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EXACT COMPUTATION OF THE
INFIMUM IN H co-OPTIMIZATION

VIA STATE FEEDBACK*

B. M. CHEN, 1 A. SABERIlANDU.-L. Ly2

Abstract. This paper presents a simple and non-iterative procedure for the
computation of the exact value of the infimum in the standard H oo-optimal control
with state feedback. The problem formulation is general and does not place any
restrictions on the direct feedthrough term between the control input and the
controlled output variables. The algorithm involves solutions of two algebraic
Lyapunov equations of a subsystem obtained from the transformation of the original
system into a special coordinate basis, The method is applicable to systems where
the transfer function from the control input to the controlled output is right-
invertible and has no invariant zeros on the jw axis, Two applications are also
considered. The first one provides a necessary and sufficient condition for the
solvability of H oo-almost disturbance decoupling problem via state feedback with
internal stability. The second application deals with the computation of the supre-
mum of the complex stability radii which can be achieved by linear state feedback.
Several examples are provided to illustrate the numerical algorithm, one of which is
the determination of the achievable reduction in H oo-norm of aircraft responses to
turbulence in a disturbance rejection design using optimal state feedback, and
another example is the achievable H oo-performance in control of a flexible mechan-
ical system.

Key Words-H oo-optimization, robust control.

1. Introduction

Over the past decade one has witnessed a proliferation of literature on
H ",,-optimal control since it was first introduced by Zames (1981). The main
focus of the work has been and continues to be on the formulation and solution to
the robust multivariable control problem. Since the original formulation in Zames
(1981), a great deal of work has been done toward solving the H ",,-optimal
control problem. Primarily all early research results involved a mixture of
time-domain and frequency-domain techniques (Doyle, 1984; Francis, 1987;
Glover, 1984). Recently, considerable attention has been focused on purely
time-domain methods based on algebraic Riccati equations (ARE) (Doyle et aI.,
1989; Doyle and Glover, 1988; Khargonekar et aI., 1988; Petersen, 1987; 1988;
Stoorvogel, 1991; Stoorvogel and Trentelman, 1990; Tadmor, 1988; Zhou and
Khargonekar, 1988). Along this line of research, connections are also made
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between H co-optimal control and differential games (Papavassilopoulos and
Safonov, 1989; Rhee and Speyer, 1989). Typically in the ARE approach to
H co-optimal control problem, the achieved design is suboptimal in the sense that
the H co-norm of the closed-loop system transfer function from the disturbance
to the controlled output is less than a prescribed value. For the regular case t,
the existence of the suboptimal state feedback law is formulated in terms of the
existence of a stabilizing positive semi-definite solution for an "indefinite" ARE
(see Doyle et aI., 1989). In the singular case (i.e., not a regular case), the
existence of suboptimal state feedback laws is equivalent to the existence of an
£>0 for which a certain ARE has a positive definite solution (Zhou and
Khargonekar, 1988). A recent paper by Stoorvogel and Trentelman (1990) has
shown that conditions for the existence of suboptimal state feedback laws can be
expressed in terms of the existence of a solution to a quadratic matrix inequality.
The solution of this inequality must also satisfy two rank conditions. Their
conditions are very intuitive and reminiscent of the dissipation inequality in
singular linear quadratic optimal control. Similar results are also obtained by
Stoorvogel (1991) for suboptimal output-feedback laws.

The state-space approach using algebraic Riccati solutions provides basically
an iterative scheme of approximating the infimum (denoted here by y*) of thes
norm of the closed-loop transfer function under state feedback laws. For
example for the regular case, the computation proceeds as follows: one starts
with a value of y and then determines whether y> y* by solving an indefinites

algebraic Riccati equation and looking for the stabilizing positive semi-
definiteness of the solution. In the case where such a solution exists then we
have y> y*, and the procedure is then repeated with a smaller value of y. Ins

principle, one can approximate the infimum y* to within any degree of accuracys

in this manner. However, this search procedure is exhaustive and can be very
costly. More significantly due to the high-gain occurrence as y gets close to y*,s
numerical solutions for algebraic Riccati equation can become highly sensitive
and ill-conditioned. In fact, this difficultybecomes more severe in the singular
case. So the iterative procedure based on algebraic Riccati solutions is not
reliable and should not be used to determine the infimum y*. This papers

presents a simple, accurate and non-iterative method of computing the exact
value of y:. Our method is applicable to the class of systems for which their
transfer function from the control input to the controlled output is right
invertible and has no invariant zeros on the j w axis.

In the non-iterative computation of y* our problem formulation does nots

place any restrictions on the direct feedthrough matrix between the control
input and the controlled output variables, removing the limitations imposed by
Petersen (1988) that require the existence of a nonsingular feedthrough term.
Our problem formulation also differs from Scherer (1990) which appeared after
the appearance of the preliminary conference version of this paper (Chen et aI.,
1990). In Scherer (1990), for the system that has no invariant zeros on the jw
axis and also has no infinite zeros, an iterative algorithm for computing y: is
presented. Moreover, under an additional condition that the H co norm of a
certain transfer matrix is zero, his method becomes non-iterative. The major
difference between our work and that of Scherer is that we have made no

t Regular case refers to a system where the feedthrough matrix from the input to the controlled
output is injective.
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restriction on the infinite zero structure of the system, however, in Scherer
(1990) no infinite zero in the system is allowed. Such a relaxation of the
constraints on infinite zero structure of a system is highly significant in H '"
theory as has been pointed out in detail by Stoorvogel (1991).

Our method is very simple and avoids the well known complex computational
problem associated with time/frequency domain approach. One of the key
components of our method is to transform the problem using a special coordinate
basis (s.c. b) transformation introduced in Sannuti and Saberi (1987) and Saberi
and Sannuti (1990), which exhibits clearly the finite- and infinite-zero structures
of the system among other system geometric properties. The other component
utilizes the results of Stoorvogel and Trentelman (1990). The algorithm for
computing y; has been implemented in a Matlab-software environment. Numer-
ous examples are given in Sec. 6 to illustrate the computation of y* for aircrafts

control applications and control of a flexible mechanical system.
The outline of this paper is as follows. In Sec. 2 we introduce the problem

statement. In Sec. 3 we recall the special coordinate basis (s.c.b) and its
properties for non-strictly proper systems. This s. c.b transformation is in-
strumental in the derivation of the main results given in Sec. 4 for the exact
computation of y*. Section 5 gives some applications of the results developed ins

Sec. 4 such as the problem of almost disturbance decoupling with internal
stability, and the computation of the supremum of the complex stability radii
which can be achieved by linear state feedback. Section 6 contains numerous
illustrative examples and the conclusion is given in Sec. 7.

Throughout this paper we shall adopt the following conventions and nota-
tions:

A I: transpose of A.
I: an identity matrix of appropriate dimension.

97l:the set of real numbers.
C: whole complex plane.

C-: open left-half complex plane.
C+: open right-half complex plane.
Co: imaginary axis j w.

Gmax(A):maximum singular value of A.
A(A): the set of eigenvalues of A.

Amax(A): maximum eigenvalue of A where A(A) c97l.
Ker(V): kernal of V.

Im(V): image of V.
We also refer to the linear dynamical system

i = Ax + Bu, y = Cx + Du (1.1)

as the system (A, B, C, D). We also refer to Tyu(s)=C(sI -A)-lB+D as the
transfer functionmatrix of the system (A, B, C, D) between the input u and the
output y. For any real rational matrix T(s),

II T(s) II '" ~ sup{ Gmax[T(jw)]: W E 97l}, (1.2)

then II T(s) II '" coincides with the L",-norm of T(s) if T(s) is proper and has no
poles in Co, and with the H ",-norm of T(s) if it is proper and stable.
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2. Problem Formulation

Let us consider the following linear system:

j

i = Ax + Bu + Ew,

1:: y = x,

z = Cx + Du,

(2.1)

where xEg'ln is the state, uEg'lm is the input, wEg'lP is the disturbance, yEg'ln
is the measured output for feedback control (here we consider state feedback)
and zEg'lq is the controlled output. Let Tzw(s) denote the transfer function
matrix from the disturbance w to the controlled output z.

The standard H oo-optimalcontrol problem with state feedback is concerned
with the construction of an internally stabilizing state feedback control-law
u=Fx that minimizes the Hoo-normof Tzw(s), where

Tzw(s) = (C+DF)(sI-A-BF)-lE.

We define

r; 4 inf{ II Tzw(s) II 00 where u = Fx and A + BF is a stability matrix}

to be the infimum of the H oo-optimization under state feedback laws. Most
current state-space H oo-optimization algorithms cannot determine r; exactly
and can only provide lower and upper bounds to r;. In contrast, the problem
addressed in the paper is the exact computation of the value of the infimum r;
using a non-iterative method. In the next section we shall recall the definition of
the special coordinate basis (s. c. b) for a linear time-invariant non-strictly proper
system (Saberi and Sannuti, 1990). Such a coordinate basis has a distinct feature
of explicitly displaying the infinite-zero and finite-zero structures of a given
system as well as other system geometric properties. It is instrumental in the
derivation of the numerical algorithm.

3. Special Coordinate Basis

In the following we recapitulate the main results in a theorem and some
properties of the special coordinate basis while leaving detailed derivation and
proofs to be found in Sannuti and Saberi (1987) and Saberi and Sannuti (1990).
Consider the system described in Eq. (2.1). It can be easily shown that using
singular value decomposition one can always find an orthogonal transformation
U and a nonsingular matrix V that put the direct feedthrough matrix D into the
following form:

D = UDV = [ ~ ~ 1
(3.1)

where r is the rank of D. Without loss of generality, one can assume that the
matrix Din Eq. (2.1) has the form as shown in Eq. (3.1). Thus the system in Eq.
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(2.1) can be rewritten as

i = Ax + [BoB d [ :~ ] + E w,
(3.2)

[ ;~ ] = [ g ~]x + [~ ~] [ :~ 1
(3.3)

where Bo, B b Co and Clare the matrices of appropriate dimensions. Note that
the inputs Uo and Ub and the outputs Zo and Zl are those of the transformed
system. Namely,

U = V [ :~ ]
and

[ :~ ] = Uz.

Note that the H ",-norm of the system transfer function Tzw(s) is unchanged
when we apply an orthogonal transformation on the output z, and under any
nonsingular transformations on the states and control inputs. We have the
followingmain theorem:

Theorem 3.1.
that

There exist non-singular transformations rs, ro and rj such

x = rs[x~, x;', x~, xj] " xa = [(x;;) " (x;;T] I,

[zb, zi] I = ro[zb, zj, z;']" [ub, ui] I = rj[ub, uj, u~] I

(3.5)

(3.6)

(3.7)

and

A;;a Ao Lb Cb 0 LfCf
0 A;;-a L;;-bC b 0 L;;-fCf

r;l(A-BoCo)rs = I 0 0 Abb 0 LbfCf I, (3.4)

BcE-;:a BcEda BcEcb Ace LcfCf

BfEja BfEla BfEfb BfEfc Aff

Boa 0 0
Bta 0 0

r;l[Bo Bdrj = I BOb 0 0
Boc 0 Bc
BOf Bf 0

[ Co ] [Co,

cta COb COc

CO!]
r;;l rs = 0 0 0 0 Cf

C1 0 0 Cb 0 0

and

[I,

0

H
r-1DT- = 0 00 I

0 0
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where Cf=[O 1m). Moreover, the pair (Am Be) is controllable, pair (Abb, Cb)
is observable and the subsystem (Aff, Bf' Cf) is invertible with no invariant
zeros.

The proof of this theorem can be found in Sannuti and Saberi (1987) and
Saberi and Sannuti (1990). We note that the output transformation To is of form,

To = [~ ~rl (3.8)

In what follows, we state some important properties of the s. c.b which are
pertinent to our present work.

Property 3.1. The given system (A, B, C, D) is right-invertible, if and only
if Xb and hence Zbare nonexistent, left-invertible, if and only if Xeand hence Ue
are nonexistent, invertible, if and only if both Xe and Xbare nonexistent.

Property 3.2. Invariant zeros of (A, B, C, D) are the eigenvalues of A~a
and A;a. Moreover, the minimum-phaseand nonminimum-phaseinvariant zeros
of (A, B, C, D) are the eigenvalues of A~a and A;m respectively.

Property 3.3. The pair (A, B) is stabilizable, if and only if (Aeon,Beon) is
stabilizable where

A =
[

A;a L;bCb

]con 0 Abb ' [

B?;a
Beon = BOb

L;f
]
.

Lbf
(3.9)

Property 3.4. If the system (A, B, C, D) is stabilizable and right-invertible,
i.e., Xb is nonexistent, then the pair (A;a, [B;a, L;fD is controllable.

There are interconnections between the s. c.b and various invariant and
almost invariant geometric subspaces. To establish these interconnections, let
us define the following subspaces:
. Vg(A, B, C, D)-the maximal subspace of f?llnwhich is (A + BF)-invariant

and contained in Ker( C + DF) such that the eigenvalues of (A + BF) Ivg are
contained in Cgc;;C for some F.

. sg (A, B, C, D)-the minimal (A + K C)-invariant subspace of f?llncontain-
ing 1m(B + KD) such that the eigenvalues of the map which is induced by
(A+KC) on the factor space f?lln/sg are contained in Cgc;;C for some K.

For the cases that Cg= C, Cg= C- and Cg= COUC+, we replace the index g in
vg and sg by "*", "-" and "+", respectively. We list in the following the
geometrical interpretations of some state vector components of s. c.b.

Property 3.5.
1. x;;EBx;EBxespansV*(A, B, C, D),
2. x;;EBxespans V-(A, B, C, D).
3. x;EBxespansV+(A, B, C, D).
4. xeEBxfspansS*(A, B, C, D).
5. x;;EBxeEBxfspansS+(A, B, C, D).
6. x;EBxeEBxfspansS-(A, B, C, D),
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4. Computational Algorithm for y*s

In this section we give a simple non-iterative procedure for determining r;.
The method assumes that the system (A, B, C, D) is stabilizable, right-
invertible and has no invariant zeros in Co. The assumption of right invertibility
is, for a nondegenerate case, equivalent to one where the number of control
inputs must be greater than or equal to the number of controlled outputs. The
other assumption on the invariant zeros is typical in H co-literature.

Before we give the proof of our results, let us outline the steps involved in
the computation of r;,

Step 1: Transform the system (A, B, C, D) into the special coordinate basis
s. c.b described in Sec. 3 and apply the state transformation matrix rs to the
disturbance input distribution matrix E as follows:

r;l E -

E;;
Ed
Ec
Ef

(4.1)

Note that the component associated with Xbis missing since Xbis nonexistent for
a right-invertible system (see Property 3.1).

Step 2: If the system (A, B, C, D) is of nonminimumphase then solve the
following Lyapunov equations:

A;aS + S(A;a)' = [Bta, L;fr~;].[Bta' L;fr~;]', (4.2)

A;aT + T(A;a)' = E;(E;)'. (4.3)

Existence and uniqueness of the solutions Sand T of the above Lyapunov
equations follow from the fact that A(A;a) E C + (i.e., - A;a is a stable matrix)
since the eigenvalues of A;a are the right-half plane invariant zeros of the
system (A, B, C, D). Moreover, from the Property 3.4 of Sec. 3, the pair (A;a,
[B;;a, L;fr~;]) is controllable when the system (A, B, C, D) is stabilizable and
right-invertible. The solution S of Eq. (4.2) is therefore positive definite and
hence invertible.

Step 3: The infimum r; under state feedback control is given by

r: ~ { V).m",~TS-')

if (A, B, C, D) is of nonminimumphase,

if (A, B, C, D) is of minimumphase.
(4.4)

Here we note that the eigenvalues of (TS-1) are real and non-negative due to
the fact that S>O and T~O.

We have the following main theorem:

Theorem 4.1. Consider the system of (2.1) and suppose that (A, B, C, D)
is stabilizable, right-invertible and possesses no invariant zeros on Co. Then r;
as given in Eq. (4.4) is the infimum of the H co-optimal control under state
feedback.
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Proof. Let us apply a pre-feedback law,

uo = -Cox + v

to the system of (3.2) and (3.3). Then it is trivial to write the new system as,

x = (A-BoCo)x + [Eo Bd[:1] + Ew,

[ ;~ ] = [ 21 ]x + [~ ~ ] [ :1 J.

It followsfrom the theorem s.c.b that there exist non-singular transformations,
Fs and Fj such that

x = Fs[ (x;;)I, (x~T, x~, xf] I, [vi, uiJ' = Fj[v', uj, u~]'.

For a right-invertible system, the state component Xb is nonexistent and the
transformed system is given by

where ForCf= [0 For]and Foris a non-singular matrix as defined in (3.8). The
above transformation of the system with a pre-state feedback law uo= - Cox + v
along with the s.c.b state and control input transformations does not change our
problem solution since it does not affect the value of y;.

Now, suppose that y>y*. It is easy to verify thats

P=

0 0
0 P;;
0 0
0 0

0
0
0
0

0
0
0
0

2: 0, (4.7)

where

p;; ~ { (S-T/~)-' > 0

if (A, B, C, D) is of nonminimumphase,
(4.8)

if (A, B, C, D) is of minimumphase,

i; 1 r A;.

Ao 0

L;j Cj j

x;;
.+ 0 A;;a 0 L;;fCf x;;
: = BcE-;a BcE-:;a Ace LcfCf Xc

Xf BfEta BfEfa BfEfc Aff xf

Boa 0

,1 [ : ] +

E-a

+ I B6a
0 E+

(4.5)Ea Iw,Boc 0 c
BOf Bf Ef

[ ; ] = [
0 0

0 ] I:i +[
0

][ = ]. (4.6)
0 0 ForCf x: 0

xf
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satisfies the quadratic matrix inequality and the rank conditions of Stoorvogel
and Trentelman (1990). Hence it follows from Theorem 2.1 of Stoorvogel and
Trentelman (1990) that there exists a state feedback law FEgllmxn such that
II Tzw(s) 11",<y and A(A+BF)EC-. If the system (A, B, C, D) is of minimum
phase, y: = 0 and hence the converse of the theorem is trivial. We need to
introduce the following lemmas in order to prove the converse part of this
theorem when (A, B, C, D) is of nonminimum phase.

Lemma 4.1. Given the system of (2.1) along with the assumptions stated in
the main theorem and y>O. Then there exists an FEgllmxn such that
"Tzw(s) II",<y and )"(A +BF)CC-, if and only if there exists a real symmetric
solution P a~O to the algebraic Riccati equation

PaAaa + A~aPa + PaEaE~Pa/r

- PABoa, Lafr~~][Boa, Lafr~~]'Pa = 0, (4.9)

such that

A(Aaa+EaE~Paly2_[Boa, Lafr~~][Boa, Lafr~~]'Pa) C C-, (4.10)

where

A
[

A~a Ao

]
B

[

Boa
]

)
"" : :~ A," '- '"L:r Bri" .

Ea - [ E:; l Laf - [ L~f ]

(4.11)

Proof. Without loss of generality, we assume that the given system has been
transformed into the form of (4.5) and (4.6). Now let us define the new state
variables,

Xa = [ :¥ l [~:]= [ ~;l
where X3 contains only the last mfstates of xfwhich are directly associated with
the controlled output Zl while X2 contains Xc and the remaining states of xf.
Hence, the dynamics of the transformed system can be partitioned as follows:

Xa = Aaaxa + [Boa Laf] [ :3 ]+ Eaw

[
~2
X3 ]

=
[

A22 A23

] [
X2

]
+

[
B22

]
Ul

A32 A33 X3 B 32
(4.12)

+
[

B2l A2l

] [

V

]
+

[
E2

]
w I'

B31 A31 Xa E3

[
Zo

]
=

[

0

]
x +

[
I r 0

] [
V

]Zl 0 a 0 ror X3



26 B. M. CHEN, A. SABERIANDU.-L. LY

where Azz,Az3,'" ,E3 are the matrices with appropriate dimensions. It is now
straightforward to verify that the new system given above satisfies all the
properties of Stoorvogel and Trentelman (1990) decomposition. Then the result
follows from Corollary 5.2 and Theorem 6.2 of Stoorvogel and Trentelman
(1990).

Lemma 4.2. Suppose that (A, B, C, D) is of nonminimum phase. Then the
Riccati equation of (4.9) has a solution Pa2=O such that condition (4.10) is
satisfied, if and only if S>Tlyz.

Proof. Suppose that S>TlyZ and define the positive definite matrix
x4s- Tlyz. It follows from (4.2) and (4.3) that

A;;aX + X(A;;a)' - [B6a, L;;fr~~][B6a' L;;fr~~]'

+ E;;(E;;)'lyZ = O. (4.13)

Now, let us pre- and post-multiply (4.13) by P;;4x-\ we obtain

P;;A;;a + (A;;a)'P;; - P;;[B6a, L;;fr~~][B6a' L;;fr~~]'p;;

+ P;;E;;(E;;)'P;;lyZ = O.

From the above Riccati equation, we conclude

P;; [A;;a- [B6a, L;;fr~~][B6a' L;;fr~~]' P;; + E;; (E;;)' P;; lyZ](p;;)-l

= - (A;;a)'.

Thus, the matrix A;;a-[B6a, L;;fr~~][B6a' L;;fr~~]'p;;+E;;(E;;)'P;;lyZ is
stable. We now let

PL1
[

O 0

]a = 0 P;; 2= O.

It can be verified by substitution that Pais a solution to (4.9). Furthermore,

Aaa - [Boa, Lafr~~][Boa, Lafr~~]'Pa + EaE~PalyZ

-
[

A;;a Ao-[Boa, L;;fr~~][B6a' L;;fr~~]'p;;+E;;(E;;)'P;;lyZ
]- 0 A;;a-[B6a, L;;fr~~][B6a' L;;fr~~]'p;;+E;;(E;;)'P;;lyZ ,

(4.14)

is a stability matrix. Hence, Pais a solution to (4.9) and satisfies condition
(4.10).

Conversely, suppose that (4.9) has a solution Pa2=Othat satisfies (4.10).
And let N(P a) denote the null space of matrix Pa' If xEN(P a), then it follows
from (4.9) that

PaAaax = O. (4.15)

That is, Aaa xEN(P a)' Hence, N(P a) is an Aaa-invariant subspace. Therefore,
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there exists an orthogonal transformation Q such that

Pa = Q' P a Q = [~ f; J.

[
A~a Ao

]
- , = -+,

Aaa = Q AaaQ 0 Aaa

Ea = Q'E a = [ j~ ]

and

[B
-

L
- r-1

]
- Q

'
[B L r -1

] -
[

BOa [~fr~;
]Oa, af or - Oa, af or - B+ L-+ r-1 .Oa af or

(4.16)

Condition (4.10) implies that the matrix

- - - 1- - 1- --- 2
Aaa - [BOa, Lafr~rHBoa, Lafr~r]'Pa + EaE~Pa/y

[

A-- A
-

[B
-- L-- r -1

][B
-+ L-+r -1

]
'p-++E-+(E-+) 'P-+/ 2

]
= aa -~- j)~' ..E~ o~l _O~' ..E~ o~l ,..E+ ..E+..E+, ..E+'I 2 ,

0 Aaa-[BOa, LafrorHBOa, Lafror] Pa +Ea (Ea) Pa /'1
(4.17)

is stable and hence the submatrices A;a-[B6a, [;fr~;HB6a' [;fr~;]'P;
+ E; (E;)' P; / '12and A~a must also be stable.

When we substitute (4.16) into (4.9), we obtain the followingmatrix Riccati
equation:

P-+A-+ + (A-+ ) 'P-+ P-+[B-+ L-+ r -1
] [B

-+ L-+ r -1
]
'p-+a aa aa a - a Oa, af or Oa, af or a

+ P; E;(E;)'P;/y2 = 0 (4.18)

or

P-+(A-+ [B-+ L-+r -1
] [B

-+ L-+r -1
]

'p-++E-+(E
-+) 'P-+/ 2

)(p
-+)

-1
a aa - Oa, af or Oa, af or a a a a 'I a

= -(A;a)'. (4.19)

Hence MA;a) must be contained in C +. Thus, we conclude that MA~a)= MA~a)
and MA;a) = MA;a)' Returning to the Riccati equation (4.18) and letting
X4(p;)-1>0, we have

A-+ X + X(A-+ )
'

[B
-+ L-+ r -1

] [B
-+ L-+r -1

]
'

aa aa - Oa, af or Oa, af or

+ E;(E;)'/y2 = o. (4.20)

Moreover, let Tbe the solution to the Lyapunov equation

A;aT + T(A;a)' = E; (E;)' . (4.21)

Defining S=T/y2+X>T/y2, it can be shown that 5 satisfies the Lyapunov
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equation

-+ - - -+, -+ -+ -1 -+ -+ -1 I
AaaS + S(Aaa) = [BOa, LatroyHBOa, Latroy] . (4.22)

Thus, the condition 5> T/y2 is satisfied. Noting that the state transformation r s

in the special coordinate basis is in general non-unique, and the transformation Q
can be exhausted into the state transformation r S' Thus one can redefine the
original state transformation to include the transformation Q and therefore
reducing Q=I in (4.16). Hence we can conclude that S>T/y2 also holds. This
completes our proof of Lemma 4.2.

The converse part of our main theorem follows immediately from Lemmas
4.1 and 4.2 since the condition y>VAmax(TS-1) is equivalent to S>T/y2. This
completes our proof of Theorem 4.1.

Remark 4.1: Under the condition that the feedthrough matrix D is nonsingu-
lar, i.e., the system (A, B, C, D) has no infinitezeros, it is simple to verify that
matrix

p = (r:;1)'[ ~ (S - T~ y2)-1 ]r:;1

satisfies the well-known Riccati equation of the state feedback H 00 control given
in Doyle et al. (1989). Also, we would like to remark that for this special case, a
similar result had been obtained by Petersen (1988) and the work of Kawatani
and Kimura (1989) contains the similar reasoning.

Remark 4.2: The right invertibility condition of the system (A, B, C, D) in
Theorem 4.1 can be weakened and replaced by the assumption,

Im(E) ~ S+(A, B, C, D) U S-(A, B, C, D).

In this case, the algorithm for the computation of y* should be slightly modified.s

For the sake of brevity we have omitted the detailed discussion of this case in
this paper.

5. Some Applications

Results developed in Sec. 4 can be used to examine the solvability condition
of almost disturbance decoupling problem with internal stability via state
feedback and can also be applied to a certain robustness problem, namely, the
computation of the supremum of the complex stability radii which can be
achieved under linear state feedback. These issues are considered in the
following subsections:

5.1 Almost disturbance decoupling with stability The problem of
almost disturbance decoupling was first introduced by Willems (see Weiland and
Willems, 1989, for recent results and related references). The basic problem is
the design of a linear state feedback such that the controlled output z is
approximately decoupled from the disturbance input w. The more precise
definition of this problem is given below:
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Definition 5.1. Consider the system of (2.1). Then we say that the
H co-AlmostDisturbance DecouplingProblem with internal Stability (ADDPS)Hoo
is solvableiffor all£>0 there exists a state feedbacklawu=Fx for the system
defined above such that the closed-loop system is internally stable and the
H co-normof the transfer function between the disturbance input wand the
controlled output z is less than £.

From the above formulation, it is obvious that solvability condition for
(ADDPS)Hoois exactly the conditionunder which y: =0. Solvabilityconditionfor
(ADDPS)Hoowith D=O is well-known (see Weilandand Willems, 1989). In the
followingtheorem, we extend this result to the general case where D*O.

Lemma 5.1. Consider the system 2: as given by (2.1). Assume that (A, B,
C, D) is right-invertible and has no invariant zeros on jw axis. Then
(ADDPS)Hoois solvable, i.e., y:=O, if and only if Im(E)~S+(A, B, C, D).

Proof. If the system (A, B, C, D) is of minimum phase, y: = 0 and for
minimum-phasesystem Im(E) is always contained in S+(A, B, C, D). In what
follows, we proceed to prove the case when the system (A, B, C, D) is of
nonminimumphase. It is straightforwardto verifythat Im(E) ~ 5 + (A, B, C, D)
impliesthatE;=O. Then from (4.3), we have T=O and hence y*=O. Converse-s

ly, if Im(E)<tS+(A, B, C, D), thenE;*O. Againit is simple to see from (4.3)
that T*O and hence y:*O. This completes our proof of the corollary.

5.2 Maximizing the complex stability radius In this subsection, we
consider an uncertain linear system,

x = Ax + Bu + DI1Ex, (5.1)

where AE~nxn, BE~nxm, DE~nxl and EE~pxn are given constant mat-
rices while 11expresses the uncertainty which is structured by the matrices D
and E. Moreover, we assume that (A, B) is stabilizable. For any stabilizing
state feedback law u=Fx, FE~nxm (i.e., A(A+BF)CC-), the complex
stability radius is defined as (Hinrichsen and Pritchard, 1989)

rc(A, B, D, E, F)

4 inf{ 111111:11 E c1XP such that A+BF+DI1E is unstable}.

The supremum of the complex stability radii that can be achieved by stabilizing
linear state feedback law is defined as

yc(A, B, D, E)

= sup{rc(A, B, D, E, F): F E ~mxn and A+BF is stable}.

At a first glance, it seems that complex perturbation is not natural and should not
playa role in robustness analysis. However, it turned out that complex stability
radius is important for two good reasons: First of all, it provides a lower bound
for the real stability radius (defined as the complex stability radius but with the
restriction that 11be a real matrix), and there are important special cases where
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the real and complex stability radii coincide. Moreover, there are elegant results
for the complex stability radii while that is not the case for the real stability radii.
Secondly, it turned out that the complex stability radii are equivalent to real
dynamic stability radii, i.e., L1is a real dynamic perturbation (for further details
and a recent survey of literature, see Hinrichsen and Pritchard, 1989).

Our results in this paper provide a simple non-iterative way of computing
yc(A, B, D, E). We assume that (E, A, B) is right-invertible and has no
invariant zeros on the jro axis. The algorithm for computing yc(A, B, D, E) is
given below:

Step 1: Using the result of Sec. 4, find the infimum of the H ",-optimization for
the system

.

!

i :Ax + Bu + Dw,2:e. y - x,

z = Ex.

(5.2)

Let this infimum be denoted by y* .se

Step 2:

yc(A, B, D, E) = ~.
Yse

(5.3)

We have the followinglemma and corollary:

Lemma 5.2. Assume that (A, B, E) is right-invertible and has no invariant
zeros on the jro axis. Then yc(A, B, D, E)=1/y*.se

Proof. The proof follows from the fact (Hinrichsen and Pritchard, 1989) that

rc(A, B, D, E, F) = IIGFII;;,!'

where GF denotes the transfer function matrix of (A + BF, D, E, 0).

Corollary 5.1. Assume that (A, B, E) is right-invertible and has no
invariant zeros on the jro axis. Then yc(A, B, D, E)=oo, if and only if
Im(D)~S+(A, B, E, 0).

Proof. It follows from Lemmas 5.1 and 5.2.

6. Numerical Examples

We will demonstrate the procedure of the computation of y; with two
examples in aircraft control, one in control of a flexible mechanical system and
one illustrating the result of (ADDPS)H~'

Example 1. The first example involves the minimizationof the H ",-norm of
the aircraft normal acceleration z response to longitudinal turbulence w for a
B767 longitudinal aircraft model using elevator control u. State model of this
system is given in the following for a flight condition of mach 0.80, altitude
35,000 [ft] and center of gravity at 0.18MAC (mean aerodynamic chord):
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x=

-0.01675

-0.0164

-0.04167

0
0
0

0.01675
0.0164
0.04167
0

-0.4447
0

0.11214
-0.77705
-3.6595
0
0
0

-0.02432
-0.06339
-3.6942
0
0

-15

0.00028
0.99453

-0.95443
1
0
0

31

-0.56083
0.00147
0
0
0
0

0
0
0
0
0
15

0
0
0
0
0.9431
0

u+ W,+

z = [0.00694 0.32795 0.00231 0 -0.00694 0.02679]x.

The system (A, B, C, 0) is invertible with invariant zeros at: {- 6.7743,
6.13546, -8.1557x10-3, -4.3926x 10-4, -0.4447}. Note thatthe system
has a nonminimumphase zero at 6.13546 [rad/s]. Following the procedure
developed in Sec. 4, we obtain

A~a = 6.13546002,

ror = 1

which yield

Bta = 0,

and E:; = -0.14448956,

and
s = 2354.18357133, T = 0.00170136

L~f = -169.9647,

y; = VTS-1 = 8.50115113 X 10-4.

Example 2. The second example is the control of a flexible mechanical
system consisting of four discs connected by flexible rods and given by

The system (A, B, C, 0) is invertible and has no invariant zeros; hence it is of
minimum-phase. The infimumof H ",,-optimizationwith state feedback is there-
fore equal to zero, i.e., y *= O. Again it is difficult to determine this solutions

using an ARE-based method. Usually the Riccati-solver tends to break down
even when y is not close to y*.s

0 1 0 0 0 0 0 0 0 0
-1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

x=1 1 0 -2 0 1 0 0 0 x+ 0 u+ 0
0 0 0 0 0 1 0 0 0 0 IW,
0 0 1 0 -2 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 -1 0 1 0

z=[1 0 0 0 0 0 0 O]x.
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Example 3. This example is a disturbance rejection design for a fighter
aircraft. The model is for an AFTI-F16 longitudinalaircraft flyingat mach 0.90
and altitude of 20,000 [ft] and is given by

The system (A, B, C, D) is invertible, unstable and nonminimumphase with
invariant zeros at {-1.3692:t18.637i, 1. 1338x10-3, -0.5303, -0.5303
:t 5.3030xl 0-3i}. Again, followingthe procedure developedin Sec. 4, we
obtain

A;a = 0.00113375, Bta = -750.07999321, L;;j= -0.13170630

and

ror = 1, E; = [0.0000016557, -0.03608666].

-0.011669 0.024753 -0.5271 -0.5601
-0.044669 -1. 437 16.14 -0.018286
-0.088168 - O.080495 -0.7046 0

x=1
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.001496 0.011669 -0.024753 0
-1. 065 x 10-7 0.044669 1. 437 0
7. 2141 x 10-7 0.088168 0.080495 0

0 0 0 0
-1 0 0 0

Ix

0 - 0.5303 0 0
0 0 -0.5303 0.005303
0 0 -0.005303 -0.5303

0.017112 0 0 0
-2.304 0 0 0
-21. 7 0 0 0

+1
0 0

u+
0 0

0 99.06 0 0 IW,

0 0 1.03 0
0 0 0 1. 261
0 0 0 -53.32

z = [ 0.000173647
0 0 0

0.044067 -0.003463 -1. 298 x 10-6

0 -1 0

Jx8.6435 X 10-9 -0.00073647 -0.044067

+ [-0.04389 Ju.
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Then solving two Lyapunov equations (4.2) and (4.3), we have

s = 2.48122601X108, T = 0.57430758

and

y* = VTS-1 = 4.81104160x10-s.s

Example 4. Consider a system characterized by

One can easily check that system (A, B, C, D) is square and invertible with two
nonminimum phase invariant zeros at {1, 2}. Furthermore, this system is
already in the form of s. c.band E;;-=[0 0] '. Hence, it follows from Lemma 5.1
that y: =O.

7. Conclusions

In this paper we have presented a simple and non-iterative algorithm for the
computation of the infimum in the standard H ",,-optimization problem via state
feedback. The results are applicable to systems where the transfer function
from the control input to the controlled output is right-invertible and has no
invariant zeros on the j w axis. The procedure .involves solutions of two
Lyapunov equations usually of low dimensionality determined from the number
of nonminimum phase finite invariant zeros. Two applications of our results have
also been considered. In the first application we gave the solvability condition
for H ",,-almost disturbance decoupling problem via state feedback with internal
stability, while in the second application we provide the computation of the
supremum of the complex stability radii which can be achieved under linear state
feedback. The algorithm for the computation of the infimum in H ",,-optimization
using output feedback is the subject of Chen et al. (1992).
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