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LOOP TRANSFER RECOVERY FOR
NON-STRICTLY PROPER

PLANTS*

B. M. CHEN,! A. SABERI,! S. BINGULAC"AND P. SANNUTI3

Abstract. Observer based controllers for loop transfer recovery of non-strictly
proper systems which are left invertible and of minimum phase are considered. A
complete analysis of loop transfer recovery problem using either full or reduced
order observer based controller is provided.
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1. Introduction and Problem Statement

In multi-input and multi-output feedback control system design, performance
specifications such as command following, disturbance rejection, closed-loop
band-width, stability robustness with respect to unstructured dynamic uncer-
tainties etc., are naturally posed in frequency domain in terms of sensitivity and
complementary sensitivity functions (Doyle and Stein, 1981). These sensitivity
and complementary sensitivity functions are related to the loop transfer
matrices evaluated by breaking the control loop at critical points, commonly
either the input or output point of the given plant. Thus typically, one is
interested in designing a closed-loop control system to arrive at a specified loop
transfer function. In this paper, we concentrate on a case when the uncertainties
are modeled at the input point of a nominal plant model and hence the required
loop transfer function is specified at the plant input point. However, our results
can be dualized for the case when the required loop transfer function is specified
at the output point. In recent years, a design procedure called LQG/LTR,
originally proposed by Doyle and Stein (1979) has gained some prominences.
Essentially, LQG/LTR is a two step design procedure. In the first step of
design, a standard state feedback design is done so that the resulting loop
transfer function at the plant input point, here after called as a target loop
transfer function, meets the given specifications. In the second step of design,
one first assumes a closed-loop configuration as in Fig. 1 where C(s) and P(s)
are respectively the transfer functions of a controller and the given plant. Given
P(s) and the target loop transfer function L(s), one seeks to design a C(s) such
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Fig. 1. Closed-loop configuration-
plant with controller.

that C(jw)P(jw) is either exactly or approximately equal to L(jw) in the
frequency region of interest. This second step of design is termed as LTR
design.

Ever since the seminal work of Doyle and Stein (1979), there have been
many papers on LTR using either full or reduced order observer based
controllers. All these papers, however, assume that the given plant is strictly
proper. So far there is no method what so ever in the literature to deal with LTR
design for non-strictly proper systems. In this paper, we focus our attention on
the loop transfer recovery design for non-strictly proper plants. Let us consider
a left invertible and minimum phase plant 1:,

x = Ax + Bu, y = Cx + Du, (1.1)

where the state vector xERn, output vector yERP and input vector uERm. Let
us assume that 2: is stabilizable and detectable. Without loss of generality, we
also assume that [B', D']' and [C, D] are of maximal rank. Let F be a
stabilizing full state feedback gain matrix such that (a) the closed-loop system is
asymptotically stable, i. e., eigenvalues of A - B F lie in the open left half s-plane,
and (b) the open-loop transfer function when the loop is broken at the input point
of the plant meets the given frequency dependent specifications. The state
feedback control law is

u = -Fx, (1. 2)

and the loop transfer function evaluated when the loop is broken at the input
point of the plant, the so called target loop transfer function, is

L(s) = F<PB, (1. 3)

where <P= (sl - A)-i. Instead of using the state feedback control law of (1. 2), if
one uses output feedback controller C(s) as in Fig. 1, then the achieved loop
transfer function evaluated when the loop is broken at the input of the plant is

i(s) = C(s)P(s), pes) = C<PB+ D, (1. 4)

and thus our goal is to design C(s) such that the mismatch function E(jw) with
E(s) defined as

E(s) = L(s) - i(s) (1. 5)
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is either exactly zero or in some sense approximately zero over the frequency
range of interest. More precisely, we say exact LTR (ELTR) is achieved if

C(s)P(s) = L(s) for all s.

Achieving ELTR is in general not possible. In an attempt to achieve "approxi-
mate" LTR, one normally parameterizes C(s) as a function of a scalar or a vector
parameter a and thus obtains a family of controllers C (s, a). We say asymptotic
LTR (ALTR) is achieved if

C(s, a)P(s) ~ L(s) pointwise in s

as the tuning parameter a~oo, or equivalently £(s, a)~O pointwise in s as
a~ 00. Achievability of ALTR enables the designer to choose a member of the
family of controllers that corresponds to a particular value of a that achieves a
desired level of recovery.

Regarding the structure for controller C (s) or C (s, a), one has complete
freedom to choose any appropriate structure for it. All the existing LTR
literature for strictly proper systems, except for Chen, Saberi and Sannuti
(1990) assumes a full or reduced order observer based controller. In this paper,
we will study only the traditional observer based controllers, either full or
reduced order type. A study similar to this paper but using appropriate
compensator structures will be a subject of our future research.

The paper is organized as follows. In Sec. 2, we develop the full order
observer based controller which achieves either ELTR or ALTR. And in Sec. 3,
we consider the LTR design by using the reduced order observer based
controller. Two numerical examples are given in Sec. 4 to illustrate the
developed theory of loop transfer recovery for non-strictly proper systems.

Throughout this paper, A I denotes the transpose of A, I denotes an identity
matrix while I k denotes the identity matrix of dimension k Xk. A(A) denotes the
set of eigenvalues of A. Similarly, amax[A] and amin[A] respectively denote the
maximum and minimum singular values of A. The open left and closed right half
s-plane are respectively denoted by C- and C+.

2. Full Order Observer Based Controller

In this section, we consider the loop transfer recovery design via the full
order observer based controllers. Without loss of generality but for simplicity of
presentation, we will assume that D matrix in (1.1) has been transformed in the
form of

D=[~ ~ 1
(2.1)

where r is the rank of D and r~m (left invertibility of 2: implies that m~p). Let
us partition the state equation of (1.1) as

i:AX+BoUo+B~Ul )
.

Yo - Cox + uo, y1 - C1X
(2.2)
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Here the control U is partitioned as u=[uo, u'd' where Uo and Ul are of
dimension rand m - r respectively. And the output y is partitioned as y = [y~,
y'l]' where Yo and Yl are respectively of dimension rand p-r. Hence, we can
rewrite (2.2) as a new system characterized by the triple (AI, Bl' Cl),

i = Alx + Blul + Boyo' Yo = Cox + Uo

j
,

Yl ~ Clx
(2.3)

where Al =A - Bo Co and Yo is considered as a known signal. We have the
following results:

Remark 2.1: Note that if D is of full rank (i.e., r=m), then Bl =0.

Lemma 2.1. Consider the system 1:1 characterized by the triple (AI, Bl'
Cl) with Bl=f:.O.Then, we have
1. 1:1 is left invertible and of minimum phase if and only if 1: is left invertible and

of minimum phase.
2. Invariant zeros of 1:1 are the same as those of the given plant 1:.

Proof. It is trivial to verify this lemma by following the properties of a special
coordinate basis (s. c.b) for non-strictly proper systems (Saberi and Sannuti,
1990; Also, see the details of s. c.b in Appendix A).

Now consider a full order observer based controller configuration as given in
Fig. 2. Note that in Fig. 2 we have partitioned the state feedback gain matrix F
in conformity with Uoand Ul as

[
Fuo

]
.F = F

Ut

The dynamics of the observer-based controller in Fig. 2 can be expressed as

i = Alx + BoYo + Bl Ul + K(Yl-ClX) (2.4)

+
Yj- ...
+

Uo

Uj

YoYo

Yj

-Uo

Fig. 2. Plant with the full order observer based controller.
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and

Uo = Uo = -Fuox, UI = UI = -FuJ;. (2.5)

By examining (2.3) and (2.4), we note that (2.4) is nothing more than a
conventional observer. Thus, it is simple to verify that the well-known separa-
tion principle holds and the stability of the closed-loop system is guaranteed
whenever A - B F and A I - KCI are stable. The transfer function of the
observer based controller (i.e., the transfer function from y to - U, when Uand it
are considered as two separate variables) can be easily obtained,

C(s) = F(sI -AI +BIFul +KCI)-I[Bo, K], (2.6)

where K is the only unknown matrix which is considered as a free design
parameter. In what follows, we examine the necessary and sufficient conditions
for loop transfer recovery of non-strictly proper systems.

Lemma 2.2. Consider the closed-loop system comprising of the given plant
2: along with the observer based controller (2.4) and (2.5) as given in Fig. 2.
Then the mismatch function as defined in (1. 6) can be expressed as

E(s) = M(s) [lm+M(s)]-IUm+F<PB), (2.7)

where

M(s) = [Mo(s), MI(s)], (2.8)

and where m x rand m x (m - r) dimensional matrices M 0(s) and M I(s) are
given by

Mo(s) == 0, MI(s) = F(<Pil+KCI)-IBI (2.9)

with <PI= (sI -AI)-I = (sI -A + BoCo)-I.

Proof. See Appendix B.

Lemma 2.3.

E(jw) = 0 if and only if MI (jw) = 0 for all w E Q,

where Q is the set of all 0:::;w < 00 for which L (j w) and L(j w) are well defined
(i. e., all required inverses exist).

Proof. It is obvious.

Thus Eq. (2.7) presents a clear perspective to study the basic mechanism by
which both exact and approximate LTR occurs for non-strictly proper systems.
It is clear that ELTR is achievable if M I (j w) =0 exactly and on the other hand
ALTR is achievable if amax[M I (j w)] can be made arbitrarily small for all w. We
have the following theorem for ELTR.

Theorem 2.1. Consider the closed-loop system comprising of the given plant
2: and the full order observer based controller (2.4) and (2.5) as given in Fig. 2.
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Then both the asymptotic stability of the closed-loop system and ELTR can be
achieved under the following conditions:
1. FBI =0.
2. C 1B 1 is of maximal rank (i.e., the plant has no infinite zero of order higher

than one).
3. The given plant is left invertible and is of minimum phase.

Proof. Under the conditions given in the theorem, a constructive method of
obtaining the observer gain K to achieve both closed-loop stability and ELTR is
given in Appendix C.

Corollary 2.1. For a left invertible and minimum phase plant as in (1.1), if D
matrix is of full rank, i.e., r=m, then ELTR is achievable.

Proof. r=m implies that BI =0 and hence M(s)=Mo(s)=O.

Remark 2.2: ELTR is achievable for any single-input and single-output non-
strictly proper system if it is of minimum phase.

Since FBI =0 severely restricts the class of loop transfer functions that are
exactly achievable, we now focus our attention on ALTR for non-strictly proper
systems. In ALTR, the gain K is parameterized in terms of a tuning parameter
a. Thus we rewrite M 1(s) as

MI(s, a) = F(<Pil+K(a)CI)-IBI. (2.10)

Most of the existing literature focuses attention on how to design the observer
gain K(a) such that

(<Pil +K(a)CI)-IBI~O pointwise in s as a~oo, (2.11)

which is known as Doyle-Stein condition. (2.11) is a sufficient condition to
render amaAMI (jw, a» and hence amaAM(jw, a)] arbitrarily small for all w.
Doyle and Stein (1979) gave another sufficient condition under which (2.11) is
true. Their condition is as follows: Let K (a) be chosen such that as a~ 00,
K (a) / a~ B 1 W for some nonsingular matrix W. Then, (2.11) is true and
consequently ALTR is achieved as a~ 00, Also, there were several attempts
later on to weaken Doyle-Stein condition (Madiwale and Williams, 1985; Matson
and Maybeck, 1987; Saberi and Sannuti, 1990), It is well known that in order to
satisfy (2.11), one needs that the triple (AI, BI, CI), namely 271>is left
invertible and of minimum phase. However, from Lemma 2.1, it follows that 271
is left invertible and of minimum phase if and only if the given plant is left
invertible and minimum phase. Thus existing design methods can be used to find
the gain K(a). In comparison with the sufficient conditions for ELTR as stated in
Theorem 2.1, one finds a drastic relaxation of the required conditions for ALTR.

Theorem 2.2. Consider the closed-loop system comprising of the given plant
27and the full order observer based controller (2.4) and (2.5) as given in Fig. 2.
Let the given non-strictly proper plant be left invertible and be of minimum
phase. Then a gain K(a) can be designed such that both asymptotic stability of
the closed-loop system and ALTR can be achieved.

Proof. The proof is obvious in view of (2.11) and the well known results for
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strictly proper systems.

As discussed above, most often one opts for ALTR design as it requires less
stringent conditions than ELTR design. In ALTR, the level of recovery depends
on arnax[M(jw, an However in order to render arnax[M(jw, a)] small, one
needs to increase the tuning parameter a which itself increases the gain K(a).
Thus as discussed by Sogaard-Andersen and Niemann (1989), there is a
fundamental trade-off between the level of recovery and the size of gain. This
trade-off can be visualized in a natural way in terms of the trade-off between the
singular values of sensitivity and complementary sensitivity functions and
singular values of M(jw, a). We can extend their results to the case when the
given plant is non-strictly proper. Let So(s, a) and To(s, a) be the achieved
sensitivity and complementary sensitivity functions in the configuration of Fig. 2
when the loop is broken at the input point of the plant,

So(S, a) = [lm+C(s, a)P(s)]-l

and

To(s, a) = 1m - So(s, a) = [lm+C(s, a)P(s)]-lC(s, a)P(s).

Let SF(S) and TF(s) be the sensitivity and complementary sensitivity functions
corresponding to the target loop-shape. Then, we have an identical lemma as we
have for the case when the given plant is strictly proper:

Lemma 2.4. Consider the configuration of Fig. 2. Let the given non-strictly
proper plant be left invertible and of minimum phase. Then, there exists a gain
K(a) such that as a~oo,

So(jw, a) ~ SF(jW)

and

To(jw, a) ~ TF(jw).

Moreover, for any given value of a, we have following bounds on all singular
values i=l tom of So(jw, a) and To(jw, a):

Iai[SO(jw, a)] - ai[SF(.fw)] I :$ arnax[M1 (jw, a)]
arnaASF(.fW) ]

and

lai[To(jw, a)]-ai[TF(jw)]I :$ arnax[M1(jw, a)].
arnaASF(jW)]

Proof. It follows Sogaard-Andersen and Niemann (1989). Also, see Chen,
Saberi and Sannuti (1990).

As in the case when the given plant is strictly proper, the expressions given
above can be used to analyze the inevitable trade-off between good recovery as
indicated by arnax[M(jw, a)] and robustness and performance as reflected in
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the sensitivity and complementary sensitivity functions. To do this, one can
apply the so-called recovery diagrams developed by Sogaard-Andersen and
Niemann (1989).

3. Reduced Order Observer Based Controller

Now, let us consider a reduced order observer based controller. In this
section, without loss of generality but for simplicity of presentation, we will
assume that the given system 1: is in the form of a special coordinate basis
(Saberi and Sannuti, 1990; See also Appendix A). Then some of the state
variables correspond exactly to the given output YI and hence need not be
estimated. Let us first partition the state equations (2.3) of 1: as

~l = AllXI + AIZxz + Bll Ull + BOIYo
)

,
Xz = AZIXI + Azzxz + BIz UIZ + Bozyo

(3.1)

Yo = Cox + uo, YI = Xl' (3.2)

Here Xl consists of all the output YI and is of dimension nl =P- r while Xz
consists of the rest of the state variables and is of dimension nz = n - p + r. The
control UI is partitioned as UI= [ui I, uiz]' where UII does not directly control
the state variable Xz and is of dimension ml while UIZcontrols directly Xz and is
of dimension mz = m - ml - r. Similarly, let us also partition the output YI as
YI= [Y~l'Y~z]'. Here Yll is directly controlled by Ull andYIZconsists ofthe rest
output which is not directly influenced by Ull' Moreover, Yll and YIZ are
respectively of dimension ml and pz=p-r-ml' In view of the special coordi-
nate basis given in Appendix A, one can eaesily rewrite (3.1) as

~ll = DllYI + D12xz + BooYo + Gll Ull

)

YIZ = CllYI + CIZxz + BOIYo

Xz = Azzxz + B12UIZ + AZIYI + Bozyo

(3.3)

for some appropriate matrices Dll,DIZ,'" ,Boz, and moreover, Gll is non-
singular. Since Xl=Yl' we need to estimate only Xz. For this purpose, we
consider the following reduced order system 1:r characterized by the triple
(A:~z, BIz, CIZ):

Xz = Azzxz + BIZu12 + AZIYI + Bozyo' (3.4)

w = CIZxz = )\z - CllYI - BOIYo' (3.5)

In (3.4) and (3.5), Yo and YI are considered as known signals and w is the output
by which Xz is to be estimated. We have the following lemma.

Lemma 3.1. Consider the system 1:r characterized by the triple (Azz, BIz,
CIZ) with BIZ*'O. Then, we have
1. 1:r is left invertible and of minimum phase if and only if 1: is left invertible and

of minimum phase.
2. Invariant zeros of 1:r are the same as those of the given plant 1:.
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Proof. It follows from the special coordinate basis of .J:as given in Appendix A
and the partition of dynamic equations of.J: as in (3.3).

Now we can design a full order observer for the reduced order system .J:y.
Consider

X2 = A22X2 + B12U12 + A21Y1 + B02Yo + Ky(W-C12X2), (3.6)

where Ky is the observer gain for the reduced order system .J:y.As in the case of
full order observers, Ky is the only unknown matrix here and hence it is
considered as a free design parameter. The estimate X2given by (3.6) requires
W=)\2-Cl1YI-Bo1Yo' This implies that we need a differentiator to obtain X2.
However, following Kwakernaak and Sivan (1972), one can rewrite (3.6) in
another variable z. Let

X2 = z + KYY12,
Then

z = Ay(z+KyY12) + B12U12+ (A21-KyCl1)Yl + (Bo2-KyBo1)Yo' (3.7)

where Ay is the dynamic matrix of the reduced order observer,

Ay = A22 - KyC12.

Thus, by implementing (3.7), X2 can be obtained without generating Y12'
In Fig. 3, the state feedback gain matrix F has been partitioned as

[
FOI

F = Fl1

F02

]
,

F12

where FOl, F02' Fl1 and F12 are of dimension rXnb rXn2, (m-r)xnl and
(m - r) Xn2, respectively. Now in order to bring the theory of full and reduced
order observers to the same frame work and to understand the conditions for

Yo

+
Ul

YoUo

Yl

+A
-Ul -, -- - - --- - ----------.

I I
I I
I I
I I
I FOI I
I I
I + I
I I
I X2 + I
I I
I Controller I
L J

Fig. 3. Plant with the reduced order observer based controller.

-£to Yl
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either ELTR or ALTR clearly, we present the following results which are
analogous to Lemmas 2.2 and 2.3.

Lemma 3.2. Let us partition the state feedback gain F to correspond with
the dynamic system given in (3.1),

F = [Fl, F2],

where F 1 and F 2 are the feedback gain associated with Xl =Yl and X2 respective-
ly. Then the mismatch function Er(s), the error between the target loop
transfer function L(s) and that achieved by the reduced order observer based
controller is given by

Er(s) = Mr(s) [Im+Mr(s)]-l(Im+F<1>B), (3.8)

where

Mr(s) = [Mro(s), Mrl(S), Mr2(S)] (3.9)

and where m x r, m x ml and m x m2 dimensional matrices Mro(s), Mrl (s) and
Mr2(S) are given by

Mro(s) == 0, Mrl(S) == 0, Mr2(S) = F2(<1>zi+KrC12)-lB12 (3.10)

with <1>22= (s1n2 - A22)-1.

Proof. See Appendix D.

Remark 3.1: The expression for Er(s) is identical to the corresponding one
when full order observer based controller is used, see (2.7), except that now
Mr(s) takes the place of M(s).

Lemma 3.3.

Er(jw) = 0, if and only if Mr2(jW) = 0 for all w E Q yO

where .Qr is the set of all 0::::;w < 00 for which ir(j w) and L (j w) are well defined
(i. e., all required inverses exist).

Proof. The proof is obvious.

It is clear that Mr(s)==Oif and only if Mr2(S)==0and Mr2(S) is dependent only
on the reduced order system 2:rwhich is strictly proper and left invertible with
no invariant zeros in C+. Hence, we have the following theorem which is
analogous to Theorem 2.1.

Theorem 3.1. Consider the closed-loop system comprising of the given plant
2: and the reduced order observer based controller as given in Fig. 3. Then both
the asymptotic stability of the closed-loop system and ELTR can be achieved
under the following conditions:
1. C lB 1 is of maximal rank (i.e., the plant has no infinite zero of order higher

than one).
2. The given plant is left invertible and is of minimum phase.
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Proof. Condition 1 implies that mz=O and Mrz(s) is nonexistent. Hence
Mr(s)=O and thus ELTR takes place. It is straightforward to verify through the
properties of the special coordinate basis that the stability of the reduced order
observer is guaranteed by the condition 2.

Remark 3.2: When reduced order observer based controllers are used, the
condition FBI =0 is not necessary for ELTR.

Since in general Mr(s) or equivalently Mrz(s) cannot exactly be made zero,
one focuses attention on ALTR. That is, one needs

Mrz(s, a) = Fz(cJ>zi+Kr(a)C1z)-IB1z -7 0 pointwise in s as a -7 00,

where the gain Kr(a) is now parameterized in terms of a tuning parameter a.
However, as in the previous section, in order to have the state feedback and
observer design to be independent of one another, one needs to require that

(cJ>zi+Kr(a)Cd-1B1z -70 pointwise in s as a -7 00, (3.11)

which is the Doyle-Stein condition. Again it is well known that (3.11) can be
satisfied if (Azz, BIz, C12), namely 1:n is left invertible and of minimum phase.
Furthermore, from Lemma 3.1, it follows that 1:r is left invertible and of
minimum phase if and only if the given plant is left invertible and of minimum
phase. Hence, we have the following result which is analogous to Theorem 2.2.

Theorem 3.2. Consider the closed-loop system comprising of the given plant
1: and the reduced order observer based controller as given in Fig. 3. Let the
given plant be left invertible and be of minimumphase. Then a gainKr(a) can be
designed using the triple (Azz, BIz, ClZ) such that both asymptotic stability of
the closed-loop system and ALTR can be achieved.

Proof The proof is obvious in view of (3.11).

Now as in Lemma 2.4, we would like to develop bounds on the sensitivity and
complementary sensitivity functions generated by the use of reduced order
observer based controllers. Let SOr(s, a) and Tor(s, a) be the generated
sensitivity and complementary sensitivity functions in the configuration of Fig. 3
when the loop is broken at the input points of the plant,

SOr(s, a) = Um+Cr(s, a)P(s)]-1

and

Tor(s, a) = 1m - SOr(s, a) = Um+Cr(s, a)P(s)]-ICr(s, a)P(s),

where Cr(s, a) is the transfer function of the reduced order observer based
controller. We have the following results analogous to Lemma 2.4.

Lemma 3.4. Consider the configuration of Fig. 3. Let the given non-strictly
proper plant be left invertible and of minimum phase. Then there exists a gain
Kr(a) such that as a-7 00,

SOrUw, a) -7 SF(jW)
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and

Tor(jw, a) ---+TF(jw).

Moreover, for any given value of a, we have the following bounds on all singular
values i= 1 to m of SOr(jw, a) and Tor(jw, a):

la;[SOr(jw, a)]-a;[SF(jw)]I ::S amax[Mrz(jw, a)]
amaASF(jW)]

and

Ia;[Tor(jw, a)]-ai[TF(jw)] I ::S amax[Mrz(jw, a)].
amaASF(jW) ]

Proof. It follows Chen, Saberi and Sannuti (1990).

4. Examples

Two examples are presented in this section to illustrate the theory of loop
transfer recovery for non-strictly proper systems developed in the previous
sections. As in the existing LTR literature, we give the maximum and minimum
singular value graphs of the target loop and achieved loop transfer matrices for
each example over a given range of w. We also include the plots of the maximum
singular values of the mismatch function between the target loop and achieved
loop transfer matrices in the case of ALTR, since it is the best way to check
whether true recovery has taken place or not (Chen, Saberi and Sannuti, 1990).

Example 1. Consider a non-strictly proper plant described by

which is square and invertible with two invariant zeros at Zl = - 2 and Zz= - 4.
The state feedback gain matrix is given as

F~[

19.0075
-13.5241

7.1266

-0.2864
0.0581

-2.2915

-15.2595
26.8185

-10.0804

0.2532
-0.1105

1. 4206

6.8147
- 2. 7557
- 2.7934

1.3794 3.1722

]

- 0.6243 - 6.2823 .
7.4193 0.3031

2 0 1 0 0 1 1 2 0 0

-1 2 0 0 0 0 0 1 0 0

3 2 -1 0 0 -2 1 1 0 0

A = I 2 -2 0 -4 2 0 -1 , B= 0 2 0"
0 2 3 0 -2 1 -1 0 3 0

1 0 2 -3 2 2 0 0 0 1

-1 -1 1 0 0 -1 1 0 -1 0

C [

0 0 0 0 0

n D [
O

H1 0 0 0 0 0
0 1 0 0 0 0
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We design ALTR via full order observer based controllers by using Kalman filter
formalism. The observer gain is obtained as

K(a) = pcl,

where P is the solution of the algebraic Riccati equation,

AlP + PAl - PClCIP + a2BIBl = 0

with AlJ BI and CI as defined in (2.3). The plots of singular values in Figs. 4(a)
and 4(b) clearly show that ALTR takes place as a increases.

Example 2. Consider the given plant,

50

~

.:0
~

~ Ot:.::------
;::S ---...

'8
b.()
ro

::E -50

Target loop

Achieved loop a= 102

--- Achievedloop a= 105

=-~"
".

'-.
"-

',,-
".

-100
10-1 10° 101

Frequency [rad/see]

102

(a)

30

~
~

Q)
-0
;::S...

'8
b.()
ro -10

::E
-20

-30
10-1

'-',
2M "

-- "101 , "'- -," ., "-., ,
""", ".---~-

amax{E(jw)} for a=102 ',-:-
--- amax{E(jw) } for a= 105, ,. ..."..

10° 101
Frequency [rad/sec]

0

102

(b)

Fig. 4.

5 0 9 -3 3 5 0 9
4 -9 2 9 7 -3 3 5

A = I 9 9 1 6 3, B= -5 2 2
6 -1 6 -8 9 2 -2 2
7 -1 8 -6 2 4 8 6
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c=
5 0 9 -3 3
5 -2 3 4 8
1 -2 1 -6 0 I'

1 5 -9 3 0

D=

991
640
3 5 1 I,

-3 1 1

which is left invertible with no invariant zeros. The state feedback gain matrix is
designed as

[

0.1238 -0.0853 -1.9687 1.0131 1.2659

]

F = 1.3416 -0.3102 2.1914 -0.0171 1.8150 .
3.3664 0.6067 3.7863 0.7023 2.2218

It is straightforward to verify that ELTR can be achieved by using a reduced
order observer based controller. The following reduced order observer based
controller, which achieves ELTR as shown in Fig. 5, is obtained by ATEA
method (asymptotic time-scale and eigenstructure assignment method de-
veloped by Saberi and Sannuti (1990»:

[

-0.2612 0.2885 0.2338 0.0274

]

+ 0.4462 -0.2353 -0.6571 0.2109 y.
0.9222 -0.4446 -1.3998 0.4776

20
. -*--*--' '''''

0 "'....
~ -- -. ..........:a -""..........
~ -20 ~ '~ '" ~....
] ~ ~
~ -40 ~
'2 --- Target loop '*, ....'O/J . '*...
::E-60 AchIevedloop ''', "

-80 ~...."
-100

10-2 10-1 10° 101 102 lO:J 104 105

Frequency [rad/sec]

Fig. 5.

[ -5.5331

4.4470

14.1642]
Zz = -6.2615 -12.1601 2.8991 Zz

-2.5236 -3.0757 -1.4197

[0.5631

-0.1482 -0.6093

0.8944]
+ 1. 4034 -0.5858 -3.1420 0.3465 y,

1. 9158 -1. 3809 -0.9479 0.7657

[ 0.4362

-0.3675

-0.5447]
-u = -1.3304 0.3803 2.8331 Zz

-3.1625 0.6465 4.1990
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5. Conclusions

The loop transfer recovery (LTR) methods for non-strictly proper systems,
using both full order and reduced order observers are developed in this paper.
We have converted the problem of loop transfer recovery design for a non-
strictly proper system into the one for a corresponding strictly proper system.
Hence, all the existing results of LTR can be directly applied. Two numerical
examples are presented to demonstrate the results.
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Appendix A: A Special Coordinate Basis (s.c. b) for Non-strictly Proper
Multivariable Linear Systems and Its Properties

Consider a linear system :J:,

.i = Ax + Bu, y = Cx + Du,

where x, y and u are respectively n-, p- and m-dimensionalstate, output and
input vectors. Without loss of generality, we assume that [B', D']' and [C, D]
are of full rank.

Theorem of s.c.b There exist nonsingular transformations rb rz and r3, an
integer KI~n, and integer indexes qi and Yi, i=O to KI, with Yo=O,such that

x = rlx, y = rzLYj, Y~]', u = r3[il', v']', x = [x~, xl" x:, xj] I,

Xb = [Xbl, XbZ, "', XbKI]', Xbi = [Xbli-l' XbZi-Z, "', XbiO]',

Xj = [X'lj, X2j' "', X~Jj]', Xij = [X'li-l, X2i-Z' "', xio]',

Yb = [Y'lb' Y~b' "', Y~Ib]" Yj = [Y~f' Y'lf' Y~j' "', Y~Jj]' ,

il = [ill)' il'l, "', il~I]" Xa = Aaaxa +. LajYj + LabYb'

Xb = Abbxb + LbjYf' Yib = CibXbi ==Xbli-l, Yb = CbXb,

Xc = Aeexe + Acaxa + LejYj + LebYb + Be v,
K/

YOj = EOaxa + EObXb + EOexe + .L EOjXjj + ilo.J=I

For each i =1 to KI,

Xij = Aijxij + LijYj + Bij[ ili + Eiaxa + EibXb + Eiexe + j~l EijXjj l
Yij = CijXij == Xli-I, Yj = CjXj.

Here, the last rows of Lij have zero elements and that Alf==O,

[
° IU-1JQi

J
,Aij = ° ° Bij= [ I~i l

Furthermore, the pair (Ace>B J is controllable and (Abb, Cb) is observable.
For clarity, the dimension of each variable is given now: xa, Xb, Xbi>Xbij, xn

Xj, Xij, Xij, il, ili, v, Yf' Yif' Yb and Yib are respectively of dimension na, nb' iYi,
Yi+j, nn nj, nij' qi+j' mu' qi' mv, Pj' qi' Pb and Yi, where

K/

P = L (q+Yi), n = na + nb + ne + nj,,=0 '
K/

mu = Pj = .L q.,,=0 ' mv = m - mu,
K/

Pb = P - Pj = .L Yi,,=1
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nil = Zqi'

KI

nl = L nil',=1

KI

nb = L ir.i=1 1

Property 1. The given system 2:is right invertible if and onlyif Xband hence
Ybare nonexistent, left invertible if and only if Xcand hence 'ifare nonexistent,
invertible, if and only if both Xband Xcare nonexistent.

Property 2.

Property 3.
detectable.

Invariant zeros of 2: are the eigenvalues of Aaa.

2: is left invertible and of minimum phase implies that 2: is

Appendix B: Proof of Lemma 2.2

Rewrite the transfer function of the given plant as

P(s) = [g~ }<PBo,<PBd+ [~ ~ l
(B.1)

Then, from (1.4), (2.6) and (B.1),

i(s) = C(s)P(s)

= F ( <P-1+KC +B F )-1
1 1 1 UI

X [(<P-1+BoCo+KC1)<PBo, (BoCO+KC1)<PBd

= F[In + (<Pi1+ KC 1)-1B IF Ul]-I( <Pi1+ KC 1)-1

x [(<Pi1+KC1)<PBo,(BoCO+KC1)<PBd

= F [1 +(<P-1+KC )-IB F ]
-1

n 1 1 1 UI

X [<PBo, (<P-1+BoCo+KC1)-I(BoCo+KC1)<PBd

= F[In+(<Pi1+KC1)-I[O, BdF]-1

X [<PBo, <PB1-(<Pi1+KC1)-IBd

= [Im+F(<Pi1+KC1)-I[O, Bd]-1

X [F<PBo, F<PB1-F(<Pi1+KC1)-IBd

= [Im+M(S)]-I[F<PB-M(s)].

(B.2)

(B.3)

(B.4)

Note that we use <Pi1= (sIn - A + Bo Co) = <p-1+ Bo Co in reducing some of the
above algebra. Also, to go from (B.2) to (B.3), we use matrix identity,

(<P-1+BoCo+KC1)-I(BoCo+KC1) = In - (<P-1+BoCo+KC1)-I<p-1.

Moreover, to go from (B.3) to (B.4), we use the identity

X[In+YX]-1 = [Im+Xy]-IX

for XERmxn and YERnxm. Thus, we have
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E(s) = L(s) - L(s)

= FcfJB - [lm+M(S)]-l[FcfJB-M(s)]

= [lm+M(S)]-l[(lm+M(s»FcfJB - FcfJB + M(s)]

= [lm+M(S)]-lM(s)(lm+FcfJB)

= M(s) [lm+M(S)]-l(lm+FcfJB).

Appendix C: Proof of Theorem 2.1

In view of conditions (2) and (3) of Theorem 2.1, it follows theorem of s. c.b
in Appendix A and Saberi and Sannuti (1990 b) that there exist nonsingular
transformations rl, r2 and r3 such that

x = rl x, y = rAY~f' Y~I' Y~]',

u = rduo, u]J', x = [x~, x;', xi]',

Xa = Aaaxa + LabYb + LalfYlf + LaofYol'

Yb = AbbXb + LblfYlf + LbofYof' Yb = CbXb,

Xf = Eaxa + Ebxb + Elfxf + EOfYof + Ul>

Ylf = Xf' YOf = COfx + Uo.

Here, the pair (Abb, Cb) is observable. Furthermore, A(Aaa) are the invariant
zeros of the given plant and hence in view of condition (2) of Theorem 2.1, they
are in C-.

Since (Abb, Cb) is observable, one can select a gain Kbb such that
A(Abb-KbbCb) are in the desired locations in C-. Also, one can always choose
a gain Kflf su£h that A(E If- Kflf) are in the desired locations in C-. Now
choose a gain K as

K~[~
Lalf Lab

]
Lblf Kbb ,
Kflf Kfb

where Kfb is an arbitrary matrix with appropriate dimensions. Finally, let

. --1
[Ko, K] = rlKr2 ,

where Ko and K are of dimension n x rand n x (p- r), respectively. It is now
straightforward to verify that Al - KC 1has eigenvalues in C- and that

F(cfJ1l+KCl)-lBl == 0

provided FBI ==O. Hence in view of Lemmas 2.2 and 2.3, ELTR is achieved.
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Appendix D: Proof of Lemma 3.2

In the reduced order observer based feedback control system of Fig. 3, at
first we want to evaluate the loop transfer function Lr(s) when the loop is broken
at the input point of the plant. For this purpose, consider the plant input u and
the controller output u as two separate variables. Then, from (3.1),

B12U12 = X2 - A22X2 - A21Xl - B02Y(j"

This implies

B12U12(S) = <Piix2(S) - A21Xl(S) - B02YO(s).

From (3.3), one has

KrY12(S) = Kr[CllXl(S)+C12X2(S)+Bo1Yo(s)].

Hence, we obtain

B12U12(S) = (<Pii+KrC12)X2(S) - (A21-KrCll)Xl(S)

- (B02-KrBo1)Yo(s) - Kry12(S). (D.1)

Then, from (3.7),

X2 = KrY12 + Z
= (A22-KrC12)X2 + B12U12 + (A21-KrCll)Xl

+ (B02-KrBo1)Yo + Kry12.

Hence,

X2(S) = (<Pii+KrC12)-1[(A21-KrCll)Xl(S)

+ (Bo2-KrBo1)Yo(s) + KrY12(S) + B12U12(S)]

and

-u(S) = F1xl(S) + F2x2(S)

= F1xl(S) + F2(<Pii+KrCd-1

x [(A21-KrCll)xl(S) + (B02-KrBo1)Yo(s)

+ Kry12(S) + B12U12(S)].

Thus

Um+F2(<Pii+KrA12)-1[0, 0, BdH -u(s)]

= F1xl(S) + F2(<Pii+KrC12)-1[(A21-Kr)Xl(S)

+ (B02-KrBo1)Yo(s) + Kry12(S)]
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and therefore

-u(s) = [lm+Mr(S)]-l[F1xl(S) + F2(CP2i+KrC12)-1

x [(A21-Kr)xl(S) + (B02-KrB01)Yo(S) + KrY12(s)]

- [lm+Mr(S)]-1(F1xl(S) + F2x2(S) - F2(CP2i+KrC12)-1

x [(CP2i+KrC12)X2(S) - (A21-Kr)Xl(S)

- (B02-KrB01)Yo(s)-Kry12(S)]),

where

(D.2)

Mr(s) = F2(CP2i+KrC12)-l[O, 0, B12].

Note that

Thus, (D.l) to (D.3) imply that

F1xl(S) + F2x2(S) = FCPBu(s). (D.3)

-u(s) = [lm+Mr(s)]-l[FCPBu(s) - F2(CP2i+KrC12)-lB12U12(S)]

= [lm+Mr(s)]-l[FCPB-Mr(s)]u(s).

Hence,

Lr(s) = [lm+Mr(s)]-l[FCPB-Mr(s)].

Then, we have

Er(s) = L(s) - Lr(s)

= [lm+Mr(s)]-l[(lm+Mr(s»FCPB - FCPB + Mr(s)]

= [lm+Mr(s)]-lMr(s)(lm+FCPB)

= Mr(s) [lm+Mr(s)]-l(lm+FCPB).
I I . I . . I I . . . . . .. . .. . ..
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