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Abstract

As a complement to some new breakthroughs on global almost disturbance decoupling problem with stability for nonlinear
systems, in a recent note, we identified a class of unstable zero dynamics that are allowed to be affected by disturbances. The class of
the unstable zero dynamics identified in that note is linear and have all the poles at the origin. In this paper, we enlarge such a class of
zero dynamics to include any linear system with all its poles in the closed left-half plane. The condition on the way the disturbance
affects this part of zero dynamics is also identified. This enlargement is due to a new scaling technique that views each pair of jw axis
zeros as a ‘‘generalized integrator’’ and transforms the zero dynamics into a number of chains of ‘‘generalized integrators’’. ( 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction and preliminaries

We revisit the problem of global almost disturbance
decoupling with stability for nonlinear systems of the
form,

xR "f (x)#g(x)u#p (x)w, y"h(x), (1)

where x3Rn is the state, u3R is the control input, w3R

is the disturbance, y3R is the regulated output, f, g, and
p are smooth vector fields with f (0)"0, and h is
a smooth function with h (0)"0. The problem of almost
disturbance decoupling with stability was originally for-
mulated and solved for linear systems by Willems (1981).
Since then various generalizations to nonlinear systems
have been made (see, for example, Saberi and Sannuti,
1988; Marino et al., 1989, 1994; Isidori, 1996a, b; Lin,

1998a and the references therein). The problem we are
to consider in this note is the following one (see, for
example, Isidori, 1995).

Definition 1 (¸
2
almost disturbance decoupling with global

asymptotic stability). The problem of ¸
2

almost distur-
bance decoupling with global asymptotic stability is said
to be solvable for system (1) if, for any given c'0, there
is a smooth feedback law u"u (x; c) with u (0; c)"0, such
that the corresponding closed-loop system

(a) has a globally asymptotically stable equilibrium at
x"0;

(b) has an ¸
2

gain, from the disturbance input w to the
regulated output y, that is less than or equal to c, i.e.,

P
=

0

y2 (t) dt4c2 P
=

0

w2(t) dt,

∀w3¸
2

and for x (0)"0 (2)

and all the states of the closed-loop system, and hence
the control u"u(x;c) are bounded.
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In this paper, we consider the problem of ¸
2

almost
disturbance decoupling with global asymptotic stability
for system (1) in the following special form;

zR"f
0
(z, m

1
)#p

0
(z, m

1
)w,

mQ
i
"m

i`1
#p

i
(z, m

1
, m

2
,2 , m

i
)w, i"1, 2,2 , r!1,

(3)
mQ
r
"u#p

r
(z, m

1
, m

2
,2 , m

r~1
, m

r
)w,

y"m
1

in which it is assumed that f
0
(0, 0)"0 and the dynamics

zR"f
0
(z, 0) (4)

is referred to as the zero dynamics of system (3) (Isidori,
1995). Throughout this note, we will also, by somewhat
abuse of terminology, refer to the first equation of Eq. (3)
as the zero dynamics equation.

Our result represents a generalization of our recent
note (Lin, 1998a) and a further complement to the recent
series of results (Marino et al., 1994; Isidori, 1995,
1996a, b). More specifically, it is shown in Marino et al.
(1994) that the problem of ¸

2
almost disturbance decou-

pling with global asymptotic stability is solvable if

(i) the equilibrium z"0 of the zero dynamics (4) is
globally asymptotically stable; and

(ii) p
0
(z, 0)"0,

and, under these conditions, feedback laws of high
gain type that solve the problem are also explicitly con-
structed. This result of Marino et al. (1994) was recently
generalized in Isidori (1996a) in the sense that Condition
(ii) is replaced by a weaker one. The requirement that the
zero dynamics be globally asymptotically stable (Condi-
tion (i)), however, remains unrelaxed.

More recently, the results of Marino et al. (1994) and
Isidori (1996a) are further generalized in Isidori (1996b)
to allow part of the zero dynamics to be unstable as long
as it satisfies certain stabilizability condition and its cor-
responding zero dynamics equation is unaffected by the
disturbance w. The zero dynamics equation (recall that
the first equation of Eq. (1) is referred to as the zero
dynamics equation) considered in Isidori (1996b) takes
the following cascade-connected form with two sub-
systems:

zR
a
"f

a
(z

a
, z

c
, m

1
)#p

a
(z

a
, z

c
, m

1
)w,

(5)
zR
c
"f

c
(z

c
, m

1
)

where the first one characterizes a ‘‘stable part’’ of the
zero dynamics (more precisely, z

a
"0 is a globally

asymptotically stable equilibrium of zR
a
"f

a
(z

a
, 0, 0)), and

the second one characterizes a possibly unstable but
stabilizable and disturbance unaffected part of the zero
dynamics. The conditions needed on both subsystems for
solving the problem of ¸

2
almost disturbance decoupling

with globally asymptotic stability can be made more

precise by recalling the following result from Isidori
(1996b). We note here that the bounded state property as
required by Definition 1, although not stated explicitly in
the previous formulation, is ensured by all the recent
designs (Marino et al., 1994; Isidori, 1995, 1996a, b; Lin,
1998a).

Theorem 1. Suppose that

(i) there exists a smooth real-valued function »
a
(z

a
), which

is positive definite and proper, such that

L»
a

Lz
a

[ f
a
(z

a
, z

c
, m

1
)#p

a
(z

a
, z

c
, m

1
)w]

4!a
a
( Dz

a
D )#c2

0
Dw D2#c2

0
D z

c
D2#c2

0
D m

1
D2 (6)

for some K
=

function a
a
and some positive real number

c
0

(here D ) D denotes the Euclidean norm and the class
K

=
consists of all functions a: R

50
PR

50
which are

continuous, strictly increasing, and satisfy a(0)"0 and
a (r)PR as rPR), and

(ii) there exists a smooth real-valued function v
c
(z

c
), with

v
c
(0)"0, and a smooth real-valued function »

c
(z

c
),

which is positive definite and proper, such that

L»
c

Lz
c

f
c
(z

c
, v

c
(z

c
))#D v

c
(z

c
) D24!a

c
( Dz

c
D ) (7)

for some K
=

function a
c
.

¹hen, the problem of ¸
2

almost disturbance decoupling
with global asymptotic stability is solvable for system (3)
with its first equation in the form of Eq. (5).

For use in the proof of our main result, we also recall
the following observation from Isidori (1996b).

Observation 1. ¼e note here the emphasis on that Eq. (6)
be true for some positive real number c

0
. Indeed what is

needed in the proof is that for the arbitrary positive number
c there exist »

a
and a

a
such that Eq. (6) hold. One observes

that the former is sufficient to guarantee the latter, for one
can multiply both sides of Eq. (6) by c2 /c2

0
and redefine

»
1

and a
a

accordingly.

As a complement to the above-mentioned results
where unstable zero dynamics is either not allowed to be
present or to be affected by disturbance, we observed in
a recent note (Lin, 1998a) that a certain class of unstable
zero dynamics is actually allowed to be affected by the
disturbance in solving the problem of ¸

2
almost distur-

bance decoupling with global asymptotic stability. The
class of disturbance affected unstable zero dynamics we
consider is linear and contains a chain of integrators of
arbitrary length with every integrator except the last one
affected by the disturbance. The key to arriving at this
result is to use low gain feedback to stabilize this distur-
bance affected unstable part of the zero dynamics.
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In this paper, we generalize the results of our recent
note (Lin, 1998a) by enlarging the class of disturbance
affected unstable zero dynamics to include any linear
system with all its poles in the closed left-half plane. This
enlargement is due to a new scaling technique that views
each pair of jw-axis zeros as a ‘‘generalized integrator’’
and transfers the zero dynamics into a number of chains
of ‘‘generalized integrators’’. After the main results sec-
tion, we will also provide some brief discussions on the
impossibility of allowing the exponentially unstable zero
dynamics to be affected by disturbance by invoking
relevant results of linear systems.

2. Main results

We consider system (3) with its first equation in the
form of

zR
a
"f

a
(z

a
, z

b
, m

1
)#p

a
(z

a
, z

b
, m

1
)w,

(8)

zR
b
"Az

b
#Bm

1
#p

b
(z

a
, z

b
, m

1
)w,

where z
b
"[z

b1
, z

b2
,2 , z

bq
]@, (A, B) is stabilizable, and

all the eigenvalues of A are in the closed left-half plane.
Without loss of generality, assume that all the eigen-
values of A are on the jw-axis. For if there are some
eigenvalues of A that are in the open left-half plane, their
corresponding dynamics can be viewed as part of z

a
.

Further, we assume that the pair (A, B) is in the following
canonical form:

A"

0 1 0 2 0

0 0 1 2 0

F F F } F

0 0 0 2 1

!a
q

!a
q~1

!a
q~2

2 !a
1

;

B"

0

0

F

0

1

(9)

We also made the following assumption on the distur-
bance vector field p

b
(z

a
, z

b
, m

1
).

Assumption 1. (i) ¹here exists a constant number d50
such that

Dp
b
(z

a
, z

b
, m

1
) D4d. (10)

(ii) For any z
a
, z

b
, m

1
,

p
b
(z

a
, z

b
, m

1
)3S (A), (11)

where S (A)"Yu|j(A)
ImMuI!AN.

Our main result is presented in a theorem as follows.

Theorem 2. Consider system (3) with its first equation in
the form of Eq. (8). If
(i) there exists a smooth real-valued function »

a
(z

a
), which

is positive definite and proper, such that

L»
a

Lz
a

[ f
a
(z

a
, z

b
, m

1
)#p

a
(z

a
, z

b
, m

1
)w]

4!a
a
( Dz

a
D )#c2

0
Dw D2#c2

0
D z

b
D2#c2

0
D m

1
D2 (12)

for someK
=

function a
a
and some positive real number

c
0
, and

(ii) Assumption 1 is satisfied;

then, the problem of ¸
2

almost disturbance decoupling with
global asymptotic stability is solvable.

Remark 1. We note here that in the case that all the
eigenvalues of A are at the origin the last row of A is zero
and hence the zero dynamics (8) reduces to the one
considered in Lin, (1996a). Also, Assumption 1 reduces to
the fact that the first q!1 elements of p

b
(z

a
, z

b
, m

1
) is

bounded by a constant while the last element of
p
b
(z

a
, z

b
, m

1
) is identically zero. Consequently, the main

result Theorem 2, includes that of Lin (1998a) as a special
case.

In the case that all functions in Eq. (3) are linear,
Assumption 1(ii) is a necessary condition for the solution
of the problem (Scherer, 1992; Schwartz et al., 1996). It
means that all states except those corresponding to the
last row [two row] of any [real] Jordan block of A can
be directly affected by disturbance. More specifically, let
¹3Rn and an integer k be such that

¹~1A¹"blkdiagMJ
1
, J

2
,2 , J

k
N,

where each block J
i
, i"1, 2,2 , k, has the following real

Jordan canonical form: if j
i
3j (A) is real,

J
i
"

j
i

1

} }

j
i

1

j
i

,

or if j
i
"k

i
#ju

i
3j(A) and jM

i
"k

i
!ju

i
3j (A) with

u
i
O0,

J
i
"

"
i

I
2

} }

"
i

I
2

"
i

, "
i
"C

k
i

!u
i

u
i

k
i
D .
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Correspondingly, let

¹~1p
b
(z

a
, z

b
, m

1
)"

p\
b1

(z
a
, z

b
, m

1
)

p\
b2

(z
a
, z

b
, m

1
)

F

p\
bk

(z
a
, z

b
, m

1
)

,

with p\
bi
(z

a
, z

b
, m

1
), i"1, 2,2, k, being further parti-

tioned in conformity with J
i
as

p\
bi
(z

a
, z

b
, m

1
)"

w

F

w

p\
biw

(z
a
, z

b
, m

1
)

.

Then Assumption 1(ii) implies p
biw

(z
a
, z

b
, m

1
),0,

i"1, 2,2 , k.

To prove the theorem, we need first to establish the
following four lemmas.

Lemma 1. Given a matrix pair (A, B) in the form of Eq. (9)
with all eigenvalues of A on the imaginary axis. ¸et
F(e)3R1]q be the unique matrix such that j(A!BF(e))"
!e#j (A), e3 (0, 1]. ¹hen, there exists a nonsingular
transformation matrix Q (e)3Rq]q such that

Q~1 (e) (A!BF (e))Q(e)"J (e)

"blkdiag MJ
0
(e), J

1
(e) ,2, J

l
(e)N, (13)

where

J
0
(e)"

!e 1

} }

!e 1

!e
q0]q0

(14)

and for each i"1 to l,

J
i
(e)"

Jw

i
I
2

} }

Jw

i
(e) I

2
Jw

i
(e)

2qi]2qi

,

Jw

i
(e)"C

!e
!b

1

b
i

!eD (15)

with b
i
'0 for all i"1 to l and b

i
Ob

j
for iOj.

Remark 2. We note here that F(e)P0 as eP0. Feed-
back with such a feedback gain F(e) is hence referred to
as low gain feedback.

For each i"1 to l, J
i
(0) can be viewed as a chain of

‘‘generalized integrators’’ of length q
i
, with each ‘‘general-

ized integrator corresponding to a pair of jw-axis poles.
As it will become clear shortly, such a notion of chains of
generalized integrators allows us to develop a certain
scaling technique (see the proof of Theorem 2).

Proof of Lemma 1. Let

det(sI!A#BF(e))"(s#e)q0
l

<
i/1

(s#e!jb
i
)qi

](s#e#jb
i
)qi. (16)

Then, the q
0

generalized eigenvectors A!BF (e) corre-
sponding to the eigenvalue j

0
(e)"!e are (Kailath, 1980)

Q
01

(e)"

1

j
0
(e)

j2
0
(e)

F

jq~2
0

(e)

jq~1
0

(e)

, Q
02

(e)"

0

1

2j
0
(e)

3j2
0
(e)

F

(q!1)jq~2
0

(e)

,2 ,

Q
0q0

(e)"

0

0

0

F

Cq0~1
q~2

jq~q0~1
0

(e)

Cq0~1
q~1

jq~q0
0

(e)

. (17)

Similarly, for i"1 to l, the q
i
generalized eigenvectors

of A!BF(e) corresponding to eigenvalues of j
i
(e)"

!e#jb
i
and jM

i
(e)"!e!jb

i
are given, respectively, by

Q
i1

(e)"

1

j
i
(e)

j2
i
(e)

F

jq~2
i

(e)

jq~1
i

(e)

, Q
i2

(e)"

0

1

2j
i
(e)

3j2
i
(e)

F

(q!1)jq~2
i

(e)

,2 ,

Q
iqi

(e)"

0

0

0

F

Cqi~1
q~2

jq~qi~1
i

(e)

Cqi~1
q~1

jq~qi
i

(e)

(18)

and their complex conjugates QM
ij
(e), j"1 to q

i
.
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We then form the following real nonsingular trans-
formation matrix;

Q(e)"[Q
0
(e) Q

1
(e) Q

2
(e) 2 Q

l
(e)], (19)

where

Q
0
(e)"[Q

01
(e) Q

02
(e) 2 Q

0q0
(e)]

and for i"1 to l,

Q
i
(e)"C

Q
i1
#QM

i1
2

Q
i1
!QM

i1
2j

Q
i2
#QM

i2
2

Q
i2
!QM

i2
2j

2

Q
iqi
#QM

iqi
2j

Q
iqi
!QM

iqi
2j D .

It can now be readily verified that

Q~1 (e) (A!BF (e))Q (e)"J(e), (20)

where J (e) is as defined in Eq. (13). This completes the
proof of Lemma 1. K

Lemma 2. ¸et

JI (e)"blkdiagMJI
0
, JI

1
(e) ,2 , JI

l
(e)N, (21)

where

JI
0
"

!1 1

} }

!1 1

!1
q0]q0

(22)

and for each i"1 to l,

JI
i
(e)"

JI w

i
(e) I

2
} }

JI w
i
(e) I

2
JI w
i
(e)

2qi]2qi

Jw

i
(e)"C

!1

!b
i
/e

b
i
/e

!1D (23)

with b
i
'0 for all i"1 to l and b

i
Ob

j
for iOj. ¹hen

the unique positive-definite solution PI to the ¸yapunov
equation

JI (e)TPI #PI JI (e)"!I (24)

is independent of e.

Proof of Lemma 2. We observe that the solution PI to the
Lyapunov equation (24) is of block diagonal form

PI "blkdiagMPI
0
, PI

1
(e), PI

2
(e) ,2 , PI

l
(e)N, (25)

where PI
0

is the unique positive-definite solution to the
Lyapunov equation

JI T
0
PI

0
#PI

0
JI
0
"!I (26)

and, for i"1 to l, PI
i
(e) is the positive-definite solution to

the Lyapunov equation

JI T
i

(e)PI
i
#PI

i
JI
i
(e)"!I. (27)

Clearly, PI
0

is independent of e. It remains to show that
for each i"1 to l, PI

i
(e) is also independent of e. To this

end, we notice that

¹~1
i

JI
i
(e)¹

i
"blkdiagMJ`

i
(e), J~

i
(e)N, (28)

where

J`
i

(e)"

!1#j bie 1

} }

} 1

!1#j bie

, (29)

J~
i

(e)"JM `
i

(e)"

!1!jbie 1

} }

} 1

!1!j bie

(30)

and the nonsingular transformation matrix ¹
i
is given by

¹
i
"

1

j

1

!j
1

j

1

!j

} }

1

j

1

!j
2qi]2qi

(31)

Noting that

eJ`i (e)t"e~t`jbi@e

1 t t2

2! 2

1 t 2

} }

1

,

e(J`
i (e))*t"e~t~jbi@e

1

t 1

t2

2
t 1

F F F } 1

, (32)

we have

e(J`i (e))*teJ`
i (e)t"e~2t

1 t t2

2! 2

t 1#t2 2 2

t2

2! F F }

(33)
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is independent of e. Similarly,

e(J~
i (e))*teJ~

i (e)t"e~2t

1 t t2

2! 2

t 1#t2 2 2

t2

2! F F }

(34)

is also independent of e.
Hence, using the fact that ¹*

i
¹
i
"2I

2qi
, we have

PI
i
(e)"P

=

0

eJI Ti (e)teJI i(e)t dt

"2P
=

0

(¹~1
i

)*blkdiagMe(J`i (e))*teJ`
i (e)t ,

e(J~
i (e))*teJ~

i (e)tN¹~1
i

dt (35)

and is independent of e. K

Lemma 3. ¸et p
b
(z

a
, z

b
, m

1
) satisfy Assumption 1. ¸et Q(e)

be as given in the proof of ¸emma 1 and B be as given in
Eq. (8). Also let

Q~1 (e)p
b
(z

a
, z

b
, m

1
)"pN

b
(z

a
, z

b
, m

1
; e), Q~1 (e)B"BM (e).

(36)

¹hen, there exists a dM 50 and a bN 50, both independent of
e, such that for sufficiently small e'0,

DpN
b
(z

a
, z

b
, m

1
; e) D4dM , DBM (e) D4bN , ∀z

a
, z

b
, m

1
. (37)

Moreover, if we partition pN
b
(z

a
, z

b
, m

1
; e) according to that

of J (e) in Eq. (13), as

pN
b
(z

a
, z

b
, m

1
; e)"

pN
b0

(z
a
, z

b
, m

1
; e)

pN
b1

(z
a
, z

b
, m

1
; e)

F

pN
pl

(z
a
, z

b
, m

1
; e)

,

pN
b0

( ) )"

pN
b01

( ) )

pN
b02

( ) )

F

pN
b0q0

( ) )
q0]1

, pN
bi
( ) )"

pN
bi1

( ) )

pN
bi2

( ) )

F

pN
biqi

( ) )
2qi]1

, (38)

then there exists a dM
0
50, independent of e, such that, for

sufficiently small e'0,

DpN
biqi

(z
a
, z

b
, m

1
; e) D4dM

0
e, ∀z

a
, z

b
, m

1
and

∀i"0, 1,2 , l. (39)

Proof of Lemma 3. The existence of a dM 50 and a bM that
satisfy Eq. (37) follows readily from Item (i) of Assump-
tion 1 and the fact that Q(e) is a polynomial matrix in
e and Q(0), being a transformation matrix that takes
A into its real Jordan canonical form, is nonsingular (and
hence Q~1(e) is continuously differentiable in e).

To show the existence of dM
0
50 that satisfies Eq. (39),

we note that Item (ii) of Assumption 1 implies that, for
each i"0 to l,

DpN
biqi

(z
a
, z

b
, m

1
; 0) D"0, ∀z

a
, z

b
, m

1
. (40)

The existence of such a dM
0

now follows trivially from the
continuous differentiability of Q~1(e). K

Lemma 4. ¸et A, B, F(e), Q(e), l, q
i
for i"0 to l, be as defined

in ¸emma 1 and its proof. Define a scaling matrix S(e) as

S (e)"blkdiagMS
0
(e), S

1
(e), S

2
(e),2, S

l
(e)N. (41)

where S
0
(e)"diagMeq0~1, eq0~2,2, e, 1N and for i"1 to l,

S
i
(e)"blkdiagMeqi~1I

2
, eqi~2I

2
,2, eI

2
, I

2
N.

¹hen, there exists a i50 independent of e such that

DF (e)Q(e)S~1(e) D4ie. (42)

Proof of Lemma 4. Observe that

F(e)Q (e)S~1 (e)"[F(e)Q
0
S~1
0

(e) F (e)Q
1
S~1
1

(e) 2

F (e)Q
l
(e)S~1

l
(e)], (43)

where Q
0
(e) and Q

i
(e) are defined in Eq. (19). We next

recall from Lin (1998b, equation (2.2.17)) that for each
i"0 to l and for each j"1 to q

i
, there exists a i

ij
50,

independent of e, such that,

DF (e)Q
ij
(e) D4i

ij
eqi~j`1, ∀e3(0, 1]. (44)

It is now clear that there exists a i
0
50 such that

DF (e)Q
0
(e)S~1

0
(e) D4i

0
e, ∀e3(0, 1]. (45)

For each i"1 to l, noting the definition of Q
i
(e), it is also

straightforward to verify that there exists a i
i
50, inde-

pendent of e, such that

DF (e)Q
i
(e)S~1

i
(e) D4i

i
e, ∀e3(0, 1]. (46)

The results of the Lemma now follows readily. K

We are now ready to prove our main result Theorem 2.

Proof of Theorem 2. We begin by defining

u
b
(z

b
)"!F (e)z

b
, e3 (0, 1], (47)

where F(e) is such that j(A!BF (e))"!e#j(A) . Such
an F(e) exists and is unique since the pair (A, B) is
controllable and is of single input.

We next rename the output of the system as

yJ "m
1
!u

b
(z

b
)"m

1
#F (e)z

b
. (48)

With this new output yJ , we define a new set of state
variables for the system, zJ

a
, zJ

b
, mI

1
, mI

2
,2, mI

r
, as

zJ
a
"z

a
,

zJ
b
"S (e)Q~1(e)z

b
,

mI
1
"yJ "m

1
#F (e)z

b
,

mI
2
"m

2
#F (e)Az

b
#F (e)Bm

1
, (49)

F

mI
r
"m

r
#F (e)Ar~1z

b
#F (e)Ar~2Bm

1
#F (e)Ar~3Bm

2
#2#F(e)Bm

r~1
,
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where Q (e) is as defined in the proof of Lemma 1 and S(e)
is as defined in Lemma 4.

We also choose a pre-feedback law as

u"!F (e)Arz
b
!F (e)Ar~1Bm

1
!F (e)Ar~2Bm

2

!2!F(e)Bm
r
#uJ . (50)

Under this pre-feedback law, it follows from Lemma 1
that the closed-loop system in the new state variables can
be rewritten as follows:

zJQ
a
"f

a
(zJ

a
, Q(e)S~1 (e)zJ

b
, mI

1
#u

b
(Q (e)S~1(e)zJ

b
))

#p
a
(zJ

a
, Q(e)S~1zJ

b
, mI

1
#u

b
(Q (e)S~1(e)zJ

b
))w,

zJQ
b
"eJI (e)zJ

b
#BI (e)mI

1
#epJ

b
(zJ

a
, zJ

b
, mI

1
; e)w,

mI Q
1
"mI

2
#pJ

1
(zJ

a
, zJ

b
, mI

1
)w ,

(51)

mI Q
2
"mI

3
#pJ

2
(zJ

a
, zJ

b
, mI

1
, mI

2
)w,

F

mI Q
r~1

"mI
q
#pJ

r~1
(zJ

a
, zJ

b
, mI

1
, mI

2
,2, mI

r~1
)w,

mI Q
r
"uJ #pJ

r
(zJ

a
, zJ

b
, mI

1
, mI

2
,2, mI

r
)w,

where JI (e) is as defined in Lemma 2,

BI (e)"S(e)Q~1(e)B,

pJ
b
(zJ

a
, zJ

b
, mI

1
;e)"S (e)Q~1 (e)p

b
(zJ

a
, Q(e)S~1(e)zJ

b
, mI

1

#u
b
(Q (e)S~1(e)zJ

b
))/e

and pJ
i
(zJ

a
, zJ

b
, mI

1
, mI

2
,2, mI

i
) for i"1 to r, are defined in an

obvious way. For later use, we note that Lemma 3 im-
plies that, for sufficiently small e'0,

DpJ
b
(zJ

a
, zJ

b
, mI

1
; e) D4dI , ∀zJ

a
, zJ

b
, mI

1
. (52)

We now observe that system (51) is in the form of Eq.
(3) and (5) with the first equation of Eq. (5) corresponding
to the dynamics of zJ

a
and zJ

b
and the second equation of

Eq. (5) non-existent. We hence can apply Theorem 1 to
system (5). Condition (ii) of Theorem 1 is automatically
satisfied. To verify Condition (i) of Theorem 1, we will
show that there exists an e*3 (0, 1] such that for each
e3(0, e*], there exists a »

ab
(zJ

a
, zJ

b
) and a

ab
, and the follow-

ing inequality corresponding to (6) holds

L»
ab

LzJ
a

[ f
a
(zJ

a
, Q (e)S~1(e)zJ

b
, mI

1
#u

b
(Q(e)S~1(e)zJ

b
))

#p
a
(zJ

a
, Q(e)S~1(e)zJ

b
, mI

1
#u

b
(Q (e)S~1 (e)zJ

b
))w]

#

L»
ab

LzJ
b

[eJI (e)zJ
b
#BI (e)mI

1
#epJ

b
(zJ

a
, zJ

b
, mI

1
)w]

4!a
ab

( D[zJ T
a
, zJ T

b
]T D )#e2DwD2#e2 D mI

1
D2. (53)

Let us choose

»
ab

(zJ
a
, zJ

b
)"e2qN `6»

a
(zJ

a
)#e5zJ T

b
PI zJ

b
, qN " max

i/0,1 ,2 ,l

q
i
, (54)

where the function »
a
is as given by Condition (i) of the

theorem, PI is the positive-definite solution of the follow-
ing Lyapunov function:

JI (e)TPI #PI JI (e)"!I (55)

and, by Lemma 2, is independent of e. Noting that
u
b
(Q (e)S~1(e)zJ

b
)"!F (e)Q(e)S~1(e)zJ

b
, it follows from

Eqs. (12), (55), (52), and Lemma 4 that for sufficiently
small e'0,

L»
ab

LzJ
a

[ f
a
(zJ

a
, Q(e)S~1(e)zJ

b
, mI

1
#u

b
(Q(e)S~1 (e)zJ

b
))

#p
a
(zJ

a
, Q(e)S~1(e)zJ

b
, mI

1
#u

b
(Q (e)S~1 (e)zJ

b
))w]

#

L»
ab

LzJ
b

[eJI (e)zJ
b
#BI (e)mI

1
#epJ

b
(zJ

a
, zJ

b
, mI

1
)w]

4!e2qN `6a
a
( D zJ

a
D )#e2qN`6c2

0
Dw D2

#e2q6 `6c2
0
DQ(e) D2 DS~1 (e) D2DzJ

b
D2

#e2qN `6c2
0
[2 D mI

1
D2#2 DF (e)Q (e)S~1 (e) D2 DzJ

b
D2]

!e6 D zJ
b
D2#2e5zJ T

b
PI BI (e)mI

1
#2e6zJ T

b
PI pJ

b
(zJ

a
, zJ

b
, mI

1
)w

4!e2qN `6a
a
( D zJ

a
D )![e6!e7!e8!e8c2

0
DQ(e) D2

!2e2qN `8i2c2
0
] DzJ

b
D2

#[e2qN`6c2
0
#e4dI 2 DPI D2] Dw D2#[2e2qN`6c2

0

#e3 DPI D2bM 2] DmI
1
D2. (56)

It is straightforward to verify that there exists an
e*3(0, 1] such that for all e3(0, e*],

e6!e7!e8!e8c2
0
DQ(e) D2!2e2qN`8i2c2

0
5e6/2,

e2qN `6c2
0
#e4dI 2 DPI D24e2 , (57)

2e2qN `6c2
0
#e3 DPI D2bM 24e2 .

Also note that, for every e3(0, e*], the function
¼(zJ

a
, zJ

b
)"e2qN `6a

a
( D z

a
D)#1/2e6 DzJ

b
D2 is continuous pos-

itive definite and is radially unbounded. It follows from
Khalil (1996, Lemma 3.5) that there exists a K

=
function

a
ab

such that ¼(zJ
a
, zJ

b
)5a

ab
( D[zJ T

a
, zJ T

b
]T D ). Thus, with this

choice of a
ab

, Eq. (53) is satisfied for every e3(0, e*].
We now apply Theorem 1 to system (51) and obtain

that, for every e3(0, e*], there exists a smooth state
feedback uJ (zJ

a
, zJ

b
, mI

1
, mI

2
,2, mI

r
; e) such that the closed-

loop system consisting of system (51) and this feedback
law

(a) has a globally asymptotically stable equilibrium at
the origin;

(b) has an ¸
2

gain, from the disturbance w to the re-
named output yJ "mI

1
, that is less than or equal to e,

i.e.,

P
=

0

yJ 2 (t) dt"P
=

0

mI 2
1
(t) dt4e2P

=

0

w2(t) dt. (58)
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Moreover, the state (zJ
a
, zJ

b
, mI

1
, mI

2
,2, mI

r
), and hence the

control uJ , are bounded.
To obtain the ¸

2
gain from the disturbance w to the

regulated output y, we examine the second equation of
Eq. (51) with mI

1
viewed as a disturbance. For the

Lyapunov function »
b
(zJ

b
)"zJ T

b
PI zJ

b
, we have

L»
b

LzJ
b

[eJI (e)zJ
b
#BI (e)mI

1
#epJ

b
(zJ

a
, zJ

b
, mI

1
)w]

4!e DzJ
b
D2#2zJ T

b
PI BI (e)mI

1
#2ezJ T

b
PI pJ

b
(zJ

a
, zJ

b
, mI

1
)w

4!

e
2

DzJ
b
D2#

4

e
bM 2DPI D2 D mI

1
D2#4edI 2 DPI D2w2 . (59)

Integrating both sides of the above inequality and using
»
b
(0)"0 and Eq. (58), we obtain that

P
=

0

DzJ
b
(t) D2 dt48[bM 2#dI 2] DPI D2 P

=

0

w2 (t) dt. (60)

Recalling that y"m
1
"mI

1
!F(e)Q(e)S~1(e)zJ

b
and the

fact that DF(e)Q (e)S~1 (e)zJ
b
D4ie (see Lemma 4), it fol-

lows from Eqs. (58) and (60) that

P
=

0

y2(t) dt4P
=

0

(2mI 2
1
(t)#2e2i2 DzJ

b
D2(t)) dt.

4[2#16i2(bN 2#dI 2) DPI D2] e2 P
=

0

w2 (t) dt,

(61)

Finally, for any given c'0, let e3 (0, e*] be such that

[2#16i2(bM 2#dI 2) DPI D2] e24c2 (62)

to complete the proof.

3. Discussions and conclusions

We have generalized a recent result on almost distur-
bance decoupling with global asymptotic stability for
nonlinear systems (Lin, 1998a) by allowing a larger class
of disturbance affected unstable zero dynamics. In com-
parison with Lin (1998a) where the disturbance affected
unstable zero dynamics has all its poles at the origin, the
current paper requires only that its poles be in the closed-
left plane, thus allowing the unstable zeros on the jw-axis.
A natural question is whether it is still possible to allow
the disturbance affected unstable zero dynamics has
poles in the open right half plane. The answer turns out
to be negative. To see this, we consider the linear counter-

part of system (3) and (8),

zR
a
"A~z

a
#AGz

b
#B~m

1
#E~w,

zR
b
"A`z

b
#B`m

1
#E`w,

(63)
mQ
i
"m

i`1
#E

i
w, i"1, 2,2 , r,

mQ
r
"u#E

r
w,

where A~ is asymptotically stable and A` is exponen-
tially unstable. It follows from Scherer (1992) or Schwartz
et al. (1996) that a necessary condition for the almost
disturbance decoupling problem for the above system to
be solvable is that E`,0, i.e., the exponentially unstable
zero dynamics should not be affected by any disturbances.
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