sogaard-Andersen, 1989) and (3) asymptotic eigenstructure
and time-scale structure assignment (ATEA) method (Saberi and Sannuti,
1990 a; Saberi et aI., 1991 b).

All the above discussion pertains only to strictly proper systems. Regarding
non strictly proper systems, the only work so far has been by Chen et al. (1990)
who consider only left invertible and minimum phase systems. When a given
system is nonstrictly proper and non necessarily left invertible and of minimum
phase, although some aspects of Saberi et al. (1991 a) and Chen et al. (1991 b)
carryover in a straight forward manner, other aspects of Saberi et al. (1991 a)
present complexities which need to be examined carefully. As such, the
intention of this paper is to analyze systematically the LTR mechanism using full
order observer based controllers in its generality for nonstrictlY proper systems
which are not necessarily left invertible and of minimum phase. The basic
methodology and the tools used here are akin to those in Saberi et al. (1991 a)
and Chen et al. (1991 b). Also, this paper concerns itself only with the analysis
of LTR mechanism. A sequel to this paper focuses on the design issues.

In order not to lengthen the paper, we concentrate throughout this paper
only on full order observer based controllers. Structure of a controller can
impact the recovery process in more than one way. For example, as seen in
Chen et al. (1991 a), the size of a gain required for the same degree of
asymptotic recovery can be vastly different in different controllers; also, the set
of exactly recoverable target loop transfer functions can be enlarged by using a
reduced order observer based controller instead of a full order observer based
controller. Most of the results developed here for the case of full order observer
based controllers can easily be extended to other controller structures; howev-
er, some results need a careful reexamination.

Throughout the paper, A' denotes the transpose of A, AH denotes the
complex conjugate transpose of A, I denotes an identity matrix while I k denotes
the identity matrix of dimension k x k. )"(A) and Re[A(A)] respectively denote
the set of eigenvalues and real parts of eigenvalues of A. Similarly, Gmax[A]and
Gmin[A] respectively denote the maximum and minimum singular values of A.
Ker[V] and Im[V] denote respectively the kernel and the image of V. The open
left and closed right half s-planes are respectively denoted by C- and C +. Also,
Rp denotes the sub-ring of all proper rational functions of s while the set of
matrices of dimension 1x q whose elements belong to Rp is denoted by
M1xq(Rp).

2. Problem Formulation

In this section, we formulate the LTR problem in precise mathematical
terms. Let us consider a nonstrictly proper system 1:,

x = Ax + Bu, y = Cx + Du, (2.1)

where the state vector xE~n, output vector yE~P and input vector uE~m.
Without loss of generality, assume that [B', D']' and [C, D] are of maximal
rank. Let us also assume that 1: is stabilizable and detectable. In this paper, for
simplicity, we concentrate on a case when plant uncertainties are modelled at
the input point of a nominal plant model and hence the required loop transfer
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function is specified at the plant input point. However, our results can be
generalized easily for the case when the required loop transfer function is
specified at any arbitrary point. In fact, for the case when the required loop
transfer function is specified at the plant output point (Kwakernaak, 1969), our
results can easily be dualized. Let F be a full state feedback gain matrix such
that (a) the closed-loop system is asymptotically stable, i. e., eigenvalues of
A - BF lie in the left half s-plane, and (b) the open-loop transfer function when
the loop is broken at the input point of the given system meets some given
frequency dependent specifications. The state feedback control is

u = - Fx, (2.2)

and the loop transfer function evaluated when the loop is broken at the input
point of the given system, the so called target loop transfer function, is

Lt(s) = FC/JB, (2.3)

where C/J= (sf - A)-I. Arriving at an appropriate value for F is concerned with
the issue of loop shaping which is an engineering art and often includes the use of
linear quadratic regulator (LQR) design in which the cost matrices are used as
free design parameters to generate the target loop transfer function Lt(s) and
thus the desired sensitivity and complementary sensitivity functions. The next
step of design is to recover the target loop using only a measurement feedback
controller. This is the problem of loop transfer recovery (LTR) and is the focus
of this paper. To explain it clearly, consider the configuration of Fig. 2.1 where
C(s) and P(s),

P(s) = CC/JB+ D,

are respectively the transfer functions of a controller and of the given system.
Given P(s) and a target loop transfer functionLt(s), one seeks then to design a
C(s) such that E(s),

E(s) == Lt(s) - C(s)P(s),

is either exactly or approximately equal to zero in the frequency region of
interest while guaranteeing the stability of the resulting closed-loop system.
Hereafter, we willcallE(s) as recoveryerror. Achievingexact LTR(ELTR), i.e.,
rendering the recovery error exactly zero, is in general not possible even for left
invertible and minimumphase systems. One seeks then approximate LTR. The
notion of "approximate" LTR has to be defined a little carefully. Here we seek

0 u y
+

-u

Fig. 2.1. Plant-Controller closed-loopconfiguration.
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achieving LTR to any arbitrarily desired accuracy. In an attempt to make this
feasible, one normally parameterizes C(s) as a function of a scalar parameter a
and thus obtains a family of controllers C(s, a). We say asymptotic LTR (ALTR)
is achieved if C(s, a)P(s)~Lt(s) pointwise in s as a~oo, Le., E(s, a)~O
pointwise in s as a~ 00. Achievability of ALTR enables the designer to choose a
member of the family of controllers that corresponds to a particular value of a
which achieves a desired level of recovery. Traditionally, in observer based
controllers, such a parameterization is done by adding a fictitious process noise
of intensity proportional to a which is injected into the system through the input
into the plant. Then, the observer gain is calculated by solving the resulting
filter algebraic Riccati equations (AREs). In an asymptotic and time-scale
structure assignment (ATEA) procedure of Saberi and Sannuti (1990 a) and
Saberi et al. (1991 b), appropriate parameterization of a controller assigns a
chosen time-scale structure to the resulting closed-loop system. The relative
fastness of fast time-scales is then adjusted as desired by tuning the parameter
a. We now consider the following definitions in order to impart precise meanings
to ELTR and ALTR.

Definition 2.1. The set of admissible target loops T(1:') for the given
system 1:' is defined by

T(1:') = {Lt(s) E Mmxm(Rp) ILt(s) = FtPB and A(A-BF) E C-}.

Definition 2.2. Lt(s)ET(1:') is said to be exactly recoverable (ELTR) if
there exists a C(s)EMmXP(Rp) such that (i) the closed-loopsystem comprising
of C(s) and P(s) as in the configurationof Fig. 2.1 is asymptotically stable, and
(ii) C(s)P(s)=Lt(s).

Definition 2.3. Lt(s) E T(1:') is said to be asymptotically recoverable
(ALTR) if there exists a parameterized family of controllers C (s, a)
EMmXP(Rp), where a is a scalar parameter taking positive values, such that (i)
the closed-loop system comprisingof C(s, a) and P(s) as in the configurationof
Fig. 2.1 is asymptotically stable for all a> a*, where 0:$a*< 00,and (ii) C (s,
a)P(s)~Lt(s) pointwise in s as a~oo. Moreover, the limits, as a~oo, of the
finite eigenvalues of the closed-loop system should remain in C-t.

Definition 2.4. Lt(s) belonging to T(1:') is said to be recoverable if Lt(s) is
either exactly or asymptotically recoverable.

Definition 2.5.
1. The set of exactly recoverable target loops for the given system 1:' is

denoted by TER(1:').
2. The set of recoverable target loops for the given system 1:' is denoted by

TR(1:').
3. The set of target loops which are asymptotically recoverable but not exactly

recoverable for the given system 1:'is denoted by TAR(1:').
Obviously, TR(1:')= TE\1:') U TAR(1:').

It is well known that for left invertible and minimum phase systems, any

t Here we have strengthened the notion of the closed-loop stability in order to exclude those cases
having the limits, as u-> 00, of some finite eigenvalues of the closed-loop system being on the j w
axis. This avoids havingan almost unstable behavior of the closed-loopsystem for large u.
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arbitrary admissible target loop is asymptotically recoverable and hence TR(.l')
is equal to T(.l'). On the other hand, if the given system .l' is not left invertible
and/or of nonminimum phase, not all target loops are recoverable, i. e., TR(.l') is
not equal to T(.l'). In fact, TR(.l') might be an empty set. As mentioned in the
introduction, the purpose of this paper is to analyze the LTR mechanism
systematically for the general system.l' given by (2.1) when the controller C(s)
or C(s, a) uses a full order observer based structure. All the results given in
this two part paper pertain only to the case when full order observer based
controllers are used. In general, all the issues involved in attempting to recover
a target loop transfer function depend on the architecture of the controller. For
example, as is evident from Theorems 1 and 2 of Chen et al. (1991 a), the set of
exactly recoverable target loops when reduced order observer based control-
lersare used is different from that when full order observer based controllers
are used. As such the results of this paper require several modifications
whenever the architecture of the controller is other than the full order observer
based controller. Analysis of LTR mechanism using reduced order observer
based architecture or any other compensator architecture such as the one
developed in Chen et al. (1991 a), is a topic of future research.

The analysis of LTR mechanism carried out here focuses on four fundamental
issues. The first issue is concerned with what can and what cannot be achieved
for a given system and for an arbitrarily specified target loop transfer function.
On the other hand, the second issue is concerned with the development of
necessary and/or sufficient conditions a target loop has to satisfy so that it can
be either exactly or asymptotically be recovered for a given system while the
third issue is concerned with the developm.ent of necessary and/or sufficient
conditions on a given system such that it has at least one recoverable (either
exactly or asymptotically) target loop. The fourth issue deals with a generaliza-
tion of all the above three issues when recovery is required over a subspace of
the control space. It concerns with generalizing the traditional LTR concept to
sensitivity recovery over a subspace and deals with method(s) to test whether
projections of target and achievable sensitivity and complimentary sensitivity
functions onto a given subspace match each other or not. All this analysis shows
some fundamental limitations of the given system as a consequence of its
structural properties, namely finite and infinite zero structure and invertibility.
It also discovers a multitude of ways in which freedom exists to shape the
recovery error in a desired way. Thus, it helps to set meaningful design goals at
the onset of design.

The paper is organized as follows. As is evident from Saberi and Sannuti
(1990 a) and Saberi et al. (1991 a), the finite and infinite zero structure of a
given system plays a dominant role in LTR. Recognizing this, in Sec. 3, we recall
a special coordinate basis (s.c.b) of Sannuti and Saberi (1987) and Saberi and
Sannuti (1990 b) which displays clearly the required zero structure. Section 4
deals with analysis for an arbitrarily given target loop. This analysis includes not
only the recovery of a target loop transfer function but also target sensitivity and
complimentary sensitivity functions. We show that either ELTR or ALTR in
general is not possible. Whenever LTR is not possible, we give explicit
expressions for the asymptotic limits of loop transfer function and sensitivity
and complimentary sensitivity functions. Moreover, we give explicit bounds on
the attainable sensitivity and complimentary sensitivity functions in terms of the
singular values of what is called a recovery error matrix to be defined later on.
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These bounds can be used to analyze the inevitable trade-off between the good
recovery as indicated by the maximum singular value of the recovery error
matrix, and robustness and performance as reflected in the sensitivity and
complimentary sensitivity functions. We next move on to the characterization of
a subspace in which the target sensitivity and complimentary sensitivity
functions can be recovered. All the analysis given here treats the target loop
transfer function L/s) as an arbitrarily given matrix, i.e., no particular
properties of Lt(s) are exploited in the analysis. However, in Sec. 5, we take
into account the specific characteristics Lt(s) might have. Here the necessary
and sufficient conditions under which Lt(s) can either exactly or approximately
be recovered are given. Interestingly enough, these constraints turn out to be
constraints on the finite and infinite zero structure of it. Such an interpretation
of the constraints reveals that either ELTR or ALTR is possible under a variety
of conditions. Also, in this section we establish the necessary and/or sufficient
conditions on the given system so that it has at least one recoverable target
loop. In fact, following Chen et al. (1991 b), given a general non strictly proper
system which is not necessarily left invertible and of minimum phase, we
construct here an auxiliary system from it and show that the set of recoverable
target loops for the given system is nonempty, if and only if the auxiliary system
is stabilizable by a static output feedback controller. This then leads to a simple
and surprising necessary condition on the given system, namely, strong stabili-
zability t of the given nonminimum Phase system is a necessary condition for it to
have at least one recoverable target loop. However, the fact that the given system
is strongly stabilizable itself does not guarantee that there exists at least one
recoverable target loop. The analysis given in Secs. 4 and 5 stresses recover-
ability in the entire control space f!Jlm.On the other hand, Sec. 6 generalizes all
the results developed in Secs. 4 and 5 in order to cover recoverability of the
target sensitivity and complimentary sensitivity functions in a specified sub-
space and thus adds a considerable amount of flexibility to the process of design.
It also shows that for left invertible systems irrespective of the number of
nonminimum phase zeros and irrespective of the nature of the target loop
transfer function, there exists at least one m -1 dimensional subspace of f!Jlmin
which the target sensitivity and complimentary sensitivity functions can always
be recovered by an appropriate design of the controller. Also, in Secs. 4 and 5,
under all the analysis conditions given above, the resulting controller eigenva-
lues and possible pole zero cancellations are clearly discussed. Finally in Sec. 7,
we draw conclusions of our work.

3. Preliminaries

As is evident from Saberi et al. (1991 a; b), finite and infinitezero structures
of both the given system and the target loop transfer function playa dominant
role in the recovery analysis as wellas design. Keeping this in mind, we recall in
this section a special coordinate basis (s. c.b) of a linear time invariant system
(Sannuti and Saberi, 1987; Saberi and Sannuti, 1990 b). Such an s.c.b has a
distinct feature of explicitly displayingthe finite and infinite zero structure of a
given system. Consider the system ~ characterized by (A, B, C, D). It is
simple to verify that there exist non-singular transformations U and V such that
t A system is said to be strongly stabilizable if there exists a stable and proper compensator which

stabilizes the system (Vidyasagar, 1985).
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UDV = [ 10° ~ J.
(3.1)

where mois the rank of matrix D. Hence hereafter, without loss of generality, it
is assumed that the matrix D has the form given on the right hand side of (3.1).
One can now rewrite the system of (2.1) as,

X =Ax + [Bo Bd[uo un', (3.2a)

[ ~; ] = [ g; ]x + [10° ~][:; J.
(3.2b)

where the matrices Bo, Bb Co and C1 have appropriate dimensions. We have
the followingtheorem.

Theorem 3.1. (s.c.b). Consider the system 2: characterized by (A, B, C,
D). There exist nonsingular transformations r1, rz and r3, an integer
mfS m - mo, and integer indexes qi' i = 1, .. . ,mf, such that

x = r1x, Y = rzy, u = r3u,

x = [x~, Xb, x~, xj]', Xa = [(x~)', (x;)']',

-
[

" , ] '
xf = Xl, Xz, ..., Xmf '

y = [y~,Y;, y;]', Yf= [Y1'Y2' ...,ym)',

u= [UO, U;, U~]', Uf= [Ub Uz, ..., Um)'

and

X~ = A~ax;; + BoaYo + L~fYf + L~bYb' (3.3)

(3.4). + A + + B + + L+ + L+
Xa = aaXa + OaYo afYf abYb,

ib = AbbXb + BObYo + LbfYf' Yb = CbXb, (3.5)

Xc = Accxc + BOcYO+ LcbYb + LcfYf + BAE~ax;;+E:ax;] + Bcuco (3.6)

Yo= COax;; + C6aX; + CObXb+ COcXc+ COfXf + Uo (3.7)

and for each i= 1,''', mf,

Xi = AqXi + LioYo + LifY f. ~
+ Bq [ui+Eiaxa+EibXb+Eicxc+~ Eijxj],i J=l

(3.8)

y. = Cq Xi,
t i Yf = Cfxf' (3.9)

Here, the states x;;, Xd, Xb, Xcand xfare respectively of dimension n;;, n;, nb,
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ne and nf= 'L;':;lqi while Xi is of dimension qi for each i= 1,''', mr The control
vectors Uo, uf and Ueare respectively of dimension mo, mf and me= m - mo- mf
while the output vectors Yo' Yf and Yb are respectively of dimension po=mo,
Pf=mfandPb =P-Po -Pr The matrices Aq;, Bqi and Cqihave the following form:

A -
[

0 Iqi-l
]

B -
[

0

]qi - 0 0 ' qi - l' Cqi = [1, 0, "', 0]. (3.10)

(Obviously for the case when qi=l, we have Aq=O, Bq=l and Cq=1.)
Furthermore, we have )..(A;;a)EC-, ).(A;a)EC+, the pair (A~c>Be) is controll-
able and the pair (Abb, Cb) is observable. Also, assuming that Xi are arranged

such that Qi:5Qi+l' the matrix Lifhas the particular form,

Lif = [Lit. Liz, ..., Lii-t. 0, 0, ..., 0].

Also, the last row of each Lif is identically zero.

Proof. This follows from Theorem 2.1 of Sannuti and Saberi (1987) and Saberi
and Sannuti (1990 b).

We can rewrite the s. c.b given by Theorem 3.1 in a more compact form,

Boa 0
Bta 0

jj ~ ri1[Bo B1]r3 = I BOb 0
Boe 0
BOf Bf

0
0
0

Be
0

- -1

[

Co

] [

COa cta COb COe COf

]

C ~ rZ r1 = 0 0 0 0 Cf
C1 0 0 Cb 0 0

and

[

Imo

jj ~ r21Dr3 = ~

0
0
0 H

In what follows, we state some important properties of the s.c.b which are
pertinent to our present work.

Property 3.1. The given system 2: is right invertible, if and only if Xband
hence Yb are nonexistent (nb=O, Pb=O), left invertible, if and only if Xcand
hence Ueare nonexistent (ne=O, me=O), invertible, if and onlyif both Xband Xc
are nonexistent. Moreover, 2: is degenerate, if and only if it is neither left nor
right invertible.

A;;a 0 L;;bCb 0 L;;fCf
0 A;a L;b Cb 0 L;fCf

A ri1(A-BoCo)r1 = I 0 0 Abb 0 LbfCf I'
BeE;;a BeE-:a LebCb Ace LefCf
BfE;; BfE; BfEb BfEe Af
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Property 3.2. We note that (Abb, Cb) and (Aq, Cq) form observable pairs.
Unobservability could arise only in the variables x~ and' XC'In fact, the system ~
is observable (detectable), if and only if (Aobs, Cobs) is an observable (detect-
able) pair, where

[
Aaa 0

]Aobs = BeEea Ace' [

A- 0

]
aa ,

Aaa = 0 A':;a [
COa Coe

]Cobs = E a E e '

COa = [COa, cta], Ea = [E;;, E':;], Eea = [E-;;a,E:-a].

Similarly, (Ace> Be) and (Aq, Bq) form controllable pairs. Uncontrollability
could arise only in the variables Xaand Xb' In fact, ~is controllable (stabilizable),
if and only if (Aeon, Beon) is a controllable (stabilizable) pair, where

A =
[

Aaa LabCb

]con 0 Abb ' [

BOa Lat

]Beon = BOb Lbt '

[

BOa
]

- +,
BOa - BOa [

L;;b

]Lab = L':;b ' [
L;;t

]Lat = L':;t .

Property 3.3. Invariant zeros of ~ are the eigenvalues of Aaa. Moreover,
the stable and the unstable invariant zeros of ~ are the eigenvalues of A;;aand
A':;a,respectively.

There are interconnections between the s.c.b and various invariant and
almost invariant geometric subspaces. To show these interconnections, we
define

Vg(A, B, C, D)-the maximalsubspace of 'lllnwhich is (A - BF)-invariant
and contained in Ker( C - DF) such that the eigenvalues of (A - BF) Ivg are
contained in Cg~ C for some F.

Sg(A, B, C, D)-the minimal(A - KC)-invariant subspace of 'lllncontaining
in Im(B - KD) such that the eigenvalues of the map which is induced by
(A-KC) on the factor space 'llln/sg are contained in Cg~C for some K.

For the cases that Cg=C, Cg=C- and Cg=C+, we replace the indexg in vg
and sg by "*", "-" and "+", respectively. Various components of the state
vector of s. c.b have the followinggeometrical interpretations.

Property 3.4.
1. x;;EE>x':;EE>xespans V*(A, B, C, D).
2. x;;EE>xespans V-(A, B, C, D).
3. x,:;EE>xespans V+(A, B, C, D).
4. xeEE>Xtspans S*(A, B, C, D).
5. X;;EE>xeEE>Xtspans S+(A, B, C, D).
6. x':;EE>xeEE>Xtspans S-(A, B, C, D).

4. General Analysis

As mentioned in the introduction, throughout this paper, we will consider
only full order observer based controllers as depicted in Fig. 4.1. The dynamic
equations of the controller are
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r u y
+ .-

-u r ---
I Controller - - +-l
I D I
I I
I I
I I
I
I I
I + I
I I
I - I
I I
I C I
I I
l- - - J

Fig. 4.1. Plant with full order observer based controller.

i = Ax + Bu + K(y-Cx-Du)

and

u = u = - Fx,

where K is the observer gain and F is the state feedback gain whichprescribes
the target loop transfer function Lt(s)=F(/JB. The transfer function of the
controller is

C(s) = F[sIn-A+BF+KC-KDF]-lK,

while the loop transfer function realized by the controller is

Lo(s) = C(s)P(s).

The recovery error E(s) is

E(s) = Lt(s) - Lo(s). (4.1)

A brief outline of this section is as follows. The expression for the recovery
error E(s) as given by (4.1) is not well suited for loop transfer recovery
analysis. Realizing this, we first relate E(s) to a matrix, hereafter called as
recovery matrix, M(s)=F(sIn-A+KC)-l(B-KD), and then show that
E(jw)=O, if and only if M(jw) =0. This implies that a general loop transfer
recovery (LTR) analysis is synonymous with a general study of the recovery
matrix M(s) whichobviouslyis dependent explicitlyboth onK andF. A physical
interpretation of M(s) can be given. Considering the observer based controller
as a device with its inputs as the plant input and the plant output, -M(s) is the
transfer function from the plant input point to the controller output point. Thus,
whenever LTR is achieved, the controller output does not entail any feedback
from the plant input point. The needed study of M(s) to ascertain how and when
it can be rendered zero, can be undertaken in two ways, with or without the
prior knowledge of F that prescribes the target loop transfer function Lt(s).
Note that the study of M(s) without the prior knowledge of F imitates the
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traditional LQG design philosophy in which the two tasks of obtainingF and K
are separated. Keeping this in mind, our goal in this section is to study M(s)
without taking into account any specific characteristics of F. The next section,
devoted to LTR analysis while taking into account appropriate characteristics of
F, compliments the analysis of this section. Here, in order to study the recovery
matrix M(s) without having the knowledge ofF, we decompose M(s) as FM(s)
where M(s)= (sIn -A + KC)-l(B -KD). A detailed study of M(s) inthis section
leads to two fundamental lemmas, one dealing with finite and another dealing
with asymptotically infinite eigenstructure assignment to the observer dynamic
matrix A-KC by an appropriate design of K. These two lemmas reveal the
limitations of the given system as a consequence of its structural properties in
recovering an arbitrary target loop transfer function via a full order observer
based controller. Furthermore, they enable us to decompose M(s) into three
essential parts, MO(s), MCO(s)and Me(s). The first part MO(s) can be rendered
either exactly or asymptotically zero by an appropriate finite eigenstructure
assignment to A - KC, whilethe second part MCO(s)can be rendered asymptoti-
cally zero by an appropriate infinite eigenstructure assignment to A - KC. The
third part Me(s) in general cannot be rendered zero, either exactly or asymptoti-
cally, by any means, although our analysis of Me(s) reveals a multitude of ways
by whichit can be shaped. Allin all, the decompositionof M(s) into various parts
and the subsequent analysis of each part forms the core of entire analysis given
throughout this paper. In particular, it leads to several important results given in
this section. For example, Theorem 4.1 characterizes the asymptotic behavior
of loop transfer function as well as sensitivity and complimentary sensitivity
functions achievable by full order observer based controllers. On the other
hand, Theorem 4.2 shows the subspace seE£nm in whichMe(s) can be rendered
zero asymptotically, i.e., the projections of the target and achievable sensitivity
and complimentary sensitivity functions onto se can match each other asymp-
totically. Furthermore, our analysis in this section reveals the mechanism of
pole zero cancellation between the controller eigenvalues and the input or
output decoupling zeros of 2: for the case when F is unknown.

We will now proceed with the analysis. We have the following lemma, a
generalization of the result due to Goodman(1984).

Lemma 4.1. Consider any arbitrary F such that A - BF is asymptotically
stable. Then E(s), the error between the target loop transfer functionLis) and
that realized by the controller of Fig. 4.1, is given by

E(s) = M(s)[Im+M(s)]-l(lm+F<PB), (4.2)

where the recovery matrix,

M(s) = F(sIn-A+KC)-l(B-KD). (4.3)

Furthermore for all wE Q,

E(jw) = 0, if and only if M(jw) = 0, (4.4)

where Q is the set of all O:5lwl<oo for which Lt(jw) and La(jw)
= C(jw)P(jw) are well defined (Le., all required inverses exist).
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Proof See AppendixA.

In order to give a physical meaning to M (s), one can redraw Fig. 4.1 as
either Fig. 4.2 or Fig. 4.3 where the controller is viewed as a device having two
inputs, (1) the plant input u and (2) the plant output y. When the controller is
viewed having two inputs u andy, -M(s) is the transfer functionfrom the plant
input point to the controller output point whileM(s) is the transfer functionfrom
the plant input point to the estimated state x. In particular, for full order
observer based controller of Fig. 4.1, we have

x(s) = M(s)u(s) + N(s)y(s)

and

u(s) = -Fx(s) = -M(s)u(s) - N(s)y(s), (4.5)

where

M(s) = (sIn-A+KC)-l(B-KD), M(s) = FM(s) (4.6)

and

N(s) = (sIn-A+KC)-lK, N(s) = FN(s).

u

y

Fig. 4.2. Plant and observer configuration.

y

u
I

I I I I
I I
I Controller.JL_-------

Fig. 4.3. Plant and controller configuration.
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The above equations show that -M(s) is the transfer function from the plant
input point to the controller output point when controller is treated having two
inputs, u and y. Lemma 4.1 implies then that whenever LTRis a,chievedby the
controller, the controller output does not entail any feedback from the plant
input point.

Equations (4.3) and (4.4) present a clear perspective to study the basic
mechanism of LTR. In fact, they facilitate the study of E (s) in terms of the study
of M(s). Thus, Lemma 4.1 and the expression for M(s) as given by (4.3) form a
basis for our study. Since in this section, F is considered as arbitrary or
unknown, the only freedom we have to achieve the needed recovery is in the
selection of observer gain K. First of all, in view of the well known separation
principle, in order to guarantee the closed-loop stability, K must be such that the
observer dynamic matrix, A - K C is an asymptotically stable matrix. The
remaining freedom in choosingK can then be used for the purpose of achieving
LTR. Now in view of (4.3) and (4.4), exact loop transfer recovery (ELTR) is
possible for an arbitrary F, if and only if

M(jw) = (jwIn-A+KC)-1(B-KD) == O.

However, due to the nonsingularity of (j wIn - A +K C)-I, the fact that
£1(j w) == 0 implies that B - KD ==O. The class of systems in which B - KD can be
rendered exactly zero is restrictive, and hence one normallyattempts to achieve
asymptotic loop transfer recovery (ALTR), i.e., to render £1(j w) approximately
zero in some sense. In order to analyze whether ALTRis possible, as mentioned
in the introduction, we parameterize the gain K with a tuning parameter a and
thus consider a familyof controllers,

C(s, a) = F[sIn-A+BF+K(a)C-K(a)DF]-1K(a). (4.7)

Now M(s) and M(s) are also functions of a and are denoted respectively by
M(s, a) and M(s, a). To proceed with our analysis, for clarity of presentation
we will temporarily assume that A - KC is nondefective. This allows us to
expand M(s, a) and hence M(s, a) in a dyadic form,

- n-
M(s, a) = ~~

i=1 s-Ai '
(4.8)

where the residue R i is given by

- H
Ri = WiVdB-K(a)D]. (4.9)

Here Wi and Vi are respectively the right and left eigenvectors associated with
an eigenvalue Ai of A - K C and they are scaled so that WVH= VHW= In where

W= [Wi> W2, ..., Wn] and V = [Vi>V2, ..., Vn]. (4.10)

In general, all Ai, Vi and Wi are functions of a. However, for economy of
notation we willnot show the dependence on a explicitlyunless it is needed for
clarity.
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Remark 4.1: The assumption that K(a) is selected so that A-K(a)C is
nondefective is not essential. However, it simplifies our presentation. A
removal of this condition necessitates the use of generalized right and left
eigenvectors of A - K (a) C instead of the right and left eigenvectors Wiand Vi
and consequently the expansion of M(s, a) requires a doublesummationin place
of the single summation used in (4.8).

Weare lookingfor conditionsunder whichfor each i= 1, . . . ,n, the ith term of
M(s, a) in (4.8) can be made zero. There are only two possibilities to do so.
1. The first possibility is by assigning Ai to any finite value in C- while

simultaneously rendering the corresponding residue Ri zero either exactly- H -
or asymptotically, i.e., Ri= Wi(a)Vi (a)[B -K(a)D]=O or Ri~O as a~ 00.
Thus, this possibility deals with finite eigenstructure assignment of
A-K(a)C.

2. The second possibility is to make Ri/(s-Ai)~O pointwise in s as a~oo.
This can be done by placing the eigenvalue Ai(a) asymptotically at infinity
while makingsure that the corresponding residue Ri is uniformly bounded as
a~ 00. It is important to recognize that placing Aiasymptotically at infinity
alone is not beneficial unless the corresponding residue Ri is bounded. This
amounts to assigning W/a) and V/a) such that Ri= Wi(a)Vr(a)[B
- K (a)D] remains bounded while Ai~ 00 as a~ 00. Thus, this possibility
deals with infinite eigenstructure assignment of A-K(a)G.

The above two possibilities of making a particular term of M(s, a) zero leads
to two fundamental questions that need to be answered: (1) How many left
eigenvectors of A-K(a)C can be assigned to the null space of [B-K(a)D]'?
and (2) How many eigenvalues of A - K (a) C can be placed at asymptotically
infinite locations in C- so that the corresponding residues are finite? The
following two lemmas respectively answer these two questions. In these
lemmas and elsewhere, the geometric spaces S-(A, B, C, D), V*(A, B, C, D)
and V+ (A, B, C, D) are as defined in Sec. 3.

Lemma 4.2. Let Ai and Vi be an eigenvalue and the corresponding left
eigenvector of A - K (a)C for any gainK (a) such that it is asymptoticallystable.
Then, the maximum possible number of AiE C- which satisfy the condition
Vr [B - K (a)D] = 0 is n; + nb. A total of n; of these Aicoincidewith the invariant
zeros of 2: which are in C- (the so called stable invariant zeros) and the
remaining nb eigenvalues can be assigned arbitrarily to any locations in C-. All
the eigenvectors Vi that correspond to these n; + nb eigenvalues span the
subspace fnn/S-(A, B, C, D). Moreover, the n; eigenvectors Vi which
correspond to the eigenvalues which coincide with the system invariant zeros in
C- coincide with the corresponding left state zero directions and span the
subspace V*(A, B, C, D)/V+(A, B, C, D).

Proof. See Appendix B.

Remark 4.2: Instead of rendering the n;+nb residues Ri mentioned in
Lemma 4.2 exactly zero, if one prefers, they can be rendered asymptotically
zero as a~ 00. In that case n; eigenvalues coincide asymptotically with the n;;
stable invariant zeros while the corresponding eigenvectors in the limit as a~ 00
coincide with the corresponding left state zero directions and span the subs pace
V*(A, B, C, D)/V+(A, B, C, D).
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Lemma 4.3. Let Ai>Wi and Vibe an eigenvalue and the corresponding right
and left eigenvectors ofA - K(a)C foranygainK(a) suchthat it is asymptotical-
ly stable. The maximum number of eigenvalues of A - K (a) C that can be
assigned arbitrarily to asymptotically infinite locations in C- so that the
corresponding R; = Wivf [B - K (a)D] are bounded as IAiI~ 00 is nb + nf'
Furthermore, all the corresponding left eigenvectors Vi of such eigenvalues
asymptotically span the subspace qjln/V*(A, B, C, D).

Proof. It followsalong the same lines as Lemma 3.3 of Saberi et al. (1991 a).

As implied by Lemma 4.2, in addition to n;;eigenvalues which coincidewith
the stable invariant zeros of the given system, there are nb other eigenvalues
which can be assigned arbitrarily to any locations in C- such that Ri=O. This
implies that Ri corresponding to these nb eigenvalues are identically zero and
hence are bounded. Thus, these nb eigenvalues are included among the nb+nf
eigenvalues indicated in Lemma 4.3. That is, there is a set of nb eigenvalues
which can be placed arbitrarily at either asymptotically finite locations in C- as
indicated by Lemma 4.2 or at asymptotically infinite locations in C- as indicated
by Lemma 4.3. Hereafter, in order to conserve the controller bandwidth, we will
assume that these nb eigenvalues are always assigned to asymptotically finite
locations.

Remark 4.3: Consider the case when 1: is right invertible and has no infinite
zeros. Note that this case includes the special case when 1: is a non-strictly
proper single-input and single-output system (5150). For this case, nb+ nf= 0
and hence there is no eigenvalue, Aiof A-K(a)C that can be assigned to an
infinite location such that the corresponding Ri is bounded.

Lemmas 4.2 and 4.3 together tell us all the possibilities of rendering various
terms of M(s, a) zero either exactly or asymptotically. There are altogether
n;;+ nb+ nf eigenvalues whichcan be assigned either at finite or at asymptotical-
ly infinite locations so that the corresponding terms of M(s, a) in its dyadic
expansion (4.8) are either exactly or asymptotically zero. Thus, a question
arises as to under what conditions n;;+ nb+ nf equals the dimension n of the
given system. It is indeed easy to see that n;;+ nb+ nf= n, if and only if 1: is left
invertible and of minimumphase. Thus, for left invertible and minimumphase
systems, asymptotic LTRis always achievable irrespective of the properties of
the given target loop transfer function Lt(s). For strictly proper systems, this
result is well known (Doyle and Stein, 1979; Matson and Maybeck, 1991).

If 1: is not left invertible and/or of nonminimumphase, there are ne=n - n;;
-nb-nf=n;; +nc terms of M(s, a) which cannot in ~eneral be rendered zero.
To emphasize explicitlythe behavior of each term of M(s, a), we partition it into
four parts,

M(s, a) = M-(s, a) + Mb(s, a) + MOO(s,a) + Me(s, a), (4.11)

where

M-(s, a) = ~ R-i
i=1 s-ki '

-b n.-bM (s, a) = ~~
i=1s- Af

and
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MOO(s,a) = ~ k;
i=l s-),'[' ,

n;+n, R~M-e ( ) - ~ ;e.
s, a - i=l S-"i

In the above partition, appropriate superscripts -, b, 00 and e are added to Ri
and),i in order to associate them respectively with M-(s, a), Mb(s, a), MOO(s,
a) and Me(s, a). Next, define the followingsets where ne=n; +nc:

A-(a) 4 {),i(a) Ii = 1, ''', n~}, Ab(a) 4 {Af(a) Ii = 1, ''', nb},

A 00(a) 4 {),'['(a) Ii = 1, "', nl}, Ae(a) 4 {),Ha) Ii = 1, "', ne},

V-(a) 4 {Vi(a)li = 1, "', n~}, Vb(a) 4 {Vf(a)Ii = 1, "', nb},

VOO(a) 4 {V'['(a) Ii = 1, ''', nl}, pea) 4 {VHa) Ii = 1, "', ne},

W-(a) 4 {Wi(a)li = 1, "', n~}, Wb(a) 4 {Wf(a)li = 1, "', nb},

WOO(a)4 {W'['(a)Ii = 1, "', nl}, We(a) 4 {WHa)li = 1, "', ne}.

Hereafter, we will be using an over bar on a ~ertain variable to denote its limit
whenever it exists as a~ 00. For example, Me(s) and we denote respectively
the limits of Me(s, a) and We(a) as a~ 00.

We now note that various parts of M(s, a) have the following interpretation:
1. M-(s, a) contains n~ terms. The n~ eigenvalues of A-K(a)Crepresented

in it form a set A -( a). In accordance with the Lemma 4.2, there exists a gain
K(a) such that M-(s, a) can be rendered identically zero by assigning the
elements of A -( a) to coincide with the stable invariant zeros of 1: while the
corresponding set of left eigenvectors V-( a) coincides with the correspond-
ing set of left state zero directions. In fact, K(a) can also be designed such
that A-(a) and V-(a) approach asymptotically the set of system minimum
phase invariant zeros an<!.the corresponding set of left state zero directions
as a~oo. In this case, M-(s, a)~O as a~oo.

2. Mb(s, a) contains nb terms. The nb eigenvalues of A-K(a)C represented
in it form a set Ab(a). In accordance with the Lemmas 4.2 and 4.3, there
exists a gain K(a) such that Mb(s, a) can be rendered identically zero by
assigning the elements of Ab(a) arbitrarily to either asymptotically finite or
infinite locations in C- as a~ 00. As discussed earlier, in order to conserve
the controller bandwidth, we will assume hereafter that these eigenvalues
are assigned to asymptotically finite locations. Also, K(a) can be designed
so that Mb(s, a)~O as a~ 00.

3. MOO(s,a) contains nlterms. The nleigenvalues of A-K(a)C represented
in it form a set A 00 (a). In accordance with the Lemma 4.3, there exists a
gain K(a) such that MOO(s, a)~O as a~oo by assigning the elements of
A 00 (a) arbitrarily to asymptotically infinite locations in C-.

4. Me(s, a) contains the remaining ne=n; +nc terms. It is nonexistent, i.e.,
ne= 0, if and only if 1: is left invertible and of minimum phase. The ne
eigenvalues ofA -K(a)Crepresented in Me(s, a) form a set Ae(a). Inview
of Lemmas 4.2 and 4.3, Me(s, a) cannot in general be rendered zero either
asymptotically or otherwise by any assignment of Ae(a) and the associated
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sets of right and left eigenvectors, We(a) and Ve(a). However, as will be
discussed later on, £1e(s, a) can be shaped to have some desirable
properties. Since (A, C) is assumed to be a detectable pair, except for the
stable but unobservable eigenvalues of A, others among the remaining
eigenvaluesof A - K(a)C whichare in Ae can be assigned to arbitrary
locations in C-. These arbitrary locations can either be asymptotically finite
or infinite. Moreover, assigning elements of Ae(a) to asymptotically infinite
locations increases unnecessarily controller bandwidth. Because of this, we
assume Ae is confined to finite locations in C-.

Since both £1-(s, a) and £1b(s, a) can be rendered identically zero, for future
use we can combine them into one term,

£1O(s, a) = £1-(s, a) + £1b(s, a),

and rewrite £1(s, a) as

£1(s, a) = £1O(s, a) + £1"'(s, a) + £1e(s, a). (4.12)

We define likewise, AO(a)=A-(a)UAb(a), WO(a)=W-(a)UWb(a) and
VO(a)= V-(a)U Vb(a).

As the above discussion indicates, Lemmas 4.2 and 4.3 form the heart of the
underlying mechanism of LTR as they enable us to decompose £1(s, a) and
hence M(s, a) into several parts. They show dearly what is and what is not
feasible under what conditions. Although they do not directly provide methods
of obtaining the gain K(a), they do provide structural guide lines as to how
certain eigenvalues and eigenvectors are to be assigned while indicating a
multitude of ways in which freedom exists in assigningthe other eigenvalues and
eigenvectors of A - K (a) C. These guidelines, in turn, can appropriately be
channeled to come up with a design method to obtain an appropriate gain K(a).
As willbe discussed systematically in a paper sequel to this (Chen et al., 1992),
there exist essentially three methods of design to obtain appropriate K(a).
These are (1) Kalmanfilter formalismwhichminimizesthe H2-normof M(s), (2)
Methods of minimizingH",-norm of M(s) and (3) Asymptotic time-scale and
eigenstructure assignment (ATE1\.)method of Saberi and Sannuti (:990 a) and
Saberi et al. (1991 b) by which £1e(s) can be shaped as desired in a number of
ways. Leaving aside now the methods of design, let us at this stage simply
define a set of gains K*(~, a) as follows:

Definition 4.1. K*(~, a) is a set of gains K(a)E.:nnxp such that
(1) A-K(a)C is stable for all a>a*, where O:5a*<oo,
(2) the limits, as a~ 00,of the finite eigenvalues of A - K(a)C remainin C-,

(3a) if nf=O, £1O(s, a) is identically zero for all a,
(3b) if n/=I=O,as a~oo, £1O(s, a) is either identically zero or asymptotically

zero while the eigenvalues represented in £1O(s, a) tend to finite locations
in C-, and

(4) £1"'(s, a)~O as a~oo.

Remark 4.4: For the case when ~ does not have any infinite zeros, i.e.,
nf=O, any element K(a) of K*(~, a) is independent of a and hence is bounded.
On the other hand, if ~ has at least one infinite zero, i.e., nf=l=0, any element
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K(a) of K*(1:, a) is dependent on a. Moreover, IIK(a) II~ 00as a~ 00.

It is obvious that K*(1:, a) as defined above is a nonempty set. We note also
that whenever K(q) is chosen as an element of K*(1:, a), the asymptotic limit,
namely Me(s)=FMe(s), as a~oo of Me(s, a)=FMe(s, a) is the ultimate error
in the recovery matrix M(s, a). As such, hereafter Me(s) is called as the
recovery error matrix. Theorem 4.1 given below characterizes the asymptotic
behavior of the achieved loop transfer function as well as the sensitivity and
complementary sensitivity functions in terms of Me(s). Let So(s, a) and To(s,
a) be the achieved sensitivity and complementary sensitivity functions using the
output feedback controller C (s, a) as in the configuration of Fig. 4.1 when the
loop is broken at the input point of the system,

So(s, a) = [/m+ C(s, a)P(s)]-l

and

To(s, a) = 1m - So(s, a) = [/m+ C(s, a)P(s)]-l C(s, a)P(s).

Also, let St(s) and Tt(s) be the target sensitivity and complementary sensitivity
functions corresponding to the target loop transfer function. We have the
following theorem.

Theorem 4.1. Consider the closed-loop system 1:Ccomprising of the given
system 1: and the controller as given in Fig. 4.1. Let ;E be stabilizable and
detectable. Then for any F such that A - BF is asymptotically stable, and for any
gain K(a)EK*(1:, a), the closed-loop system 1:c is asymptotically stable.
Moreover, as a~oo, we have pointwise in s,

E(s, a) ~ FMe(s)[lm+FMe(s)]-l(lm+FfPB),

So(s, a) ~ St(s) [/m+FMe(s)],

(4.13)

(4.14)

To(s, a) ~ Tt(s) - St(s)FMe(s), (4.15)

and

Iai[So(jw, a)]-ai[St(jw)] I :5 arnax[FMe(jw)],
arnax[S/jw)]

(4.16)

lai[To(jw, a)]-ai[Tt(jw)J! :5 arnax[FMe(jw)].
arnax[St<jw)]

(4.17)

Proof. See Appendix C.

We have the followingcorollaries of Theorem 4.1.

Corollary 4.1. Let 1: be stabilizable, detectable, left invertible and of
minimumphase. Then TR(1:)=T(1:). Moreover, for any gain K(a)EK*(1:, a),
the corresponding full order observer based controller achieves loop transfer
recovery for any given L/s)ET(1:).
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Proof I is left invertible and of minimumphase implies that n~ =0, nc= O.
Since n~+nc=O, jJe(s, a) is nonexistent. Hence the results of Corollary 4.1
are obvious.

Remark 4.5: For strictly proper systems, the results of corollary are well
known as given in the seminal work of Doyle and Stein (1979). The results of
Corollary 4.1 for non-strictly proper systems are given in Chen et al. (1990).

As implied by Theorem 4.1, the recovery error matrix ife(s) plays a
dominant role in the recovery process and hense it should be shaped to yield as
best as possible the desired results. Shaping jJe(s) involves selecting the set of
eigenvalues Ae represented in jJe(s) and the associated set of right and left
eigenvectors We and Ve. Such a selection can be done in a number of ways
subject to the constraints imposed in selecting the eigenvectolJ) (Moore, 1976).
However, note that though, no shapingw.ay be necessary if jJe(s) turns out to
be small. For certain class of systems Me(s) is, in fact, small in some sense or
other. Following a similar result of Saberi et al. (1991 a), one can prove easily
that for a left invertible nonminimum phase system which is not necessarily
strictly proper but which has all its unstable invariant zeros far away from the
bandwidth of the target loop transfer function, the norm of the recovery error
matrix jJe(s) is indeed always small.

In multivariable systems, one interesting aspect qiTheorem 4.1 is that there
could exist a subspace ofthe control space in whichMe(s) can be rendered zero.
To pinpoint this, let

ei = [B-K(a)D]'Vi, Vi E ve, (4.18)

and let Ee be the subspace of g'lm,

P = Span{ ei lVi EVe}. (4.19)

Let the dimension of P be me. Now let

se = orthogonal complement of Ee in g'lm. (4.20)

Let ps be the orthogonal projection matrix onto se. Then the following theorem
pinpoints the directional behavior of jJ(s, a) and consequently the behavior of
So(s, a) and To(s, a) as a---'>00.

Theorem 4.2. Consider the closed-loop system IC comprising of the given
system I and the controller as given in Fig. 4.1. Let I be stabilizable and
detectable. Then for any F such that A - BF is asymptotically stable, and for any
gain K(a)EK*(I, a), the closed-loop system IC is asymptotically stable.
Moreover, considering the subspace seEg'lm as given in (4.20) and denoting the
orthogonal projection matrix onto se as ps, we have as a---'>oo,pointwise in s,

M(s, a)PS ---'>0,

So(s, a)PS ---'>S/s)PS,

To(s, a)PS ---'>Tt(s)ps.
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Proof. In view of the definitions of the matrix ps and the subspaces P and se,
Theorem 4.1 implies the results of Theore=m4.2.

In view of the directional behavior of Me(s) as given by Theorem 4.2, one
could try to shape it in a particular way so as to obtain the recovery of sensitivity
and complimentary §ensitivity functions in certain desired directions or one
could try to shape .&e(s) so that the subspace se has as large a dimension as
possible, i.e., the subspace P has as small a dimension as possible. In this
regard, we note that we have already selected A ° and A 00 and the corresponding
sets of eigenvectors yO and yooso that .&o(s, a) and .&OO(s,a) tend to zero as
a~ 00. We also note that although all the n; + nc vectors YjE ye can be selected
to be linearly independent, the corresponding ej= [B - K (a)D] ,Yj need not be
linearly independent. In fact for a given e*O, the equation

e = [B-K(a)D]'V

has n - m + 1 linearly independent solutions for V. Of course, not all such
n - m + 1 vectors could be admissible eigenvectors of A - K C for different
eigenvalues of A - K C in C-, and moreover some or all of these n - m + 1
vectors could also be linearly dependent on already selected eigenvectors in the
sets yO and yoo. Thus, the problem of shaping P is to find an admissible set of
eigenvalues Aj and vectors ej, i=I,"',n;+nCl which are not necessarily
linearly independent, but the associated eigenvectors Vj of A - KC satisfying
ej= [B - K(a)D]' Yj, i= 1,"', n; + nc, together with the vectors in the sets yO
and yoo form n linearly independent vectors. This problem of selecting an
admissible set (Aj, ej) is very much related to the traditional problem of
distributing the modes of a closed-loop system to various output components by
an appropriate selection of the closed-loop eigenstructure. This traditional
problem of "shaping the output response characteristics" of a closed-loop
system has been studied first by Moore (1976) and Shaked (1977) -and more
recently by Sogaard-Andersen (1987) although to this date there exists no
systematic design procedure.

The above discussion focuses how to shape the subspace se in which St(s)
and Tt(s) are recovered. A practical problem of interest could be to achieve
recovery of St(s) and Tt(s) in a prescribed subs pace se. We will discuss this
aspect of the problem in Sec. 6.

Remark 4.6: In general, although St(s) and Tt(s) are recoverable in a
subspace such as se, the loop transfer function Lt(s) is not necessarily
recoverable in that subspace se as can be seen from an example given in Sec. 6.
However, this may not be as important as it seems since in most of the design
schemes recovery of Lt(s) is only a means to recover St(s) and Tt(s).

We will next examine the asymptotic behavior of open-loop eigenvalues of
the full order observer based controller C(s, a) and the mechanism of pole zero
cancellation between the controller eigenvalues and the input or output decou-
pIing zeros (Rosenbrock, 1970) of the system. It is important to know the
eigenvalues of C (s, iJ) as they are included among the invariant zeros of the
closed-loop system 2;c (Sannuti and Saberi, 1987) and hence affect the perform-
ance of 2;c, e. g., command following. The controller transfer function is given by
(4.7) while the eigenvalues of it are
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MA-K(a)C-BF+K(a)DF].

To study the nature of these eigenvalues, let

det[sIn-A+K(a)C] = cpO(s)cp'" (S)cpe(S),

where cpo(s), cp"'(s) and cpe(s) are polynomials in s whose zeros are the
eigenvalues of A-K(a)C that belong to the sets AO(a), A"'(a) and Ae(a)
respectively. Also, let

FMe(s) = Re(s).J..e1- \ , (4.21)

where Re(s) is a polynomial matrix in s. Now consider the following:

det[sIn-A +K(a)C + BF- K(a)DF]

= det[sIn-A + K(a)C]det[ln+ (sIn-A +K(a)C)-l(B -K(a)D)F]

= cpo(s)cp'"(s)cpe(s)det[l m+ F(sI n- A + K(a)C)-l(B - K(a)D)]

= cpO(s)cp'"(s)cpe(s)det[lm +FM(s, a)]

~ cpO(s)cp"'(s)cpe(s)det[lm+FMe(s)] as a~oo

= cpo(s)cp"'(s)cpe(s)det [1m+ ::~:j ]

= A,o( ) A,"'( )
det[lmcpe(s)+Re(s)] (4 22)

'Y s 'Y S [cpe(s)]m-l . .
We note that the observer can be designed such that cpo(s), cp"'(s) and cpe(s)are
coprime. Thus, the open-loop eigenvalues of the controller of (4.7) are the zeros
of cpo(s), cp"'(s) and det[lmcpe(s)+Re(s)]/[cpe(s)]m-l. Thus, AO and A'" are
contained among the eigenvalues of the controller. Although A ° and A'" are in
C-, there is no guarantee that the zeros of det[lm cpe(s)+ Re(s) ]/[cpe(s) ]m-l are
in C-. Hence the controller mayor may not be open-loop stable. In general, the
loop transfer function C(s, a)P(s) has2n eigenvalues, n of them coming from
the given system and the other n coming from the controller. However, there
are several cancellations among the input or output decoupling zeros
(Rosenbrock, 1970) of C(s, a)P(s) and the controller eigenvalues. The
following Lemma 4.4 which is a slight generalization of a similar one in Goodman
(1984), explores such a cancellation.

Lemma 4.4. Let Abe an eigenvalue of A - K (a) C and the corresponding left
eigenvector V be such that VH[B-K(a)D]=O. Then, A is an eigenvalue of
A-K(a)C-BF+K(a)DF with corresponding left eigenvector as V. Moreov-
er, A cancels an input decoupling zero of C(s, a)P(s).

Proof. See Appendix D.

Thus in view of Lemma 4.2, the above lemma implies that whatever may be
the matrix F, if observer is appropriately designed, there are n;;+ nb cancella-
tions among the eigenvalues of the controller and the input decoupling zeros of
C (s, a)P(s). As will be seen in the next section, there may be additional
cancellations if F satisfies certain properties.
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5. Analysis for Recoverable Target Loops

In Sec. 4, we concentrated on general loop transfer recovery analysis
without taking into account any knowledge of F. It essentially involved studying
the recovery error matrix M(s) or M(s, a) to ascertain when it can or cannot be
rendered zero. This section compliments the analysis of Sec. 4 by taking into
account the knowledge of F. Obviously then, the analysis of this section is a
study of the recovery matrix M(s)=FM(s) or M(s, a)=FM(s, a). One of the
important questions that needs to be answered here is as follows. What class of
target loops can be recovered exactly (or asymptotically) for the given system?
Or equivalently, what are the necessary and sufficient conditions a target loop
transfer function Lt(s) has to satisfy so that it can exactly (or asymptotically) be
recoverable for the given system? As it forms a coupling between analysis and
design, characterization of Lt(s) to determine whether it can be recovered
either exactly or asymptotically for the given system, plays an extremely
important role. Although the physical tasks of designing F and K are separable,
one can benefit enormously by knowing ahead what kind of target loops are
recoverable. The necessary and sufficient conditions developed here on Lt(s)
for its recoverability, turn out to be constraints on the finite and infinite zero
structure of Lt(s) as related to the corresponding structure of~. An interpreta-
tion of these conditions reveals that either exact or asymptotic recovery of L t(s)
for general nonminimum phase systems is possible under a variety of conditions.

Another important question that arises before one undertakes formulating
any target loop transfer function Lt(s) for a given system ~ is as follows. What
are the necessary and sufficient conditions on ~ so that it has at least one
recoverable target loop? An answer to this question obviously helps a designer
to remodel the given plant if necessary by appropriately modifying the number
or type of inputs or outputs of the plant. To answer the question posed, we
develop here an auxiliary system ~ER of ~, and show that the set of exactly
recoverable target loops TER(~) is nonempty, if and only if ~ERis stabilizable by
a static output feedback control. Similarly, another auxiliary system ~R of ~ is
developed to show that the set of recoverable target loops TR(~) is nonempty, if
and only if ~R is stabilizable by a static output feedback control. A close look at
these conditions reveals a surprising necessary condition, namely, strong
stabilizability of ~ is necessary for it to have at least one, either exactly or
asymptotically, recoverable target loop.

Finally, another aspect of analysis given here shows the mechanism of pole
zero cancellation between the controller eigenvalues and the input or output
decoupling zeros of ~ for the case when the target loop Lt(s) is known.

We proceed now to give the following results regarding the exact recover-
ability of a target loop transfer function Lt(s)=Fif;JB for the given system~.

Theorem 5.1. Consider a stabilizable and detectable system ~ characterized
by a matrix quadruple (A, B, C, D), which is not necessarily left invertible and
not necessarily of minimum phase. Then, an admissible target loop transfer
function Lt(s) of ~, Le., Lt(s)ET(.r), is exactly recoverable by a full order
observer based controller, if and only if S-(A, B, C, D)~Ker(F). Thus, the
set of recoverable target loops is characterized as TER(~) = {Lt(s) E T(~):
S-(A, B, C, D)~Ker(F)}.
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Proof. See Appendix E.

Remark 5.1: In view of Theorem 5.1, one needs to verify the subspace
inclusion condition S-(A, B, C, D)c;;;Ker(F) in order to show that a given
admissible target looptransfer functionLt(s) of 2:is exactly recoverable by a full
order observer based controller. It is particularly easy to do such a verificationif
the given system 2: is rewritten in terms of its s.c.b as given by Theorem 3.1.
Indeed, the inclusion S-(A, B, C, D) c;;; Ker(F) is true, if and onlyif F is of the
form,

- -1F = r3Fri , F =
[

P-~1 0 F hI 0
F~2 0 F h2 0 ~ l (5.1)

where r3 and r1 are the nonsingular transformation matrices as defined in
Theorem 3.1.

Several interpretations emerge from the recoverability conditions on the
target loops given in Theorem 5.1. In fact the constraints given in Theorem 5.1
are nothing more than constraints on the finite and infinite zero structure and
invertibility properties of Lis). Some interesting interpretations in this regard
can easily be exemplifiedas follows.
1. If 2: is not left invertible, any exactly recoverable Lt(s) is not left invertible.

On the other hand, left invertibility of 2: does not necessarily imply that .an
exactly recoverable Lt(s) is left invertible. That is, whenever 2: is left
invertible, an exactly recoverable Lt(s) couldbe either left invertible or not
left invertible.

2. Any left invertible and exactly recoverable Lt(s) must contain the unstable
invertible zero structure of 2:. An exactly recoverable but not left invertible
Lt(s) does not necessarily contain the unstable invariant zero structure of 2:
(see Example 3.2 of Saberi et aI., 1991 a).

We have the followinginteresting corollaries of Theorem 5.1.

Corollary 5.1. Consider a stabilizable and detectable system 2: character-
ized by a matrix quadruple (A, B, C, D). Then TER(2:)=T(2:), i.e., any
admissible target loop is exactly recoverable by a full order observer based
controller, if and only if 2: is left invertible and of minimumphase with no infinite
zeros.

Proof. It followsfrom the properties of s.c.b that S-(A, B, C, D)= 0, if and
only if 2: is left invertible, of minimumphase, and has no infinitezeros. It is then
obvious that the result of Corollary 5.1 followsfrom Theorem 5.1.

Corollary 5.2. Consider a single-input single-output non-strictly proper
system 2:. Then a target loop transfer function Lt(s)=FtJ>B is exactly recover-
able by a full order observer based controller, if and only if it contains the
nonminimumphase zero structure of 2:.

Proof. A single-input single-output non-strictly proper system is always
invertible. Hence, the result follows from interpretation 2 given above.

Our aim next is to develop the conditions on 2: so that TER(2:)is nonempty.
We have the followingtheorem.
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Theorem 5.2. Consider a stabilizable and detectable system .2:characterized
by a matrix quadruple (A, B, C, D), which is not necessarily of minimum phase
and which is not necessarily left invertible. Let CER be anyfullrank matrixof
dimension (n-ne-nj)xn such that Ker(CER)=S-(A, B, C, D). Then the
given system .2:has at least one exactly recoverable target loop, i. e., TER(.2:)is
nonempty, if and only if an auxiliary system .2:ERcharacterized by the matrix
triple (A, B, CER)is stabilizable by a static output feedback controller.

Proof. See Appendix F.

Theorems 5.1 and 5.2 deal with ELTR. Since the required conditions for
ELTR in general are severe, most often in practice one is interested only in
ALTR. Fr.9m its definition, it is easy to see that ALTR occurs, i. e.,
Me(s)=FMe(s)=O, if and only if FWe=O. We have the following results
regarding ALTR.

Theorem 5.3. Consider a stabilizable and detectable system .2:characterized
by a matrix quadruple (A, B, C, D), which is not necessarily left invertible and
not necessarily of minimum phase. Then, an admissible target loop transfer
function Lt(s) of.2:, i.e., Lt(s)ET(.2:), is asymptotically recoverable by the full
order observer based controller, if and only if V+(A, B, C, D)s;;;Ker(F). That
is, TR(.2:)={Lt(s)ET(.2:): V+(A, B, C, D)s;;;Ker(F)}.

Proof. Following the arguments in Appendix E, it is simple to see that our
problem is equivalent to the well-known almost disturbance decoupling problem
with internal stability (ADDPS) for the auxiliary system .2:auin (E.1). It is shown
in Scherer (1992) that the above ADDPS is solvable, if and only if V+ (A, B, C,
D) s;;; Ker(F). Here, we adhere to the notion of closed-loop stability by excluding
those cases where, in the limits as a~ 00, the finite eigenvalues of the
closed-loop system are on the jw axis.

Remark 5.2: In view of Theorem 5.3, one needs to verify the subspace
inclusion condition V+ (A, B, C, D) s;;; Ker(F) in order to show that a given
admissible target loop transfer function Lt(s) of.2: is recoverable by a full order
observer based controller. Again, as in the case of Theorem 5.1 and Remark
5.1, it is particularly easy to do such a verification if the given system .2: is
rewritten in terms of its s. c.b as given by Theorem 3.1. Indeed, the inclusion
V+(A, B, C, D)s;;;Ker(F) is true, if and only if F is of the form,

- -1
F=r3Fr1, F =

[
F-;1 0 FbI 0 Ff1

]F-;2 0 F b2 0 Fj2 ,
(5.2)

where again r3 and r1 are the nonsingular transformation matrices as defined in
Theorem 3.1.

As in the case of ELTR, we can interpret the constraints imposed by
Theorem 5.3 in terms of the invertibility and the finite zero structures of Lt(s)
and .2:as follows.
1. If.2: is not left invertible, any asymptotically recoverable Lt(s) is not left

invertible. On the other hand, left invertibility of .2:does not necessarily
imply that an asymptotically recoverable Lt(s) is left invertible. That is,
whenever .2:is left invertible, an asymptotically recoverable Lt(s) could be
either left invertible or not left invertible.
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2. Any left invertible and asymptotically recoverable Lt(s) must contain the
unstable invariant zero structure of ;E.An asymptotically recoverable but
not left invertible Lt(s) does not necessarily~contain the unstable invariant
zero structure of ;E.

Again, we have the followinginteresting corollary.

Corollary 5.3. Consider a stabilizable and detectable system ;Echaracte-
rized by a matrix quadruple (A, B, C, D). Then, TR(;E)=T(;E), i.e., any
admissible target loop is recoverable by a fullorder observer based controller, if
and only if ;Eis left invertible and of minimumphase.

Proof. Itfollowsfromthepropertiesofs.c.bthat V+(A, B, C, D)=0, if and
only if ;Eis left invertible and of minimumphase. The result of Corollary 5.3
follows then obviously from Theorem 5.3.

Corollary 5.3 strengthens the result of Corollary 4.1 in the sense that it
provides both the necessary and sufficient conditions for TR(;E)=T(;E).

Analogous to Theorem 5.2, we have the followingTheorem 5.4 regarding
the nonemptiness of TR(;E).

Theorem 5.4. Consider a stabilizableand detectable system ;Echaracterized
by a matrix quadruple (A, B, C, D), whichis not necessarily of minimumphase
and which is not necessarily left invertible. Let CRbe any full rank matrix of
dimension (n-ne)xn such that Ker(CR)=V+(A, B, C, D). Then, the given
system;E has at least one recoverable target loop, Le., TR(;E)is nonempty, if
and only if an auxiliarysystem ;ERcharacterized by the matrix triple (A, B, CR)
is stabilizable by a static output feedback controller.

Proof. The proof follows along the same lines as that of Theorem 5.2.

Theorems 5.2 and 5.4 respectively give the necessary and sufficient
conditions under which the set of exactly recoverable target loops, TER(;E),and
the set of recoverable target loops, TR(;E), are nonempty. However, the
conditions given there are not conducive to any intuitive feelings. The following
corollary gives a necessary condition which is surprising as well as intuitively
appealing.

Corollary 5.4. The strong stabilizabilityof the given system ;Eis a neces-
sary conditionfor it to have at least one, exactly or asymptotically, recoverable
target loop.

Proof. See Appendix G.

We now proceed to discuss the possible cancellations between the eigenva-
lues of the controller and the input or output decoupling zeros of C (s, a) or
C (s, a)P(s). Lemma 4.4 already discussed one such result which is a slight
generalization of a similar one in Goodman(1984). The followinglemmais also a
slight generalization of a similar one in Goodman (1984).

Lemma 5.1. Let A be an eigenvalue of A - K (a) C and the corresponding
right eigenvector W be such that FW=O. Then A is an eigenvalue of
A -K(a)C- BF+ K(a)DF with corresponding right eigenvector as W. Moreov-
er, Acancels an output decoupling zero of C(s, a).

Proof. It follows from some simple algebra.
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We have the followingtheorems.

Theorem 5.5. If ELTR is achieved, i.e., if E(jw, a)=O for all 0:51 wi <00,
then every eigenvalue of A - K (a) C - B F + K(a)DF cancels either an output
decoupling zero of C(s, a) or an input decoupling zero of C(s, a)P(s).

Proof. ELTR is achieved, if and only if either FWi=O or Vf[B-K(a)DJ=O
or both. Hence, the result followsfrom Lemmas 4.4 and 5.1.

Theorem 5.6. If ALTR is achieved, i.e., if E(jw, a)~O as a~oo for all
0:5 Iw I< 00, then every asymptotically finite eigenvalue of A - K (a) C
-BF+K(a)DF cancels either an output decoupling zero of C(s, a) or an input
decoupling zero of C(s, a)P(s).

Proof If ALTR is achieved, then every asymptotically finite eigenvalue of
A - K (a) C with corresponding right and left eigenvectors Wi and Vi must be
such that either FWi=O or Vf[B-K(a)DJ=O or both. Hence, this result also
follows from Lemmas 4.4 and 5.1.

In view of Lemmas 4.4 and 5.1, and Theorem 5.5, whenever ELTR occurs,
there are n exact cancellations among the eigenvalues of the controller and the
output decouplingzeros of O(s) or the input decoupling zeros of C(s)P(s).

6. Recovery Analysis in a Given Subs pace

In the last two sections, we discussed recovery of a target loop transfer
function Lt( s) =F c1JB when the recovery is required over the entire control
space r!Jlmand when the knowledge of state feedback gain F is either unknown or
known. This traditional LTR problem as treated in the last two sections,
concentrates on recovering a open-loop transfer function Lt(s) which has been
formed to take into account the given design specifications. Actually, design
specifications are normally formulated in terms of certain required closed-loop
sensitivity and complimentary sensitivity functions, St(s) = [l m + F4>BJ-\ and
Tt(s)=1m -St(s). In LQG/LTRdesign philosophy, these given specificationsare
reflected in formulating an open-loop transfer function called target loop transfer
function. As discussed earlier, this aspect of determining a target loop transfer
function is a first step in LQG/LTR design and falls in the category of loop
shaping. Generating a target loop transfer function L/s) at the present time is
an engineering art and often involves the use of linear quadratic design in which
the cost matrices are used as free design parameters to obtain the state
feedback gainF and thus to obtain Lt(s) =Fc1JB and St(s) = [lm+Fc1JBJ-1. In the
second step of design, the so called loop transfer recovery (LTR) design, Lt(s)
is recovered using a measurement feedback controller. Obviously, in the
traditional LTR design where recovery is required over the entire control space
r!Jlm,the recovery of Lt(s) implies the recovery of the corresponding sensitivity
function St(s) and hence the recovery of the complimentary sensitivity function
Tt(s). Conversely, as will be discussed in Observation 6.1, the recovery of S /s)
or equivalently that of Tt(s), implies the recovery of Lt(s). In other words,
when recovery is required over the entire control space r!Jlm,recovering a
certain target loop transfer function is equivalent to recovering a certain target
sensitivity function. Thus, without loss of any freedom, historically, recovery of
a target loop transfer function has been sought. As seen in earlier sections, for
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general nonminimum phase systems, recovery of a target loop transfer function
or a target sensitivity function is not possible in the entire control space g'lm.
This may force a designer to seek recovery, say of a target sensitivity function,
in a chosen subspace 5 of the control space g'lm. Recovering a target function
(either it be a target loop transfer function or a target sensitivity function) in a
subspace 5 of g'lm means matching the projections of the target and the achieved
functions onto 5. As will be shown by an example in this section, when recovery
is required over a specified proper subspace 5 of g'lm, recovering a sensitivity
function StCs) in 5 is not equivalent to recovering the corresponding target loop
transfer function in 5. Thus when one is interested in meeting the design
specifications only over a specified subspace 5 of g'lm, the required recovery
problem has to be formulated carefully. This section formulates clearly such a
problem as a sensitivity recovery problem in a subspace 5 of g'lm. This is done in
view of the fact that design specifications are normally given in terms of the
required sensitivity or complimentary sensitivity functions. However, for the
case when 5 equals g'lm, as proved in Observation 6.1, sensitivity recovery
formulation of this section coincides with the conventional LTR formulation.
Thus, this section can indeed be viewed as a generalization of the notion of
traditional LTR to cover recovery over either the entire or any specified
subspace 5 of the control space g'lm.

A brief outline of this section is as follows. At first, precise definitions
dealing with the sensitivity recovery problem are given. Then, Lemma 6.1 is
developed generalizing Lemma 4.1. It formulates the condition for the recover-
ability of a sensitivity function in 5 in terms of a matrix MS(s). Next, an example
is given to demonstrate that sensitivity recovery in a proper subspace 5 of g'lm
does not necessarily imply the corresponding target loop transfer function
recovery in 5. On the other hand, Observation 6.1 shows that if 5 = g'lm,
sensitivity recovery is equivalent to the corresponding target loop transfer
function recovery. Next, Theorem 6.1 specifies the required conditions on 2: so
that asymptotic sensitivity recovery in 5 is possible for any arbitrarily specified
target sensitivity function St(s). Similarly, Theorems 6.2 and 6.4 specify the
necessary and sufficient conditions respectively for exact and asymptotic
recoverability of a sensitivity function when the knowledge of F is known. In an
analogous manner, Theorems 6.3 and 6.5 respectively establish the necessary
and sufficient conditions so that sets of exactly or asymptotically recoverable
sensitivity functions of the given system 2: for a specified subspace 5, are
nonempty. An important aspect of recovery analysis in a subspace is to
determine the maximum possible dimension of a recoverable subspace 5. Our
results here in this regard show that for a left invertible nonminimum phase
system, whatever may be the given target sensitivity and complimentary
sensitivity functions and whatever may be the number of unstable invariant
zeros, there exists at least one m -1 dimensional subspace 5 of g'lm in which
complete recovery of sensitivity and complimentary sensitivity functions is
possible.

We have the following formal definitions.

Definition 6.1. The set of admissible target sensitivity functions 8(2:) for a
given system 2: is defined as follows:

8(2:) ~ {St(s) E Mmxm(Rp)ISt(s) = [lm+Lt(s)]-l, Lt(s) E T(2:)}.
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Definition 6.2. Given St(s) ES(.l') and a subspace 5Eg{m, we say S/s) is
exactly recoverable in the subspace 5 if there exists a C(s)EMmXP(Rp) such
that (i) the dosed-loop system comprising of C(s) and P(s) as in the configura-
tion of Fig. 2.1 is asymptotically stable, and (ii) So(s)PS =St(s)PS, where So(s)
is the achieved sensitivity function and ps is the orthogonal projection matrix
onto 5.

Definition 6.3. Given S/s) ES(.l') and a subspace 5Eg{m, we say S/s) is
asymptotically recoverable in the subspace 5 if there exists a parameterized
family of controllers C (s, a)EMmXP(Rp), where a is a scalar parameter taking
positive values, such that (i) the dosed-loop system comprising of C (s, a) and
P(s) as in the configuration of Fig. 2.1 is asymptotically stable for all a>a*,
where O~a*<oo, and (ii) So(s, a)ps=St(s)PS, as a-7oo. Moreover, the limits,
as a-7 00, of the finite eigenvalues of the dosed-loop system should remain in
c-.

Definition 6.4. Given St(s)ES(.l') and a subspace 5Eg{m, we say that St(s)
is recoverable in the subspace 5 if St(s) is either exactly or asymptotically
recoverable in 5.

Definition 6.5.
1. The set of exactly recoverable St(s)ES(.l') in the given subspace 5 is

denoted by SER(.l',5).
2. The set of recoverable St(s)ES(.l') in the given subspace 5 is denoted by

SR(.l', 5).
3. The set of admissible St(s)ES(.l') which are asymptoticallyrecoverable but

not exactly recoverable in the given subspace 5 is denoted by SAR(.l',5).
Obviously, SR(.l', 5) = SER(.l',5) USAR(.l',5).

The followinglemma is analogous to Lemma 4.1.

Lemma 6.1. Consider any arbitrary F such that A - BF is asymptotically
stable. Then ES(s), the projection onto a given subspace 5Eg{m of the error
between the achieved sensitivity function So(s) and the target sensitivity
function S/s), is given by

P(s) = [lm+FcPB]-lMS(s), (6.1)

where

MS(s) = M(s)PS (6.2)

and where M(s) is as defined in (4.3). Furthermore for all wEQ,

P(jw) = 0, if and only if MS(jw) = 0,

where Q is the set of all O~ Iwi< 00 for which St(jw) and So(jw) are well
defined (i.e., all required inverses exist).

Proof. See Appendix H.

We consider next an example to demonstrate that, when 5 is a proper
subspace of g{m, recoverability of target sensitivity function in 5 does not
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necessarily imply the recoverability of the corresponding target loop transfer
function in 5.

Example 6.1. Consider a non-strictly proper system characterized by

A = [ ~ ~ l B=C=D=[~ ~ l
which is invertible with two unstable invariant zeros at S=1 and S = 2. Let the
target loop Lt(s) and target sensitivity function 5t(s) be specified by

F = [ ~ ~ l
Now consider a subspace 5 which is a span of the vector,

VS =
[

0.7071
]0.7071 .

Let

K(a) =
[

10 -9

]4 -3 .

Then the plots in Fig. 6.1 clearly show that amaAEs(jw) ]=0, and hence 5t(s) is
exactly recoverable in the subspace 5. On the other hand, amax[E(jw)PS] is
nonzero which implies that Lt(s) is not recoverable in 5.

The followingobservation pertains to the case when 5=gllm.

Observation 6.1. If 5=gllm, then 5t(s)=[lm+L,(s)]-1 is exactly recover-
able in 5, if and only if the corresponding target loop transfer function Lt(s) is
exactly recoverable in 5. Similarly, if 5=gllm, then 5t(s) is asymptotically
recoverable in 5, if and only if Lt(s) is asymptotically recoverable in 5.

1

0.8

------- "', , ,\
\

\
\
\

\ amaAE(jw)PS]
\ amax[ES(j w) ],,, , ,

01 --'-'- .-. _.-. _._'::::.~--_.__.__._.

<!) 0.6"0
;::!
-+-'

.~ 0.4'"
~

0.2

-0.2
10-2 10-1

.LJ..UL

10° 101 102 103

Frequency [rad/see]

Fig. 6.1. Maximumsingular values of E(jw)PS and ES(jw).
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Proof. 5=£7lm implies that PS=/m and MS(s)=M(s). Hence, the result
follows from Lemmas 6.1 and 4.1.

In view of the results of Observation 6.1, for the case when 5 =£7lm, the
recoverability of any sensitivity function in £7lmdoes indeed imply the recover-
ability of the corresponding target loop transfer function in £7lm.This implies
then that when 5 =£7lm,Definitions 6.1 to 6.5 are equivalent to the Definitions
.2.1 to 2.5 given earlier. On the other hand, Definitions 6.1 to 6.5 generalize the
concept of recovery to a subspace and thus enable us to reanalyze all the results
of the previous two sections to cover recovery in a given subs pace 5.

To proceed with the recovery analysis, let VS be a matrix whose columns
form an orthogonal basis of 5E£7lm. Assume that the columns of VS are scaled so
that the norm of each column is unity. Let ps =VS(VS) I be the unique orthogonal
projection matrix onto 5. Then, define an auxiliary system ~s characterized by
the quadruple (A, BVs, C, DVS). Now treating ~s as the given system, one can
rediscuss here mutatis mutandis all the results of Sees. 4 and 5. In particular, we
have the following theorems.

Theorem 6.1. Consider a given system ~ characterized by a matrix quadru-
ple (A, B, C, D), which is not necessarily of minimum phase and which is not
necessarily left invertible. Let VS be a matrix whose columns form an orthogonal
basis of a given subspace 5E£7lm. Then any admissible sensitivity function 5/s)
of ~, Le., 5 t(s) E S (~) is asymptotically recoverable in 5 if the auxiliary system
~S is left invertible and of minimum phase.

Proof. It is obvious.

Theorem 6.1 is concerned with the recovery analysis when F is arbitrary or
unknown. As in Sec. 5, one can formulate the recovery conditionsfor a knownF
as follows.

Theorem 6.2. Consider a given system ~ characterized by a matrix quadru-
ple (A, B, C, D), which is not necessarily of minimumphase and which is not
necessarily left invertible. Let VSbe a matrix whose columnsform an orthogonal
basis of a given subspace 5E£7lm.Then an admissible sensitivity function 5t(s)
of ~, i.e., 5t(s)ES(~), is exactly recoverable in 5 by means of a full order
observer based controller, if and onlyif 5-(A, BVs, C, DVS)!;;Ker(F). That is,
SER(~, 5)= {5t(S)ES(~): 5-(A, BVs, C, DVS)!;;Ker(F)}.

Proof. The proof is a consequence of Theorem 5.1.

In what follows, we give a necessary and sufficient condition under which
SER(~, 5) is non-empty for the given subspace 5E£7lm.We have the following
theorem.

Theorem 6.3. Consider a given system ~ characterized by a matrix quadru-
ple (A, B, C, D), which is not necessarily of minimumphase and which is not
necessarily left invertible. Let VSbe a matrix whose columnsform an orthogonal
basis of a given subspace 5E£7lm. Let [;se be any full rank matrix such that
Ker([;se)=5-(A, BVs, C, DVS). Then the given system ~ has at least one
target sensitivity function that is exactly recoverable in 5, Le., SER(~, 5) is
nonempty, if and only if an auxiliary system ~se characterized by the matrix
triple (A, B, [;se)is stabilizable by a static output feedback controller.
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Proof. The proof is a consequence of Theorem 5.2.

The followingtheorem deals with asymptotic recoverability of St(s).

Theorem 6.4. Consider a given system 1: characterized by a matrix quadru-
ple (A, B, C, D), which is not necessarily of minimumphase and which is not
necessarily left invertible. Let VSbe a matrix whose columnsform an orthogonal
basis of a given subspace 5E[?Jlm.Then an admissible sensitivity function St(s)
of 1:, i.e., St(s)ES(1:), is asymptotically recoverable in 5 by means of a full
order observer based controller, if and onlyif V+(A, BVs, C, DVS)~Ker(F).
That is, SR(1:, 5)= {St(s)ES(1:): V+(A, BVS, C, DVS)~Ker(F)}.

Proof. The proof is a consequence of Theorem 5.3.

Again, as in Theorem 6.3, we have the following theorem regarding
non-emptiness of the set SR(1:, 5).

Theorem 6.5. Consider a given system 1: characterized by a matrix quadru-
ple (A, B, C, D), which is not necessarily of minimum phase and which is not
necessarily left invertible. Let VSbe a matrix whose columns form an orthogonal
basis of a given subspace 5E[?Jlm. Let csa be any full rank matrix such that
Ker(CSa)= V+(A, BVs, C, DVS). Then, the given system 1: has at least one
target sensitivity function that is recoverable in 5, i.e., SR(1:, 5) is nonempty, if
and only if an auxiliary system 1:sa characterized by the matrix triple (A, B,
csa) is stabilizable by a static output feedback controller.

Proof. The proof is a consequence of Theorem 5.4.

An important aspect that arises when one is interested in recovery analysis
in a subspace is to determine the maximumpossible dimensionof a recoverable
subspace 5. In this regard, our goal in what follows, as in Saberi et al. (1991 a),
is to prove that whatever may be the given target loop transfer function and
whatever may be the number of unstable invariant zeros, there exists at least
one m -1 dimensional subspace 5 of [?Jlmwhich is always recoverable provided
that the given system is left invertible. To prove this, for simplicity of
presentation, we willmake a technical assumption that all the unstable invariant
zeros of 1:have geometric multiplicityequal to unity. Wenext state two lemmas
which lead to the intended result.

Lemma 6.2. Let the given system 1: be left invertible and let z, x and Wbe
respectively an invariant zero, the associated right state and input zero
directions of 1:. Then we have the followingproperties.
1. The auxiliary system 1:Sis left invertible.
2. Every invariant zero and the associated right state zero direction of 1:Sare

also the invariant zero and the associated right state zero direction of 1:.
3. z and x are respectively an invariant zero and the associated right state zero

direction of 1:s, if and only if wE5.

Proof. See Appendix I.

Now let Zi, Xi and Wi, i= 1,''', n;i, be respectively an unstable invariant zero
and the associated right state and input zero directions of the given system 1:.
Since 1: is assumed to be stabilizable and detectable, we have Wi:;i:Ofor all
i=l,"',n;i. Because if Wi=O, then by definition,
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(zJn-A)Xj = BWj = 0, CXj + DWj = CXj = O.

This implies that Zj is an output decoupling zero of 2:. But this contradicts the
detectability of 2: as ZjE C +. Next let us define for each i = 1, . . . ,n:,

Nj = Ker[wi].

Since Wj=,60,each Nj is an m -1 dimensional subspace. We have the following
lemma.

Lemma 6.3. There exists at least one nonzero vector eE[llm such that
n+

e $. Ij Nj.1=1

Proof. See Saberi et al. (1991 a).

Thus, in view of Lemma 6.3, there exists at least one e such that

e'Wj =,60 for all i = 1, ..., n~. (6.3)

We have the followingtheorem.

Theorem 6.6. Let the given system 2: be left invertible with unstable
invariant zeros having geometric multiplicityequal to unity. Then, there exists
at least one m -1 dimensionalsubspace 5 of [llmsuch that any admissibletarget
sensitivity functions St(s) of 2:, i.e., St(s)ES(2:), is recoverable in S.

Proof. Select e as in (6.3). Define 5 as

5 = The orthogonal complement of the subspace spanned by e in [llm.

Then, it is trivial to see 5 has a dimension of m-1 and that Wj$.S for all
i=l,...,n~. Because if wjES, say wj=VSvjES, then e'wj=O which is a
contradiction. In view of Lemma 6.2, this implies that 2:Sis left invertible and of
minimumphase. This in turn implies the results of Theorem 6.6.

7. Conclusions

Here we deal with issues concerning the analysis of loop transfer recovery
problem using full order observer based controllers for general non-strictly
proper systems. As in our earlier work, all the analysis given here is indepen-
dent of the methodology by which observers are designed. There are several
fundamental results given here. Based on the structural properties of the given
system, we decompose the recovery error between the target loop transfer
function and that which can be achieved by the observer based controllers, into
three distinct parts for any arbitrarily specified target loop transfer function.
The first part of recovery error can be rendered exactly zero by an appropriate
finite eigenstructure assignment of the observer dynamic matrix, while the
second part can be rendered arbitrarily close to zero by an appropriate
asymptotically infinite eigenstructure assignment. The third part in general
cannot be rendered zero, either exactly or asymptotically, by any means
although there exists a multitude of ways to shape it. Such a decomposition of
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loop transfer function recovery mechanism helps us to discover the subspace of
the control space in which target sensitivity and complimentary sensitivity
functions can either exactly or asymptotically be recovered. Moreover, it helps
to formulate explicit singular value bounds on the recovery error. All this
analysis is given for an arbitrarily specified target loop transfer function. Thus, it
shows the limitations of the given system in recovering the target loop transfer
functions as a consequence of its structural properties, namely finite and infinite
zero structure and invertibility. On the other hand, the next issue of our analysis
concentrates on characterizing the required necessary and sufficient conditions
on the target loop transfer functions so that they are either exactly or
asymptotically recoverable by means of observer based controllers for the given
system. The conditions developed here on a target loop transfer function for its
recoverability, turn out to be constraints on its finite and infinite zero structure
as related to the corresponding structure of the given system. We next move on
to find the necessary and sufficient conditions on the given system such that it
has at least one recoverable target loop. In this regard, we show that strong
stabilizability of the given system is necessary for it to have at least one
recoverable target loop. Since recovery in all control loops in general is not
feasible, we concentrate next in developing the necessary and/or sufficient
conditions under which either exact or asymptotic recovery of target sensitivity
and complimentary sensitivity functions is possible in any specified subspace of
the control space. This generalizes the traditional notion of LTR to cover
recoverability in a subspace. We prove next that for left invertible non-strictly
proper systems irrespective of the number of unstable invariant zeros and
irrespective of the nature of the target loop transfer function, there exists at
least one m -1 dimensional subspace of m dimensional control space, in which
the target sensitivity and complimentary sensitivity functions can always be
recovered by an appropriate design of the controller. Inherent in all the issues
discussed here is the characterization of the resulting controller eigenvalues and
possible pole zero cancellations. Such an investigation is important in view of the
fact, controller eigenvalues become the invariant zeros of the closed-loop
system and thus affect the performance with respect to command following and
other design objectives.

To summarize, the analysis presented here adds a considerable amount of
flexibility to the process of design and helps a designer to set meaningful goals at
the onset of design. In other words, although the actual physical tasks of first
designing a target loop and then designing an observer based controller are
separable, one can link these two tasks philosophically by knowing ahead what is
feasible and how. In a sequel to this paper, we will present design methodologies
which are capable of utilizing the complete freedom a design can have as is
discovered here.
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Appendix A: Proof of Lemma 4.1

We have the following obvious reductions:

Lo(s) = C (s)P(s)

= F[cJ>-l+BF+KC-KDF]-lK[CcJ>B+D]

= F[In+ (cJ>-1+KC)-l(B - KD)F]-l( cJ>-1+KC)-lK[CcJ>B +D]

= [In +F( cJ>-1+KC)-l(B - KD) ]-IF( cJ>-1+KC)-lK[CcJ>B + D]

= [Im+M(s) ]-l[FcJ>B-F( cJ>-1+KC)-l(B -KD)]

= [Im+M(s)]-l[FcJ>B-M(s)].

Hence,

E(s) = Lt(s) - Lo(s)

= M(s)[Im+M(s)]-l(Im+FcJ>B).

Appendix B: Proof of Lemma 4.2

Let Ai and Vi be an eigenvalue and the corresponding left eigenvector of
A - KC for any gainK. To show that there are at most n;;+ nb left eigenvectors
of A - KC for any gain K such that the corresponding AiE C- and that
Vf(B -KD) =0, consider the dual system 2:dcharacterized by (Ad, Bd' Cd, Dd)
where

Ad = A', Bd = C', Cd = B', Dd = D'.

Let Vd be the subspace of all right eigenvectors Vd of (Ad-BdKd) for some Kd
such that (Cd-DdKd)Vd=O. Observe that Vd is a stable (Ad, Bd)-invariant
subspace. Furthermore, Vd is in the kernel of (Cd- DdKd)' Hence, Vd is a
subset of V-(Ad, Bd, Cd, Dd). The largest possible dimension of V-(Ad, Bd,
Cd, D d) is n;;+ nb' Hence, there are at most n;;+ nb left eigenvectors of A - K C
for any gain K such that the corresponding AiE C- and that vf (B - KD) = 0.

We now proceed to determine the necessary gain K to assign such eigenval-
ues. Without loss of generality we can assume that the given system is
represented by the s. c.b as given in Theorem 3. 1. Then, consider a gain K of
the form,



Loop transfer recovery, Part l-Analysis 95

K=

Boa
Bta
BOb
Boe
Bot

L~t
0

Lbt
0
0

L~b
0

Kbb
0
0

where Kbb is selected such that A(Abb-KbbCb) are in C-. Let Va- and Vb
respectively be any left eigenvectors of A~a and Abb- KbbCb. It can easily be
verified that A(A~a) and A(Abb-KbbCb) are among the eigenvalues of A-KC
and that [V~-, 0, 0, 0, ot and [0, 0, V:, 0, ot are the associated left
eigenvectors of A-KC. Furthermore, it is easy to verify that

[V~-, 0, 0, 0, O](B-KD) = [V~-, 0, 0, 0, 0]

000
000
000
0 0 Be
0 Bt 0

= 0

and similarly

[0, 0, V:, 0, O](B-KD) = O.

Finally, in view of the properties of s.c.b, it is straightforward to see that such
vectors [V~-, 0, 0, 0, ot and [0, 0, V:, 0, ot respectively span the
subspacesx~andxb' Moreover, x~spans V*(A, B, C, D)/V+(A, B, C, D) and
hence the result.

Appendix C: Proof of Theorem 4.1

Expression (4.13) followsdirectly from the definitionof K*(1:, a). To prove
(4.14) and (4.15), let us consider the following.From (4.1), we have

E(s, a) = FcJJB - C(s, a)P(s)

= M(s, a)[I+M(s, a)]-l(l+FcJJB),

and hence

I + C (s, a)P(s) = I + FcJJB- E(s, a)

= I + FcJJB- M(s, a)[I+M(s, a)]-l(l+FcJJB)

= [I+M(s, a)]-l(l+FcJJB).

Thus, we obtain

So(s, a) = St(s)[I + M(s, a)] (C.1)

and

To(s, a) = Tt(s) - St(s)M(s, a). (C.2)
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It is simple to see that (4.14) and (4.15) followfrom the definitionof K*(~, a).
We now proceed to show (4.16) and (4.17). Applyingsingular value inequali-

ties to (C.l), we have for each i = 1," " m,

aj[So(jw, a)] :$ aj[St(jw)] + amax[St(jw)M(jw, a)),

and thus,

aj[So(jw, a)] - aj[S/jw)] :$ amax[S/jw)]amax[M(jw, a)). (C.3)

Now rewriting (C.1) as,

St(s) = So(s, a) - St(s)M(s, a),

we have for each i = 1, .. . , m

aj[S/jw)] - aj[So(jw, a)]:$ amax[StUw)]amax[M(jw, a)]. (C.4)

Then, in view of (C.3) and (C.4), we get

Iaj[So(jw, a)] - aj[St(jw)] I :$ amax[M(jw, a)].
amax[St(jw)]

Next using singular value inequalities and proceeding as above, we get

I(Tj[To(jw, a)] - aj[Tt(jw)] I :$ amaAM(jw, a)).
amax[StUw)]

Then, (4.16) and (4.17) follow trivially. This completes the proof of Theorem
4.1.

Appendix D: Proof of Lemma 4.4

For economy of notations, we drop the dependency on a throughout this
proof. Noting from Lemma 4.1 that

E(s) 4 Lt(s) - C(s)P(s) = M(s)[Im+M(s)]-l[Im+Lt(s)],

we obtain,

C(s)P(s) = L/s) - M(s) [Im+M(s)]-l[Im+Lt(s)]

= [Im+M(s)]-l[Lt(s)-M(s)).

The above expression facilitates the interpretation of C(s)P(s) in terms of a
block diagram given below (Fig. D.1).

In view of the above block diagram, it is straightforward to write a
state-space realization of C(s)P(s) as
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u -u
+

Fig. D.l. Interpretation of C(s)P(s).

j

-:..

[

A 0

]
-

[

B

]
~ = (B-K~)F A-KC-BF+KDF X + B-KD u,

-u = [F, -F]x.

Let Abe an eigenvalue of A - KC and the corresponding left eigenvector V be
such that VH(B-KD)=O. It is simple then to verify that

H

[

AI-A 0

][0, V] -(B-KD)F AI-A+KC+(B-KD)F = 0

and

H

[

B

]
= O.

[0, V ] B-KD

This shows that A is an input decoupling zero of C(s)P(s) and thus the result
follows.

Appendix E: Proof of Theorem 5.1

Consider an auxiliary system characterized by

!

i = A'x + C'u + F'w,
l:au: .

z=B'x+D'u.
(E.1)

Then, with a state feedback law

u = -K'x,

the closed-loop transfer function from w to z, denoted here by T~::'(s), is simply

T~::'(s)= M'(s).

Hence, the problem of finding an observer gain matrix such that A - KC is
asymptotically stable and that M(s)=O is equivalent to the well-known disturb-
ance decoupling problem with internal stability when the plant considered is l:au
as given in (E.1). Then, it follows from Stoorvogel (1990) that the above
disturbance decoupling problem with internal stability is solvable, if and only if
S-(A, B, C, D)5;;Ker(F).
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Appendix F: Proof of Theorem 5.2

Without loss of generality we assume that the given system ~ is in the form
of s.c. b as in Theorem 3.1. Now in view of Theorem 5.1, an exactly recoverable
Lt(s)=FCPB must satisfy S-(A, B, C, D)~Ker(F). This implies that Lt(s) is
recoverable, if and only if F is of the form,

F =
[

F~I 0 FbI 0
F~2 0 F b2 0 ~ l (F.1)

Thus, the fact that the given system has at least one exactly recoverable target
loop is equivalent to the existence of some appropriate matrices F~I, FbI, F~2
and F b2such that A - BF is asymptoticallystable.Next, inviewofthe fact that
X; EihcEBxfspansS-(A, B, C, D), we note that CERas defined in Theorem 5.2
is of the form,

CER= r[ 1(/

0
0

0

Inb

0
0 ~ l

where r is any nonsingular matrix of dimension (n - ne- nf) x (n - ne- nf). It is
now trivial to verify that the existence ofa matrixF of the form in (F.1) such that
A - BF is asymptoticallystable, is equivalentto the existenceof a matrixG of
dimensionm x(n-ne- nf) such that A -BGCER is asymptotically stable. This is
simply due to the fact that GCERhas the same structure as F in (F.1). This
completes the proof of Theorem 5.2.

Appendix G: Proof of Corollary 5.4

It is well known that any stabilizable and detectable system ~ can be
stabilized by using an observer based controller. We next prove that ~ is
strongly stabilizable whenever it has at least one asymptotically recoverable
target loop transfer function Lt(s) =FCPB. The fact that there exists at least one
asymptotically recoverable L/s) implies that there exists a gain F such that
A-BF is asymptotically stable and V+(A, B, C, D)~Ker(F). Moreover,
asymptotic recoverability of Lt(s) implies that there exists an observer gain,
K(a), such that A-K(a)C is asymptotically stable and

M(s, a) = F[cp-I+K(a)C]-l[B-K(a)D] ~ 0

pointwise in s as a ~ 00. (G.1)

Next, we examine the eigenvalues of the full order observer based controller. In
view of Eqs. (4.22) and (G.1), we have

det[sIn -A + K(a)C + BF - K(a)DF] ~ ljJo(s)ljJoo(s)ljJe(s),

as a~oo, where the roots of ljJo(s)ljJoo(s)ljJe(s)=Oare the eigenvalues of
A-K(a)C. Thus, the full order observer based controller is open-loop stable
for sufficiently large a. We conclude then that the given system ~ is strongly
stabilizable as it can be stabilized by an open-loop stable controller.
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Appendix H: Proof of Lemma 6.1

Let us recall that

E(s) = Lt(s) - Lo(s)

= F<PB - C(s)P(s) = M(s)[lm+M(s)]-I(Im+F<PB).

Hence,

1m + C(s)P(s) = 1m + F<PB - E(s)

= 1m + F<PB - M(s)[lm+M(s)]-I(Im+F<PB)

= [Im+M(s)]-I(Im+F<PB).

Since St(s)=[Im+F<PB]-1 and So(s)=[Im+ C(s)P(s)]-l, we have

So(s) = St(s)[lm+M(s)].

Thus,

ES(s) = So(s)PS - St(s)PS = St(s)M(s)PS = St(s)MS(s).

Appendix I: Proof of Lemma 6.2

Assume that 1;s is not left invertible. Then, it is well known that for any
complex number Zl, there exist O*XI Eg'ln and VIEg'lm such that

[
zlln-A -BVS

][
Xl

]
= 0

C DVS VI .

This implies that

[
zlln-A -B

][
Xl

]
= 0

C D YSVI .

Since 1; is left invertible, this then in turn implies that Zl is an invariant zero of 1;.
This is a contradiction and hence 1;s is left invertible. To prove the second
property of the lemma, let zS, XSand wS be respectively an invariant zero, the
associated right state and input zero directions of 1;s. Then, by definition, we
have

[ zSIC-A
- B ys

] [

XS

]
= O.

DYs wS

Thus, we note that

[
zSln-A -B

][
XS

]
= 0

C D VSws .
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This proves the second property of the lemma. Let us next prove the sufficiency
part of Property 3. Let w= VSv, then

[ ZInC A

implies that

[ zInC A

-: ][ ~ ]= 0

-BVS

][
x

]
= O.DVS v

As IS is left invertible, the above implies that z and x are an invariant zero and
the associated right state zero direction of IS. To prove necessity, assume that
z and x are an invariant zero and the associated right state zero direction of IS.
Then, there exists a wSsuch that

(zIn-A)x = BVswS, Cx + DVsws = O.

In view of this and by the definition of z, x and w, we have

BVswS = Bw, DVswS = Dw.

Since [B', D']' is of full rank, it implies then that wE S.

. '. '. '. '. '. '. ,.'. .'...'.'.'.' .,

Ben M. Chen see p.35 in this issue.

Ali Saberi see p.35 in this issue.
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