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State feedback and full order/reduced order measurement feedback controllers are explicitly con-
structed that solve the H

=
almost disturbance decoupling problems for general linear discrete-time

systems. Keys to the explicit construction of these controllers are structural decompositions of the
systems and a low gain feedback design technique.

Abstract

In this paper, we construct feedback controllers, explicitly parameterized in a single parameter e, that solve the well-known
H

=
almost disturbance decoupling problem with measurement feedback and with internal stability (H

=
-ADDPMS) for discrete-time

linear systems. In particular, we explicitly construct parameterized solutions for the following three cases: the full state feedback, the
full information feedback and the general measurement output feedback. The "rst two cases have static solutions while the last one
has only dynamic solutions. Both the full order and the reduced order measurement feedback controllers are presented for the latter
case. The problem considered in this paper is general and complete. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We consider the problem of H
=

almost disturbance
decoupling with measurement feedback and internal
stability for discrete-time linear systems. The problem of
almost disturbance decoupling has a vast history behind
it, occupying a central part of classical as well as modern
control theory. Several important problems, such as
robust control, decentralized control, non-interactive
control, model reference or tracking control, H

2
and

H
=

suboptimal control problems can all be recast into
an almost disturbance decoupling problem. Roughly
speaking, the basic almost disturbance decoupling prob-
lem is to "nd an output feedback control law such that in
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the closed-loop system the disturbances are quenched,
say in an ¸

p
sense, up to any pre-speci"ed degree of

accuracy while maintaining internal stability. Such
a problem was originally formulated by Willems (1981,
1982) for continuous-time systems and labeled as
ADDPMS (the almost disturbance decoupling problem
with measurement feedback and internal stability). The
pre"x H

=
in the acronym H

=
-ADDPMS is used to

specify that the degree of accuracy in disturbance
quenching is measured in ¸

2
gain.

There is extensive literature on the almost disturbance
decoupling problem for continuous-time systems (see, for
example, Ozcetin, Saberi & Sannuti, 1992; Scherer, 1992;
Trentlman, 1986; Weiland & Willems, 1989, and the
references therein). Recently, we have proposed solutions,
which are explicitly parameterized in a single parameter
e, to this well-known problem for continuous-time sys-
tems (Chen, Lin & Hang, 1998). The problem considered
in Chen et al. (1998) is general and complete in that the
system is allowed to have invariant zeros on the imagi-
nary axis. In contrast, the problem of almost disturbance
decoupling for general discrete-time systems is less
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studied. Only very recently has the necessary and su$-
cient conditions under which the H

=
-ADDPMS for gen-

eral discrete-time systems is solvable been derived by
Chen, He and Chen (1999). As in Chen et al. (1998), the
problem considered in Chen et al. (1999) is general in that
the system is allowed to have invariant zeros on the unit
circle. Under the solvability conditions of Chen et al.
(1999), the problem of constructing feedback laws that
solve the H

=
-ADDPMS for discrete-time linear systems,

however, remains unattempted. The objective of this pa-
per is to present algorithms for the explicit construction
of feedback laws that solve the H

=
-ADDPMS for gen-

eral discrete-time systems whose subsystems are allowed
to have invariant zeros on the unit circle.

More speci"cally, we consider the H
=

-ADDPMS for
the following discrete-time linear system:

dx"Ax#Bu#Ew,

&: y"C
1
x#D

1
w, (1)

h"C
2
x#D

2
u#D

22
w,

where x3Rn is the state, u3Rm is the control input, y3Rl

is the measurement, w3Rq is the disturbance and h3Rp is
the output to be controlled, A, B,E,C

1
, C

2
,D

1
,D

2
, and

D
22

are constant matrices of appropriate dimensions,
and "nally, here and elsewhere in this paper, we suppress
the running index k in x(k) and use dx to denote x(k#1)
of the left-hand side of a di!erence equation.

For easy reference in future development, throughout
this paper, we de"ne &

P
to be the subsystem character-

ized by the matrix quadruple (A,B, C
2
, D

2
) and &

Q
to be

the subsystem characterized by the matrix quadruple
(A,E,C

1
, D

1
). Dynamic feedback control laws of the fol-

lowing form are investigated:

&
c
:

dx
c
"A

c
x
c
#B

c
y,

u"C
c
x
c
#D

c
y.

(2)

The controller &
c
of (2) is said to be internally stabilizing

when applied to the system &, if the following matrix is
asymptotically stable:

A
#-

:"C
A#BD

c
C

1
BC

c
B

c
C

1
A

c
D, (3)

i.e., all its eigenvalues lie on the open unit disc. Denote by
¹

hw
the corresponding closed-loop transfer matrix from

the disturbance w to be controlled output h, i.e.,

¹
hw

(z)"[C
2
#D

2
D

c
C

1
D

2
C

c
]

AzI!C
A#BD

c
C

1
BC

c
B
c
C

1
A

c
DB

~1

C
E#BD

c
D

1
B
c
D

1
D

#D
2
D

c
D

1
#D

22
. (4)

The H
=

norm of the transfer matrix ¹
hw

is given by

DD¹
hw

DD
=

:" sup
u | *0,n+

p
.!9

[¹
hw

(e+u)], (5)

where p
.!9

[ ) ] denotes the maximal singular value. Then
the general H

=
-ADDPMS for the given discrete-time

system & of (1) can be formally de"ned as follows.

De5nition 1.1. The general H
=

almost disturbance de-
coupling problem with measurement feedback and with
internal stability (the general H

=
-ADDPMS) for (1) is

said to be solvable if, for any given scalar c'0, there
exists at least one controller of the form (2) such that,

1. in the absence of disturbance, the closed-loop system
comprising system (1) and the controller (2) is asymp-
totically stable, i.e., the matrix A

#-
as given by (3) is

asymptotically stable;
2. the closed-loop system has an l

2
-gain, from the distur-

bance w to the controlled output h, that is less than or
equal to c, i.e.,

DDhDD
l2
4cDDwDD

l2
, ∀w3l

2
and for (x(0),x

c
(0))"(0, 0).

(6)

Equivalently, the H
=

-norm of the closed-loop transfer
matrix from w to h, ¹

hw
, is less than or equal to c, i.e.,

DD¹
hw

DD
=
4c.

We referred to such a problem as the general
H

=
-ADDPMS since our solution does not require the

subsystems of (1) to have no invariant zeros in the unit
circle.

The main objective of this paper is to explicitly con-
struct feedback control laws that solve the general H

=
-

ADDPMS for discrete-time systems. The outline of this
paper is as follows: Section 2 recalls the background
materials on the solvability conditions of the general
H

=
-ADDPMS for discrete-time systems and the special

coordinate basis of linear systems. Section 3 deals with
the design of feedback control laws for the special case
that full state or full information is measured for feed-
back. Section 4 deals with the construction of both full
and reduced order measurement feedback controllers.
Concluding remarks are made in Section 5.

Throughout this paper, the following notation will
also be used: X@ denotes the transpose of matrix X; DXD
denotes the 2-norm of matrix X; I denotes an identity
matrix with appropriate dimensions; R is the set of all
real numbers; C is the set of all complex numbers;
C_, Cl and Cc are, respectively, the open unit disc,
the unit circle and the set of complex numbers outside the
unit circle; Ker(X) is the kernel of X; Im(X) is the image
of X; j(X) is the set of eigenvalues of a real square matrix
X; Xs is the generalized inverse of X; and p

.!9
(X) denotes

the maximal singular value of matrix X.
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2. Background materials and preliminary results

In this section, we recall the necessary and su$cient
conditions of Chen et al. (1999) under which the general
H

=
-ADDPMS for a discrete-time system is solvable and

the special coordinate basis (SCB) of Sannuti and Saberi
(1987) and Saberi and Sannuti (1990). The latter serves
as a basic tool in our development of algorithms for
constructing control laws that solve the general
H

=
-ADDPMS.

2.1. Solvability conditions for discrete-time general
H

=
-ADDPMS

In order to state the necessary and su$cient conditions
for solving the general H

=
-ADDPMS for discrete-time

systems, we need the following geometric subspaces.

De5nition 2.1. Consider a linear time-invariant system
&H characterized by a matrix quadruple (AH ,BH ,CH , DH).
The weakly unobservable subspaces of &H , V_, and the
strongly controllable subspaces of &H , S_, are de"ned
as follows:

1. V_(&H ) is the maximal subspace of Rn which
is (AH#BHFH )-invariant and contained in
Ker(CH#DHFH ) such that the eigenvalues of
(AH#BHFH )DV_ are contained in C_XCl for some
constant matrix FH .

2. S_(&H ) is the minimal (AH#KHCH)-invariant sub-
space of Rn containing Im(BH#KHDH) such that the
eigenvalues of the map which is induced by
(AH#KHCH) on the factor space Rn/S_ are con-
tained in C_XCl for some constant matrix KH .

De5nition 2.2. Consider a linear system &H characterized
by a quadruple (AH ,BH , CH ,DH ). For any j3C, we de"ne

Sj(&H ) :"Gx3CnK&u3Cn`m: A
x

0B"C
AH!jI BH

CH DH
DuH

(7)

and

Vj(&H ) :"Gx3CnK&u3Cm: 0"C
AH!jI BH

CH DH
DA

x

uBH.
(8)

Vj(&H ) and Sj(&H ) are associated with the so-called
state zero directions of &H if j is an invariant zero of &H .

The following results are mainly due to Chen et al.
(1999).

Theorem 2.1. Consider the discrete-time linear system & as
given by (1) with the measurement output being

y"A
x

wB, or C
1
"A

I

0B, D
1
"A

0

IB, (9)

i.e., all state variables and disturbances ( full information)
are measured and are available for feedback. The general
H

=
-ADDPMS is solvable if and only if the following condi-

tions are satisxed:

(a) (A,B) is stabilizable.
(b) Im(D

22
)LIm(D

2
), i.e., D

22
#D

2
S"0, where S"

!(D@
2
D

2
)sD@

2
D

22
.

(c) Im(E#BS)LMV_(&
P
)#B Ker(D

2
)NWM5

@j@/1
Sj (&P

)N, where S"!(D@
2
D

2
)sD@

2
D

22
.

The result for the general measurement feedback case
is given in the next.

Theorem 2.2. Consider the discrete-time linear system & as
given by (1). The H

=
-ADDPMS for (1) is solvable by the

control law of (2) if and only if the following conditions are
satisxed:

(a) (A,B) is stabilizable.
(b) (A,C

1
) is detectable.

(c) D
22

#D
2
SD

1
"0, where S"!(D@

2
D

2
)sD@

2
D

22
D@

1
(D

1
D@

1
)s.

(d) Im(E#BSD
1
)LMV_(&

P
)#B Ker(D

2
)NWM5

@j@/1
Sj (&P

)N,
where S"!(D@

2
D

2
)sD@

2
D

22
D@

1
(D

1
D@

1
)s.

(e) Ker(C
2
#D

2
SC

1
)MMS_(&

Q
)WC~1

1
MIm(D

1
)NNXM6

@j@/1
Vj (&Q

)N,
where S"!(D@

2
D

2
)sD@

2
D

22
D@

1
(D

1
D@

1
)s.

(f ) S_(&
Q
)LV_(&

P
).

The following result deals with the case when only
strictly proper measurement feedback laws are used.

Theorem 2.3. Consider the discrete-time linear system & as
given by (1). The H

=
almost disturbance decoupling prob-

lem with internally stability and with a strictly proper
measurement feedback law, i.e., the control law of the form
(2) with D

c
"0, for (1) is solvable if and only if the following

conditions are satisxed:

(a) (A,B) is stabilizable.
(b) (A,C

1
) is detectable.

(c) D
22

"0.
(d) Im(E)LV_(&

P
)WM5

@j@/1
Sj(&P

)N.
(e) Ker(C

2
)MS_(&

Q
)XM6

@j@/1
Vj(&Q

)N.
(f ) S_(&

Q
)LV_(&

P
).

(g) AS_(&
Q
)LV_(&

P
).

The following remark concerns the full state feedback
case.
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Remark 2.1. For special case when all the states of the
system (1) are measured and available for feedback,
i.e., C

1
"I and D

1
"0, it can be easily derived from

Theorem 2.2 that the H
=

-ADDPMS is solvable if and
only if the following conditions are satis"ed: (a) (A,B) is
stabilizable, (b) D

22
"0, and (c) Im(E)LV_(&

P
)W

M5
@j@/1

Sj (&P
)N.

2.2. Special coordinate basis of linear systems

Consider a discrete-time linear time-invariant system
&H characterized by the quadruple (AH , BH ,CH , DH) or in
the state space form

dx"AHx#BHu,

y"CHx#DHu,
(10)

where x3Rn, u3Rm and y3Rp are the state, the input
and the output of &H . It is simple to verify that there exist
non-singular transformations ; and < such that

;DH<"C
I
m0

0

0 0D, (11)

where m
0

is the rank of matrix DH . In fact, ; can be
chosen as an orthogonal matrix. Hence hereafter, with-
out loss of generality, it is assumed that the matrix
DH has the form given on the right-hand side of (11). One
can now rewrite the system of (10) as

dx"AHx#[BH0 BH1]A
u
0

u
1
B,

(12)

A
y
0

y
1
B"C

CH0
CH1
Dx#C

I
m0

0

0 0DA
u
0

u
1
B,

where the matrices BH0 , BH1 , CH0 and CH1 have appro-
priate dimensions. We have the following theorem.

Theorem 2.4 (SCB). Given the linear system &H of (10),
there exist

1. coordinate-free non-negative integers n~
a
, n0

a
, n`

a
, n

b
, n

c
,

n
d
, m

d
4m!m

0
and q

i
, i"1,2,m

d
, and

2. non-singular state, output and input transformations
!
4
, !

0
and !

*
which take the given &H into a special

coordinate basis that explicitly displays various proper-
ties of &H .

The special coordinate basis is described by the following
set of equations:

x"!
4
x, y"!

0
y, u"!

*
u, (13)

x"A
x
a

x
b

x
c

x
d
B, x

a
"A

x~
a

x0
a

x`
a
,B x

d
"A

x
1

x
2
F

x
md

B, (14)

y"A
y
0

y
d

y
b
B, y

d
"A

y
1

y
2
F

y
md

B, u"A
u
0

u
d

u
c
B, u

d
"A

u
1

u
2
F

u
md

B (15)

and

dx~
a
"A~

aa
x~
a
#B~

0a
y
0
#¸~

ad
y
d
#¸~

ab
y
b
, (16)

dx0
a
"A0

aa
x0
a
#B0

0a
y
0
#¸0

ad
y
d
#¸0

ab
y
b
, (17)

dx`
a
"A`

aa
x`
a
#B`

0a
y
0
#¸`

ad
y
d
#¸`

ab
y
b
, (18)

dx
b
"A

bb
x
b
#B

0b
y
0
#¸

bd
y
d
, y

b
"C

b
x
b
, (19)

dx
c
"A

cc
x
c
#B

0c
y
0
#¸

cb
y
b
#¸

cd
y
d

#B
c
[E~

ca
x~
a
#E0

ca
x0#E`

ca
x`
a
#u

c
], (20)

y
0
"C

0c
x
c
#C~

0a
x~
a
#C`

0a
x0
a
#C`

0a
x`
a

#C
0d

x
d
#C

0b
x
b
#u

0
(21)

and for each i"1,2,m
d
,

dx
i
"A

qi
x
i
#¸

i0
y
0
#¸

id
y
d

#B
qiCui#E

ia
x
a
#E

ib
x
b
#E

ic
x
c
#

md

+
j/1

E
ij
x
jD,
(22)

y
i
"C

qi
x
i
, y

d
"C

d
x
d
. (23)

Here the states x~
a
, x0

a
, x`

a
, x

b
, x

c
and x

d
are, respectively,

of dimensions n~
a
, n0

a
, n`

a
, n

b
, n

c
and n

d
"+md

i/1
q
i
, while

x
i

is of dimension q
i

for each i"1,2,m
d
. The control

vectors u
0
, u

d
and u

c
are, respectively, of dimensions

m
0
, m

d
and m

c
"m!m

0
!m

d
while the output vectors

y
0
, y

d
and y

b
are, respectively, of dimensions p

0
"m

0
,

p
d
"m

d
and p

b
"p!p

0
!p

d
. The matrices A

qi
,B

qi
and

C
qi

have the following form:

A
qi
"C

0 I
qi~1

0 0 D, B
qi
"C

0

1D, C
qi
"[1, 0,2, 0]. (24)

Assuming that x
i
, i"1,2,2,m

d
, are arranged such that

q
i
4q

i`1
, the matrix ¸

id
has the particular form

¸
id
"[¸

i1
¸
i2

2 ¸
ii~1

0 2 0]. (25)

Also, the last row of each ¸
id

is identically zero. More-
over, we have j(A~

aa
)LC_, j(A0

aa
)LC0, j(A`

aa
)LCc.

Also, the pair (A
cc
, B

c
) is controllable and the pair (A

bb
,C

b
)

is observable.

Proof. See Sannuti and Saberi (1987) and Saberi and
Sannuti (1990). The software realizations of the above
decomposition in MATLAB can be found in Lin and
Chen (1998). h
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In what follows, we state some important properties of
the SCB which are pertinent to our present work. The
rigorous proofs of these properties can be found in Chen
(1998).

Property 2.1. The given system &H is observable (detect-
able) if and only if the pair (A

0"4
, C

0"4
) is observable

(detectable), where

A
0"4

:"C
A

aa
0 ¸

ad
C

d
B
c
E

ca
A

cc
¸
cd

C
d

B
d
E

da
B
d
E

dc
A

dd
D,

C
0"4

:"C
C

0a
C

0c
C

0d
0 0 C

d
D (26)

and where

A
aa

:"C
A~

aa
0 0

0 A0
aa

0

0 0 A`
aa
D, ¸

ad
:"C

¸~
ad

¸0
ad

¸`
ad
D, (27)

C
0a

:"[C~
0a

C0
0a

C`
0a

], E
da

:"[E~
da

E0
da

E`
da

],

E
ca

:"[E~
ca

E0
ca

E`
ca

]. (28)

Also, de"ne

B
0a

:"C
B~
0a

B0
0a

B`
0a
D, ¸

ab
:"C

¸~
ab

¸0
ab

¸`
ab
D, (29)

and

A
#0/

:"C
A

aa
¸
ab

C
b

¸
ad

C
d

0 A
bb

¸
bd

C
d

B
d
E

da
B
d
E

db
A

dd
D,

B
#0/

:"C
B

0a
0

B
0b

0

B
0d

B
d
D. (30)

Similarly, &H is controllable (stabilizable) if and only if
the pair (A

#0/
,B

#0/
) is controllable (stabilizable).

Property 2.2. Invariant zeros of &H are the eigenvalues of
A

aa
, which are the unions of the eigenvalues of A~

aa
, A0

aa
and A`

aa
.

Clearly, the SCB decomposes the state-space X into
the following several distinct parts:

X"X~
a
=X0

a
=X`

a
=X

b
=X

c
=X

d
. (31)

The following property shows interconnections between
the special coordinate basis and various invariant geo-
metric subspaces.

Property 2.3.

V_(&H )"ImG!4C
I
n
~
a

0 0

0 I
n
0
a

0

0 0 0

0 0 0

0 0 I
nc

0 0 0
DH,

S_(&H )"ImG!4C
0 0 0

0 0 0

I
n
`
a

0 0

0 0 0

0 I
nc

0

0 0 I
nd

DH. (32)

Next,

Sj(&H )"ImG!4C
jI!A

aa
0 0 0

0 >
bj 0 0

0 0 I
nc

0

0 0 0 I
nd
DH, (33)

where

ImM>
bjN"Ker[C

b
(A

bb
#K

b
C

b
!jI)~1] (34)

and where K
b
is any matrix such that A

bb
#K

b
C

b
has no

eigenvalues at j. Such a K
b

always exists as (A
bb

,C
b
) is

completely observable.

Vj(&H )"ImG!4C
X

aj 0

0 0

0 X
cj

0 0 DH, (35)

where X
aj is a matrix whose columns form a basis for the

subspace

Mf
a
3Cna D (jI!A

aa
)f

a
"0N (36)

and

X
cj :"(A

cc
#B

c
F
c
!jI)~1B

c
(37)

with F
c

being any matrix such that A
cc
#B

c
F
c

has no
eigenvalues at j. Again, the existence of such an F

c
is

guaranteed by the controllability of (A
cc
, B

c
).

3. The state and full information feedback cases

In this section, we consider feedback control law de-
sign for the general H

=
-ADDPMS for the case that

either full state or full information feedback is measured
for feedback.
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We "rst consider the case that full state is measured for
feedback. We will present a design procedure that con-
structs a family of parameterized static state feedback
control laws

u"F(e)x, (38)

that solves the general H
=

-ADDPMS for the following
system:

dx"Ax#Bu#Ew,

y"x (39)

h"C
2
x#D

2
u#D

22
w.

¹hat is, under this family of state feedback control laws,
the resulting closed-loop system is asymptotically stable
for su$ciently small e and the H

=
-norm of the closed-

loop transfer matrix from w to h, ¹
hw

(z, e), tends to zero
as e tends to zero, where

¹
hw

(z, e)"[C
2
#D

2
F(e)][zI!A!BF(e)]~1E#D

22
.

(40)

Our algorithm for obtaining this F(e) utilizes the asymp-
totic time scale and eigenstructure assignment (ATEA)
procedure. The ATEA design procedure was originally
conceived in Saberi and Sannuti (1989) and was used to
solve many control problems (see for example, Chen,
1998; Saberi, Sannuti & Chen, 1995, to name a few). It
was further developed in Lin (1998) to include slow
time-scale assignment via low gain feedback. As will be
clear shortly, the low gain component is critical in hand-
ling the situation when the zero dynamics corresponding
to unit circle invariant zeros is a!ected by disturbances.
In comparison with its continuous-time counterparts
(Chen et al., 1998), where high gain feedback is an impor-
tant component of the feedback laws, here in discrete-
time setting, we do not have high gain feedback. It is
because of this lack of high gain feedback in discrete time
that the solvability conditions for the H

=
-ADDPMS

exclude the presence of disturbance in the part of the
dynamics associated with the in"nite zero structure of the
system whenever the disturbance is not available for
feedback.

Step S.1 (Decomposition of &
P
): Transform the sub-

system &
P
, i.e., the matrix quadruple (A,B,C

2
, D

2
), into

the SCB as given by Theorem 2.4. Denote the state,
output and input transformation matrices as !

4P
, !

0P
and !

*P
, respectively.

Step S.2 (Gain matrix for the subsystem associated with
X

c
): Let F

c
be any matrix such that

Ac
cc
"A

cc
#B

c
F
c

(41)

is an asymptotically stable matrix. The existence of such
an F

c
is guaranteed by the property of the SCB, i.e.,

(A
cc
,B

c
) is controllable.

Step S.3 (Gain matrix for the subsystem associated with
X`

a
, X

b
and X

d
): Let

F
abd

:"C
0 0 F`

a0
F
b0

F
d0

E~
da

E0
da

F`
ad

F
bd

F
dd
D, (42)

where

F`
abd

:"C
F`
a0

F
b0

F
d0

F`
ad

F
bd

F
dd
D (43)

is any matrix such that

A`c
abd

:"C
A`

aa
¸`

ab
C

b
¸`
ad

C
d

0 A
bb

¸
bd

C
d

B
d
E`
da

B
d
E
db

A
dd
D#C

B`
0a

0

B
0b

0

B
0d

B
d
DF`

abd
(44)

is an asymptotically stable matrix. Again, the existence of
such an F`

abd
is guaranteed by the property of the SCB.

Step S.4 (Gain matrix for the subsystem associated with
A0

aa
): The construction of this gain matrix is carried out in

the following four substeps:
Step S.4.1 (Preliminary coordinate transformation):

Noting that

A
#0/

:"C
A

aa
¸
ab

C
b

¸
ad

C
d

0 A
bb

¸
bd

C
d

B
d
E

da
B
d
E

db
A

dd
D, B

#0/
:"C

B
0a

0

B
0b

0

B
0d

B
d
D,

we have

A
#0/

#B
#0/

F
abd

"C
A~

aa
0 A~

abd
0 A0

aa
A0

abd
0 0 A`c

abd
D,

B
#0/

"C
B~

0a
0

B0
0a

0

B`
0abd

B`
abd
D, (45)

where

B`
0abd

"C
B`

0a
B

0b
B

0d
D, B`

abd
"C

0

0

B
d
D, (46)

A0
abd

"[0 ¸0
ab

C
b

¸0
ad

C
d
]#[B0

0a
0]F`

abd
(47)

and

A~
abd

"[0 ¸~
ab

C
b

¸~
ad

C
d
]#[B~

0a
0]F`

abd
. (48)

Clearly, the pair (A
#0/

#B
#0/

F
abd

, B
#0/

) remains stabiliz-
able. Construct the following non-singular transforma-
tion matrix:

!
abd

"C
I
n
~
a

0 0

0 0 I
n
`
a `nb`nd

0 I
n
0
a

¹0
a

D~1
, (49)
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where ¹0
a

is the unique solution to the following
Lyapunov equation:

A0
aa
¹0

a
!¹0

a
A`c

abd
"A0

abd
. (50)

Such a unique solution to the above Lyapunov equation
always exists since all the eigenvalues of A0

aa
are on the

unit circle and all the eigenvalues of A`c
abd

are on the open
unit disc. It is now easy to verify that

!~1
abd

(A
#0/

#B
#0/

F
abd

)!
abd

"C
A~

aa
A~

abd
0

0 A`c
abd

0

0 0 A0
aa
D (51)

and

!~1
abd

B
#0/

"C
B~
0a

0

B`
0abd

B`
abd

B0
0a
#¹0

a
B`

0abd
¹0

a
B`
abd
D. (52)

Hence, the matrix pair (A0
aa

,B0
a
) is controllable, where

B0
a
"[B0

0a
#¹0

a
B`
0abd

¹0
a
B`
abd

]. (53)

Step S.4.2 (Further coordinate transformation): Find the
non-singular transformation matrices !0

4a
and !0

*a
such

that (A0
aa

,B0
a
) can be transformed into the block diagonal

controllability canonical form

(!0
4a

)~1A0
aa

!0
4a
"C

A
1

0 2 0

0 A
2

2 0

F F } F

0 0 2 A
l
D (54)

and

(!0
4a

)~1B0
a
!0
*a
"C

B
1

B
12

2 B
1l

w

0 B
2

2 B
2l

w

F F } F F

0 0 2 B
l

wD, (55)

where l is an integer and for i"1,2,2, l,

A
i
"C

0 1 0 2 0

0 0 1 2 0

F F F } F

0 0 0 2 1

!ai
ni

!ai
ni~1

!ai
ni~2

2 !ai
1
D,

B
i
"C

0

0

F

0

1D. (56)

We note that all the eigenvalues of A
i

are on the unit
circle. Here, the w's represent submatrices of less interest.
The existence of the above canonical form was shown in
Wonham (1979) while its software realization can be
found in Lin and Chen (1998).

Step S.4.3 (Subsystem design): For each (A
i
,B

i
), let

F
i
(e)3R1Cni be the state feedback gain such that

j(A
i
#B

i
F

i
(e))"(1!e)j(A

i
).

Clearly, all eigenvalues of A
i
#B

i
F
i
(e) are on the open

unit disc and F
i
(e) is unique.

Step S.4.4 (Composition of gain matrix for subsystem
associated with X0

a
): Let

F0
a
(e) :"!0

*aC
F
1
(e) 0 2 0 0

0 F
2
(e) 2 0 0

F F } F F

0 0 2 F
l~1

(e) 0

0 0 2 0 F
l
(e)

0 0 2 0 0
D(!0

4a
)~1,

(57)

where e3(0,1] is a design parameter whose value is to be
speci"ed later.

Clearly, we have

DF0
a
(e)D4f0

a
e, e3(0,1], (58)

for some positive constant f 0
a
, independent of e. For

future use, we partition

F0
a
(e)"C

F0
a0

(e)

F0
ad

(e)D (59)

and

F0
a
(e)¹0

a
"C

F0
a0`

(e) F0
a0b

(e) F0
a0d

(e)

F0
ad`

(e) F0
adb

(e) F0
add

(e)D. (60)

Step S.5 (Composition of parameterized gain matrix F(e)):
Various gains calculated in Steps S.2}S.4 are now put
together to form a composite state feedback gain matrix
F(e), which is explicitly a polynomial matrix in e and is
given by

F(e) :"!
*P

[F
0
#Fw (e)]!~1

4P
, (61)

where

F
0
"

!C
C~

0a
C0

0a
C`

0a
!F`

a0
C

0b
!F

b0
C

0c
C

0d
!F

d0
E~
da

E0
da

!F`
ad

!F
bd

E
dc

!F
dd

E~
ca

E0
ca

E`
ca

0 F
c

0 D
(62)
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and

Fw(e)"C
0 F0

a0
(e) F0

a0`
(e) F0

a0b
(e) 0 F0

a0d
(e)

0 F0
ad

(e) F0
ad`

(e) F0
adb

(e) 0 F0
add

(e)

0 0 0 0 0 0 D. (63)

This completes the construction of the parameterized
state feedback gain matrix F(e). h

Theorem 3.1. Consider the given system (39) in which all
the states are measured and are available for feedback.
Assume that the general H

=
-ADDPMS for (39) is solvable,

i.e., the solvability conditions of Remark 2.1 are satisxed.
Then, the closed-loop system comprising (39) and the full
state feedback control law

u"F(e)x (64)

with F(e) given by (61), has the following properties: for any
given c'0, there exists a positive scalar eH'0 such that
for all 0(e4eH,

1. the closed-loop system is asymptotically stable, i.e.,
j(A#BF(e)) are on the open unit disc; and,

2. the H
=

-norm of the closed-loop transfer matrix from the
disturbance w to the controlled output h is less than or
equal to c, i.e., DD¹

hw
(z,e)DD

=
4c.

Hence, by Dexnition 1.1, the family of control laws as given
by (64) solves the general H

=
-ADDPMS for (39).

Proof. See Appendix A. h

Next, we proceed to design a family of parameterized
full information feedback control laws

u"F
x
(e)x#F

w
w, (65)

which solves the general H
=

-ADDPMS for the following
system:

dx"Ax#Bu#Ew,

y"A
I

0Bx#A
0

IBw, (66)

h"C
2
x#D

2
u#D

22
w.

¹hat is, under the above full information feedback con-
trol laws, the resulting closed-loop system is asymp-
totically stable for su$ciently small e and the H

=
-norm

of the closed-loop transfer matrix from w to h, ¹
hw

(z,e),
tends to zero as e tends to zero, where

¹
hw

(z,e)"[C
2
#D

2
F

x
(e)][zI!A!BF

x
(e)]~1

](E#BF
w
)#(D

22
#D

2
F
w
). (67)

The following is a step-by-step algorithm for con-
structing F

x
(e) and F

w
.

Step F.1 (Computation of S): Compute

S"!(D@
2
D

2
)sD@

2
D

22
. (68)

Step F.2 (Computation of F
x
(e)): Follow Steps S.1}S.5 of

the previous algorithm to yield a gain matrix F(e). Then,
let

F
x
(e)"F(e). (69)

Also, we need to retain the transformation matrices
!
4P

and !
*P

, as well as the submatrix B
d

of the SCB of
&
P

in order to compute F
w

in the next step.
Step F.3 (Construction of gain matrix F

w
): Let

!~1
4P

(E#BS)"[(E~
a
)@ (E0

a
)@ (E`

a
)@ (E

b
)@ (E

c
)@ (E

d
)@]@. (70)

Then, the gain matrix F
w

is given by

F
w
"!!

*PC
0

(B@
d
B
d
)~1B@

d
E

d
0 D#S. (71)

It is informative to note that the "rst portion of matrix
F
w

is used to cancel the disturbance associated with
E
d
and in the range space of B

d
, while the second portion

is used to reject disturbance entering into the system
through D

22
.

Theorem 3.2. Consider the given system (66) in which all
the states and disturbances are measured and are available
for feedback. Assume that the general H

=
-ADDPMS

for (66) is solvable, i.e., the solvability conditions of
Theorem 2.1 are satisxed. Then, the closed-loop system
comprising (66) and the full information feedback control
law

u"F
x
(e)x#F

w
w (72)

with F
x
(e) and F

w
being given by (69) and (71), respectively,

has the following properties: for any given c'0, there
exists a positive scalar eH'0 such that for all 0(e4eH,

1. the closed-loop system is asymptotically stable, i.e.,
j(A#BF

x
(e)) are on the open unit disc; and,

2. the H
=

-norm of the closed-loop transfer matrix from the
disturbance w to the controlled output h is less than or
equal to c, i.e., DD¹

hw
(z,e)DD

=
4c.

Hence, by Dexnition 1.1, the family of control laws as given
by (72) solves the general H

=
-ADDPMS for (66).

Proof. See Appendix B. h

Example 3.1. Consider a discrete-time system character-
ized by (1) with

A"C
1 1 1 1 0

0 1 1 1 0

0 0 0.1 1 0

0 0 0 0 1

0.1 0.1 0.1 0.1 0.1D,
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Fig. 1. Max. singular values of ¹
hw
* full information case.

B"C
0

0

0

0

1D, E"C
0 1

0 0

0 0

0 0

a
e

0D, (73)

where a
e

is a scalar, and

C
2
"C

0 0 0 1 0

0 0 1 0 0D, D
2
"[0

0
], D

22
"C

0 0

0 0D.
(74)

We will consider both the state feedback case and the full
information feedback case in this example. Using the
toolbox Lin and Chen (1998), we can verify that (A,B) is
controllable and &

P
, i.e., (A,B,C

2
,D

2
), has two invariant

zeros at z"1. Moreover,

V_(&
P
)"ImGC

1 0

0 1

0 0

0 0

0 0DH, B Ker(D
2
)"ImGC

0

0

0

0

1DH
and

Y
@j@/1

Sj(&P
)"ImGC

1 0 0

0 0 0

0 0 0

0 1 0

0 0 1]DH,
V_(&

P
)WG Y

@j@/1

Sj(&P
)H"ImGC

1

0

0

0

0DH
and

MV_(&
P
)#B Ker(D

2
)NWG Y

@j@/1

Sj (&P
)H"ImGC

1 0

0 0

0 0

0 0

0 1DH.
It is now clear that

f if the full state is measured for feedback, i.e., y"x,
then the general H

=
-ADDPMS is solvable if and only

if a
e
"0; and,

f if the full information is measured for feedback, i.e.,
y"[x@, w@]@, then the general H

=
-ADDPMS is always

solvable for any a
e
.

Following the algorithms of this section, we obtain the
following parameterized gain matrices:

F
x
(e)"

C
!0.526316(e!1)2!1.052632(e!1)!0.626316

!0.775623(e!1)2!2.603878(e!1)!1.928255

!0.798061(e!1)2!2.763490(e!1)!2.066429

!(e!1)2!4.2(e!1)!3.31

!2(e!1)!2.2 D
@

,

(75)

which places the eigenvalues of A#BF
x
(e) at 0, 0, 0,

1!e and 1!e, and

F
w
"[!a

e
0]. (76)

The maximum singular value plots of the corresponding
closed-loop transfer matrix ¹

hw
(z, e) in Fig. 1 clearly

show that the general H
=

-ADDMPS is indeed solved for
both the full information case and the state feedback case
(i.e., when a

e
"0).

4. The measurement feedback case

4.1. Full order output feedback controller design

In this subsection, we focus on the design of a family of
full order proper measurement feedback control laws,
which solves the H

=
-ADDPMS for the given system (1)

under the solvability conditions of Theorem 2.2. For the
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case when the given system satis"es the conditions listed
in Theorem 2.3, slight modi"cations on the algorithm
below, i.e., letting S"0 and N"0 in Steps F.C.1 and
F.C.2, would yield a strictly proper solution. The follow-
ing is a step-by-step algorithm for constructing a para-
meterized full order output feedback controller that
solves the H

=
-ADDPMS for (1):

Step F.C.1 (Computation of S): Compute

S"!(D@
2
D

2
)sD@

2
D

22
D@

1
(D

1
D@

1
)s. (77)

Step F.C.2 (Computation of N): Use the properties of
the special coordinate basis to compute two constant
matrices X and > such that V_(&

P
)"Ker(X) and

S_(&
Q
)"Im(>). Then, compute

N"!(B@X@XB#D@
2
D

2
)s[B@X@ D@

2
]

]C
X(A#BSC

1
)> X(E#BSD

1
)

(C
2
#D

2
SC

1
)> 0 D

]C
>@C@

1
D@

1
D(C1

>>@C@
1
#D

1
D@

1
)s. (78)

Step F.C.3 (Construction of the gain matrix F
P
(e)): De"ne

an auxiliary system

dx"[A#B(S#N)C
1
]x#Bu#[E#B(S#N)D

1
]w,

y"x

h"[C
2
#D

2
(S#N)C

1
]x#D

2
u#0w,

(79)

and then perform Steps S.1}S.5 of the previous section to
the above system to obtain a parameterized gain matrix
F(e). We let F

P
(e)"F(e).

Step F.C.4 (Construction of the gain matrix K
Q
(e)):

De"ne another auxiliary system

dx"[A#B(S#N)C
1
]@x#C@

1
u#[C

2
#D

2
(S#N)C

1
]@w,

y"x (80)

h"[E#B(S#N)D
1
]@x#D@

1
u#0w

and then perform Steps S.1}S.6 of the previous section to
the above system to get the parameterized gain matrix
F(e). We let K

Q
(e)"F(e)@.

Step F.C.5 (Construction of the full order controller
&
FC

(e)): Finally, the parameterized full order output feed-
back controller is given by

&
FC

(e):
dx

c
"A

FC
(e)x

c
#B

FC
(e)y,

u"C
FC

(e)x
c
#D

FC
(e)y,

(81)

where

A
FC

(e) :"A#B(S#N)C
1
#BF

P
(e)#K

Q
(e)C

1
,

B
FC

(e) :"!K
Q
(e),

C
FC

(e) :"F
P
(e),

D
FC

(e) :"S#N. (82)

Theorem 4.1. Consider the given system & of (1). Assume
that the general H

=
-ADDPMS for (1) is solvable, i.e., the

solvability conditions of Theorem 2.2 are satisxed. Then, the
closed-loop system comprising (1) and the full order
measurement feedback controller (81) has the following
properties: For any given c'0, there exists a positive
scalar eH'0 such that for all 0(e4eH,

1. the closed-loop system is asymptotically stable; and,
2. the H

=
-norm of the closed-loop transfer matrix from the

disturbance w to the controlled output h is less than or
equal to c, i.e., DD¹

hw
(z,e)DD

=
4c.

Hence, by Dexnition 1.1, the family of control laws as given
by (81) solves the general H

=
-ADDPMS for (1).

Proof. See Appendix C. h

Example 4.1. We now consider a discrete-time system
characterized by (1) with A, B, E, C

2
, D

2
and D

22
being

given as in Example 3.1, and

C
1
"C

0.5 0.1 0.5 0.2 0.1

1 0 0 0 0 D, D
1
"C

1 0

0 0D. (83)

For simplicity, we let a
e
"1 in matrix E. Using the

toolbox Lin and Chen (1998), one can verify that (A,C
1
)

is observable and &
Q
, i.e., (A,E,C

1
,D

1
), has four invari-

ant zeros at !0.6554, 0.3777$j0.6726, and 1. More-
over,

S_(&
Q
)"Im GC

1

0

0

0

0DH, C~1
1

MIm (D
1
)N"Im GC

1

0

0

0

0DH,
Z

@j@/1

Vj(&Q
)"Im GC

0

1

0

0

0DH.
Hence,

MS_(&
Q
)WC~1

1
MIm (D

1
)NNXG Z

@j@/1

Vj(&Q
)H

"Im GC
1 0

0 1

0 0

0 0

0 0DH.
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Fig. 2. Max. singular values of ¹
hw
* full order output feedback.

It is readily seen that all conditions in Theorem 2.2 are
satis"ed. Hence, the general H

=
-ADDPMS for the given

system is solvable. Following the algorithm of this sub-
section, we obtain a full order output feedback controller
of the form (81) with

S"[0 0], N"[!1 0.4],

F
P
(e)"

C
!0.526316(e!1)2!1.052632(e!1)!0.526316

!0.775623(e!1)2!2.603878(e!1)!1.828255

!0.798061(e!1)2!2.763490(e!1)!1.566429

!(e!1)2!4.2(e!1)!3.11

!2(e!1)!2.1 D
@

,

(84)

which places the eigenvalues of AI #BF
P
(e) at 0, 0, 0,

1!e and 1!e, and

K
Q
(e)"C

!10 4

!10e 5e

0 0

0 0

0 0 D, (85)

which places the eigenvalues of AI #K
Q
(e)C

1
at

!0.6554, 0.3777$j0.6726, 0 and 1!e. The maximum
singular value plots of the corresponding closed-loop
transfer matrix ¹

hw
(z, e) in Fig. 2 show that the general

H
=

-ADDPMS is indeed solved.

4.2. Reduced order output feedback controller design

We will follow the procedure of Chen et al. (1998) to
design a reduced order output feedback controller, which

also solves the general H
=

-ADDPMS for the discrete-
time system (1). First, without loss of generality, we
assume that the matrices C

1
and D

1
are already in the

form of

C
1
"C

0 C
1,02

I
k

0 D and D
1
"C

D
1,0
0 D, (86)

where k"l!rank(D
1
) and D

1,0
is of full rank. Next, we

follow Steps F.C.1 and F.C.2 of the previous subsection
to compute the constant matrices S and N and partition
the following system:

dx"[A#B(S#N)C
1
]x#Bu#[E#B(S#N)D

1
]w,

y"C
1
x#D

1
w,

h"[C
2
#D

2
(S#N)C

1
]x#D

2
u#0w,

(87)

as follows:

A
dx

1
dx

2
B"C

A
11

A
12

A
21

A
22
DA

x
1

x
2
B#C

B
1

B
2
Du#C

E
1

E
2
Dw,

A
y
0

y
1
B"C

0 C
1,02

I
k

0 DA
x
1

x
2
B#C

D
1,0
0 Dw, (88)

h"[C
2,1

C
2,2

]A
x
1

x
2
B#D

2
u#0w,

where the state x of (87) is partitioned into two parts,
x
1

and x
2
; and y is partitioned into y

0
and y

1
with

y
1
,x

1
. Thus, one needs to estimate only the state x

2
in

designing the reduced order controller. De"ne an auxili-
ary subsystem &

QR
characterized by a matrix quadruple

(A
R
, E

R
, C

R
,D

R
), where

(A
R
, E

R
, C

R
,D

R
)"AA22

, E
2
,C

C
1,02

A
12
D,C

D
1,0

E
1
DB. (89)

The following is a step-by-step algorithm that con-
structs the reduced order output feedback controllers for
the general H

=
-ADDPMS.

Step R.C.1 (Construction of the gain matrix F
P
(e)):

De"ne an auxiliary system

dx"[A#B(S#N)C
1
]x#Bu#[E#B(S#N)D

1
]w,

y"x

h"[C
2
#D

2
(S#N)C

1
]x#D

2
u#0w,

(90)

and then perform Steps S.1}S.5 of the previous section to
the above system to obtain a parameterized gain matrix
F(e). We let F

P
(e)"F(e).

Step R.C.2 (Construction of the gain matrix K
R
(e)): De-

"ne another auxiliary system

dx"A@
R
x#C@

R
u#C@

2,2
w,

y"x

h"E@
R
x#D@

R
u#0w,

(91)
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and then perform Steps S.1}S.5 of the previous section to
the above system to obtain a parameterized gain matrix
F(e). We let K

R
(e)"F(e)@.

Step R.C.3 (Construction of the reduced order controller
&
RC

(e)): Let us partition F
P
(e) and K

R
(e) as

F
P
(e)"[F

P1
(e) F

P2
(e)]

and

K
R
(e)"[K

R0
(e) K

R1
(e)] (92)

in conformity with the partition

x"A
x
1

x
2
B and y"A

y
0

y
1
B,

respectively. Then de"ne

G
R
(e)"[!K

R0
(e),A

21
#K

R1
(e)A

11

!(A
R
#K

R
(e)C

R
)K

R1
(e)]. (93)

Finally, the parameterized reduced order output feed-
back controller is given by

&
RC

(e):
dx

c
"A

RC
(e)x

c
#B

RC
(e)y,

u"C
RC

(e)x
c
#D

RC
(e)y,

(94)

where

A
RC

(e) :"A
R
#B

2
F
P2

(e)#K
R
(e)C

R
#K

R1
(e)B

1
F
P2

(e),

B
RC

(e) :"G
R
(e)#[B

2
#K

R1
(e)B

1
]

[0,F
P1

(e)!F
P2

(e)K
R1

(e)],

C
RC

(e) :"F
P2

(e),

D
RC

(e) :"[0,F
P1

(e)!F
P2

(e)K
R1

(e)]#S#N. (95)

Theorem 4.2. Consider the given system & of (1). Assume
that the general H

=
-ADDPMS for (1) is solvable, i.e., the

solvability conditions of Theorem 2.2 are satisxed. Then, the
closed-loop system comprising (1) and the reduced order
measurement feedback controller (94), which has a dynamic
order n!l#rank(D

1
), has the following properties: for

any given c'0, there exists a positive scalar eH'0 such
that for all 0(e4eH,

1. the closed-loop system is asymptotically stable; and,
2. the H

=
-norm of the closed-loop transfer matrix from the

disturbance w to the controlled output h is less than or
equal to c, i.e., DD¹

hw
(z, e)DD

=
4c.

Hence, by Dexnition 1.1, the family of control laws as given
by (94) solves the general H

=
-ADDPMS for (1).

Proof. See Appendix D. h

5. Conclusions

We have provided a complete solution to the general
H

=
almost disturbance decoupling problem with

measurement feedback and with internal stability for
discrete-time linear systems. The problem considered in
this paper is general as we allow the subsystems of the
given plant to have invariant zeros on the unit circle of
the complex plane.

Appendix A = Proof of Theorem 3.1

Under the feedback law u"F(e)x, the closed-loop
system on the SCB can be written as follows:

dx~
a
"A~

aa
x~
a
#B~

0a
h
0
#¸~

ad
h
d
#¸~

ab
h
b
#E~

a
w, (A.1)

dx0
a
"A0

aa
x0
a
#B0

0a
h
0
#¸0

ad
h
d
#¸0

ab
h
b
#E0

a
w, (A.2)

dx`
abd

"A`c
abd

x`
abd

#[B`
0abd

,B`
abd

]F0
a
(e)

][x0
a
#¹0

a
x`
abd

]#E`
abd

w, (A.3)

dx
c
"Ac

cc
x
c
#B

0c
h
0
#¸

cb
h
b
#¸

cd
h
d
#E

c
w, (A.4)

h
0
"[F`

a0
,F

b0
, F

d0
]x`

abd
#F0

a0
(e)(x0

a
#¹0

a
x`
abd

), (A.5)

h
b
"[0

mbCn
`
a
, C

b
, 0

mbCnd
]x`

abd
, (A.6)

h
d
"[0

mbCn
`
a
, 0

mbCnb
, C

d
]x`

abd
, (A.7)

where x`
abd

"[(x`
a
)@,x@

b
, x@

d
]@, and B`

0abd
is as de"ned in

Step 4.1 of the state feedback design algorithm. We have
also used Condition (b) of Remark 2.1, i.e., D

22
"0.

Matrices E~
a

, E0
a
, E`

abd
, E

b
and E

c
are de"ned as follows:

!~1
4P

E"[(E~
a

)@ (E0
a
)@(E`

ab
)@ E@

c
E@
d
]@,

(A.8)
E`
abd

"[(E`
ab

)@ E@
d
]@.

Condition (c) of Remark 2.1 then implies that E`
abd

"0
and

Im(E0
a
)LS(A0

aa
) :" Y

u|j(A0
aa )

ImMuI!A0
aa

N. (A.9)

From the dynamic equations of the closed-loop system
(A.1)}(A.7), we observe that the states x~

a
and x

c
do not

contribute to the controlled output h
0
, h

b
and h

d
and

hence are allowed to be a!tected by disturbances. The
state x`

abd
contributed directly to the control output h

0
,

h
b
and h

d
and hence the solvability conditions imply that

E`
abd

"0. On the other hand, although the state x0
a

con-
tributes to the controlled output h

0
, its contribution can

be reduced arbitrarily by the appropriate choice of the
low gain feedback gain matrix F0

a0
(e).

To complete the proof, we will make two state trans-
formations on the closed-loop system (A.1)}(A.7). The
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"rst state transformation is given as follows:

x6
abd

"!~1
abd

x
abd

, x6
c
"x

c
, (A.10)

where x
abd

"[(x~
a
)@, (x0

a
)@, (x`

abd
)@]@ and x6

abd
"

[(x6 ~
a

)@, (x6 `
abd

)@, (x6 0
a
)@]@. In the new state variables (A.10), the

closed-loop system becomes

dx6 ~
a
"A~

aa
x6 ~
a
#A~

aabd`
x6 `
abd

#B~
0a

F0
a0

(e)x6 0
a
#E~

a
w, (A.11)

dx6 `
abd

"A`c
abd

x6 `
abd

#[B`
0abd

,B`
abd

]F0
a
(e)x6 0

a
, (A.12)

dx6 0
a
"(A0

aa
#B0

a
F0
a
(e))x6 0

a
#E0

a
w, (A.13)

dx6
c
"Ac

cc
x6
c
#A

cabd`
x6 `
abd

#B
0c

F0
a0

(e)x6 0
a
#E

c
w, (A.14)

h
0
"[F`

a0
,F

b0
, F

d0
]x`

abd
#F0

a0
(e)x6 0

a
, (A.15)

h
b
"[0

mbCn
`
a
, C

b
, 0

mbCnd
]x`

abd
, (A.16)

h
d
"[0

mbCn
`
a
, 0

mbCnb
, C

d
]x`

abd
, (A.17)

where

A~
aabd`

"B~
0a

[F`
a0

F
b0

F
d0

]#¸~
ad

[0 0 C
d
]

#¸~
ab

[0 C
b

0]

and

A
cabd`

"B
0c

[F`
a0

F
b0

F
d0

]#¸
cb

[0 C
b

0]

#¸
cd

[0 0 C
d
].

We now proceed to construct the second transformation.
We need to recall the following preliminary results from
Lin (1998). It is a summary of Lemmas 2.3.2}2.3.5 of Lin
(1998).

Lemma A.1. Consider a single input pair (A,B) in the
form of (56) with all eigenvalues of A on the unit circle.
Let F(e)3R1Cn be the unique matrix such that
j(A#BF(e))"(1!e)j(A), e3(0, 1]. Then, there exists
a non-singular transformation matrix Q(e)3RnCn such that:

1. Q(e) transforms A#BF(e) into a real Jordan form, i.e.,

Q~1(e)(A#BF(e))Q(e)"J(e)

:"blkdiagMJ
~1

(e),J
`1

(e),J
1
(e),2, J

l
(e)N, (A.18)

where

J
~1

(e)"C
!(1!e) 1

} }

!(1!e) 1

!(1!e)D
n~1Cn~1

,

(A.19)

J
`1

(e)"C
1!e 1

} }

1!e 1

1!eD
n`1Cn`1

, (A.20)

and for each i"1 to l,

J
i
(e)"C

Jw

i
(e) I

2
} }

Jw

i
(e) I

2
Jw

i
(e)D

2niC2ni

,

Jw

i
(e)"(1!e)C

a
i

b
i

!b
i

a
i
D (A.21)

with a2
i
#b2

i
"1 for all i"1 to l and a

i
Oa

j
for iOj.

2. Both DQ(e)D and DQ~1(e)D are bounded, i.e.,

DQ(e)D4h, DQ~1(e)D4h, e3(0, 1] (A.22)

for some positive constant h, independent of e.
3. Let E3RnCq be such that Im(E)L5

w|j(A)
Im(wI!A),

where q is any integer. Then, there exists a s50,
independent of e, such that

DQ~1(e)ED4s, e3(0, 1], (A.23)

and, if we partition Q~1(e)E according to that of J(e) as

Q~1(e)E"C
E

0
(e)

E
1
(e)

F

E
l
(e)D, E

0
(e)"C

E
01

(e)

E
02

(e)

F

E
0n0

(e)D
n0Cq

,

E
i
(e)"C

E
i1

(e)

E
i2

(e)

F

E
ini

(e)D
2niCq

, (A.24)

then, there exists a b50, independent of e, such that, for
each i"0 to l,

DE
ini

(e)D4be. (A.25)

4. Let S(e)"blkdiagMS
~1

(e),S
`1

(e),S
1
(e),S

2
(e),2,S

l
(e)N,

where S
~1

(e)"diagMen~1~1, en~1~2,2,e,1N, S
`1

(e)"
diagMen`1~1, en`1~2,2, e,1N, and for each i"1 to l,
S
i
(e)"blkdiag Meni~1I

2
, eni~2I

2
,2, eI

2
, I

2
N. Then,

(a) S(e)J(e)S~1(e)"JI (e)

:"blkdiagMJI
~1

(e),JI
`1

(e),JI
1
(e),2,JI

l
(e)N (A.26)

where

JI
~1

(e)"C
!(1!e) e

} }

!(1!e) e

!(1!e)D
n~1Cn~1

,

(A.27)
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JI
`1

(e)"C
(1!e) e

} }

(1!e) e

(1!e)D
n`1Cn`1

, (A.28)

and for each i"1 to l,

JI
i
(e)"C

Jw

i
(e) eI

2
} }

Jw

i
(e) eI

2
Jw

i
(e)D

2niC2ni

,

Jw

i
(e)"(1!e)C

a
i

b
i

!b
i

a
i
D (A.29)

with b
i
'0 for all i"1 to l and b

i
Ob

j
for iOj;

(b) The unique positive-dexnite solution PI (e) to the
Lyapunov equation

JI @(e)PI JI (e)!PI "!eI (A.30)

is bounded, i.e., there exist positive-dexnite matrices
PI
1

and PI
2
, independent of e, such that

PI
1
4PI (e)4PI

2
, ∀e3(0,eH] (A.31)

for some eH3(0, 1].
5. There exist a,b50, independent of e, such that, for all

e3(0, 1],

DF(e)Q(e)S~1(e)D4ae, (A.32)

DF(e)AQ(e)S~1(e)D4be. (A.33)

We now de"ne the following second state transforma-
tion on the closed-loop system:

x8 ~
a
"x6 ~

a
, x8 `

abd
"x6 `

abd
, (A.34)

x8 0
a
"[(x8 0

a1
)@, (x8 0

a2
)@,2, (x8 0

al
)@]@"S

a
(e)Q~1

a
(e)(!0

4a
)~1x6 0

a
,

S
a
(e)"blkdiagMS

a1
(e),S

a2
(e),2, S

al
(e)N,

Q
a
(e)"blkdiagMQ

a1
(e),Q

a2
(e),2,Q

al
(e)N, (A.35)

x8
c
"ex6

c
, (A.36)

where Q
ai
(e) and S

ai
(e) are the Q(e) and S(e) of Lemmas

A.1 for the triple (A
i
, B

i
,F

i
). Hence, the properties of

Lemma A.1 all apply. In these new state variables, the
closed-loop system becomes

dx8 ~
a
"A~

aa
x8 ~
a
#A~

aabd`
x8 `
abd

#B~
0a

F0
a0

(e)!0
4a

Q
a
(e)S~1

a
(e)x8 0

a
#E~

a
w, (A.37)

dx8 `
abd

"A`c
abd

x8 `
abd

#[B`
0abd

,B`
abd

]F0
a
(e)!0

4a
Q

a
(e)S~1

a
(e)x8 0

a
,

(A.38)

dx8 0
a
"JI

a
(e)x8 0

a
#BI (e)x8 0

a
#EI 0

a
(e)w, (A.39)

dx8
c
"Ac

cc
x8
c
#e[A

cabd`
x8 `
abd

#B
0c

F0
a0

(e)!0
4a

Q
a
(e)S~1

a
(e)x8 0

a
#E

c
w], (A.40)

h
0
"[F`

a0
,F

b0
, F

d0
]x`

abd
#F0

a0
(e)!0

4a
Q

a
(e)S~1

a
(e)x8 0

a
, (A.41)

h
b
"[0

mbCn
`
a
, C

b
, 0

mbCnd
]x`

abd
, (A.42)

h
d
"[0

mbCn
`
a
, 0

mbCnb
, C

d
]x`

abd
, (A.43)

where

JI
a
(e)"blkdiagMeJI

a1
(e), eJI

a2
(e),2, eJI

al
(e)N, (A.44)

BI (e)"C
0 BI

12
(e) BI

13
(e) 2 BI

1l
(e)

0 0 BI
23

(e) 2 BI
2l

(e)

F F F } F

0 0 0 2 0 D, (A.45)

BI
ij
(e)"S

ai
(e)Q~1

ai
(e)B

ij
F
j
(e)Q

aj
(e)S~1

aj
(e),

i"1, 2,2, l, j"i#1, i#2,2, l (A.46)

EI 0
a
(e)"S

a
(e)Q~1

a
(e)(!0

4a
)~1E0

a
,

EI 0
a
(e)"[(EI 0

a1
(e))@ (EI 0

a2
(e))@ 2 (EI 0

al
(e))@]@ (A.47)

and where, for i"1 to l, JI
ai
(e) is the JI (e) of Lemma A.1

for the triple (A
i
,B

i
, F

i
).

By Lemma A.1, we have that, for all e3(0, 1],

DF0
a
(e)!0

4a
Q

a
(e)S~1

a
(e)D4fI 0

a0
(A.48)

for i"1 to l,

DEI 0
ai
(e)D4e8 0

a
e, (A.49)

and "nally, for i"1 to l, j"i#1 to l,

DBI
ij
(e)D4bI

ij
e, (A.50)

where fI 0
a0

, e8 0
a

and bI
ij

are some positive constants, inde-
pendent of e.

We next construct a Lyapunov function for the
closed-loop system (A.37)}(A.43). We do this by compos-
ing Lyapunov functions for the subsystems. For the sub-
system of x8 ~

a
, we choose

<~
a

(x8 ~
a

)"(x8 ~
a
)@P~

a
x8 ~
a

, (A.51)

where P~
a
'0 is the unique solution to the Lyapunov

equation

(A~
aa

)@P~
a

A~
aa
!P~

a
"!I (A.52)

and for the subsystem of x8 `
abd

, choose a Lyapunov func-
tion

<`
abd

(x8 `
abd

)"(x8 `
abd

)@P`
abd

x8 `
abd

, (A.53)

where P`
abd

'0 is the unique solution to the Lyapunov
equation

(A`c
abd

)@P`
abd

A`c
abd

!P`
abd

"!I. (A.54)
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The existence of such P~
a

and P`
ab

is guaranteed by the
fact that both A~

aa
and A`c

abd
are asymptotically stable. For

the subsystem of x8 0
a
"[(x8 0

a1
)@,(x8 0

a2
)@,2,(x8 0

al
)@]@, we choose

<0
a
(x8 0

a
)"

l
+
i/1

(a0
a
)i~1

e
(x8 0

ai
)@P0

ai
(e)x8 0

ai
, (A.55)

where a0
a

is a positive scalar, whose value is to be deter-
mined later, and each P0

ai
(e) is the unique solution to the

Lyapunov equation

JI
ai
(e)@P0

ai
JI
ai
(e)!P0

ai
"!eI, (A.56)

which, by Lemma A.1, satis"es,

P
ai
(e)4PM

ai
(A.57)

for some PM
ai

independent of e. Similarly, for the subsys-
tem x8

c
, choose a Lyapunov function

<
c
(x8

c
)"x8 @

c
P
c
x8
c
, (A.58)

where P
c
'0 is the unique solution to the Lyapunov

equation,

(Ac
cc
)@P

c
Ac

cc
!P

c
"!I. (A.59)

The existence of such a P
c
is again guaranteed by the fact

that Ac
cc

is asymptotically stable.
We now construct a Lyapunov function for the

closed-loop system (A.37)}(A.43) as follows:

<(x8 ~
a
,x8 `

abd
,x8 0

a
,x8

c
)"<~

a
(x8 ~

a
)#a`

abd
<`

abd
(x8 `

abd
)

#<0
a
(x8 0

a
)#<

c
(x8

c
), (A.60)

where a`
abd

"2DP~1
a

D2DA~
aa

D2#1.
Let us "rst consider the di!erence of <0

a
(x8 0

a
) along the

trajectories of the subsystem x8 0
a

and obtain that

*<0
a
"

l
+
i/1

[!(a0
a
)i~1(x8 0

ai
)@x8 0

ai

#2
l
+

j/i`1

(a0
a
)i~1

e
(x8 0

ai
)@JI @

ai
(e)P0

ai
(e)[BI

ij
(e)x8 0

aj
#EI 0

ai
(e)w]

#

(a0
a
)i~1

e A
l
+

j/i`1

BI
ij
(e)x8 0

aj
(e)#EI 0

ai
(e)wB@P0

ai
(e)

]A
l
+

j/i`1

BI
ij
(e)x8 0

aj
(e)#EI 0

ai
(e)wBD. (A.61)

Using (A.49), (A.50) and Lemma A.1, it is straightforward
to show that, there exists an a0

a
'0 such that

*<0
a
4!3

4
Dx8 0

a
D2#a

1
DwD2 (A.62)

for some nonnegative constants a
1
, independent of e.

In view of (A.62), the di!erence of < along the traject-
ory of the closed-loop system (A.37)}(A.43) can be evalu-

ated as follows:

*<4!(x8 ~
a
)@x8 ~

a
#2(x8 ~

a
)@(A~

aa
)@P~

a
[A~

aabd
(e)x8 `

abd

#B~
0a

F0
a0

(e)!0
4a

Q
a
(e)S~1

a
(e)x8 0

a
#E~

a
w]

! a`
abd

(x8 `
abd

)@x8 `
abd

#2a`
abd

(x8 `
abd

)@(A`c
abd

)@P`
abd

][B`
0abd

,B`
abd

]F0
a
(e)!0

4a
Q

a
(e)S~1

a
(e)x8 0

a
! 3

4
Dx8 0

a
D2

#a
1
DwD2!x8 @

c
x8
c
#2ex8 @

c
(A`c

cc
)@P

c
[A

cabd`
x8 `
abd

#B
0c

F0
a0

(e)!0
4a

Q
a
(e)S~1

a
(e)x8 0

a
#E

c
w]. (A.63)

Using (A.48) and noting the de"nition of a`
ab

(A.60), we
can easily verify that, there exists an eH

1
3(0,1] such that,

for all e3(0, eH
1
],

*<4!1
2
Dx8 ~

a
D2!1

2
Dx8 `

ab
D2!1

2
Dx8 0

a
D2!1

2
Dx8

c
D2#a

2
DwD2

(A.64)

for some positive constant a
2
, independent of e.

From (A.64), it follows that the closed-loop system in
the absence of disturbance w is asymptotically stable. It
remains to show that, for any given c'0, there exists an
eH3(0, eH

1
] such that, for all e3(0, eH],

DDhDD
l2
4cDDwDD

l2
. (A.65)

To this end, we sum both sides of (A.63) from 0 to R.
Noting that <(k)50 and <(0)"0, we have

DDx8 0
a
DD
l2
4(J2a

3
)DDwDD

l2
, (A.66)

which, when used together with (A.48) in (A.38), results in

DDx8 `
abd

DD
l2
4a

3
eDDwDD

l2
(A.67)

for some positive constant a
3
, independent of e.

Finally, recalling that

h"!
0P

[h@
0
, h@

d
, h@

b
]@, (A.68)

where h
0
, h

d
and h

b
are as de"ned in the closed-loop

system (A.37)}(A.43), we have

DDhDD
l2
4a

4
D!

0P
DeDDwDD

l2
(A.69)

for some positive constant a
4

independent of e.
To complete the proof, we choose eH3(0, eH

1
] such that,

a
4
D!

0P
De4c. (A.70)

Finally, for the use in the proof of Theorem 4.1, it is
straightforward to verify from the closed-loop system
equations (A.37)}(A.43) that the transfer function from
E0
a
w to h is given by

¹0
a0

(z,e)"¹
a0

(z, e)[sI!A0
aa
!B0

a
F0

a
(e)]~1, (A.71)

where ¹
a0

(z, e)P0 pointwise in z as eP0. h
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Appendix B = Proof of Theorem 3.2

Without loss of generality, we assume that the matrix
quadruple (A,B,C

2
, D

2
) is in the SCB form. It is simple to

verify that if condition (b) of Theorem 2.1 holds, we have

D
22

#D
2
F
w
"D

22
#D

2
S!C

I 0 0

0 0 0

0 0 0D
C

0

(B@
d
B
d
)~1B@

d
E

d
0 D"0. (B.1)

Also, condition (c) of Theorem 2.1 implies that

E#BS"[(E~
a
)@ (E0

a
)@ 0 0 (E

c
)@ (B

d
X

d
)@]@ (B.2)

with an appropriately dimensional X
d
, and E0

a
">0

a
X0

a
,

where >0
a

is a matrix whose columns span 5a|j(A0
aa )

Im(aI!A0
aa

) and X0
a

is of appropriate dimension. It is
simple to verify that

E#BF
w
"C

E~
a

E0
a

0

0

E
c

B
d
X

d
!B

d
(B@

d
B
d
)~1B@

d
B
d
X

d

D"C
E~
a

E0
a

0

0

E
c

0
D. (B.3)

Hence, Im(E#BF
w
)LV_(&

P
)WM5

@j@/1
Sj(&P

)N, and
the result follows from Theorem 3.1. h

Appendix C = Proof of Theorem 4.1

Let us apply a pre-output feedback law

u"(S#N)y#u8 (C.1)

to system (1). We obtain another new system,

d
x
"[A#B(S#N)C

1
]x#Bu8#[E#B(S#N)D

1
]w,

y"C
1
x#D

1
w,

h"[C
2
#D

2
(S#N)D

1
]x#D

2
u8 #0w.

(C.2)

Clearly, it is su$cient to prove Theorem 4.1 by showing
the following controller

dx
c
"A

FC
(e)x

c
#B

FC
(e)y,

&3
FC

(e):

u8 "C
FC

(e)x
c
#0y (C.3)

with A
FC

(e), B
FC

(e) and C
FC

(e) being given as in (82),
solves the H

=
-ADDPMS for (C.2). For simplicity of

presentation, we denote &3
P

the subsystem,

(AI , B,CI
2
, D

2
) :"(A#B(S#N)C

1
, B,C

2

#D
2
(S#N)C

1
,D

2
) (C.4)

and denote &3
Q

the subsystem,

(AI , EI ,C
1
, D

1
) :"(A#B(S#N)C

1
, E

#B(S#N)D
1
, C

1
, D

1
). (C.5)

It is simple to see that (AI ,B,C
1
) remains stabilizable and

detectable. Also, it is trivial to show the stability of the
closed-loop system comprising the given plant (C.2) and
the controller (C.3). The closed-loop poles are given by
jMAI #BF

P
(e)N, which are in C_ for su$ciently small e as

shown in Theorem 3.1, and jMAI #K
Q
(e)C

1
N, which can

be dually shown to be in C_ for su$ciently small e. In
what follows, we will show that controller (C.3) achieves
the H

=
almost disturbance decoupling for (C.2), under all

the conditions of Theorem 2.2. Following the result of
Stoorvogel and van der Woude (1991) and some alge-
braic manipulations, one can show that conditions (d)}(f)
of Theorem 2.2 are equivalent to the following condi-
tions:

(dI ) Im(EI )LV_(&3
P
)WM5

@j@/1
Sj(&3 P )N;

(e8 ) Ker(CI
2
)MS_(&I

Q
)XM6

@j@/1
Vj(&3 Q )N;

(fI ) S_(&3
Q
)LV_(&3

P
); and

(g8 ) AI S_(&I
Q
)LV_(&3

P
).

Next, without of loss generality, we assume throughout
the rest of the proof that the subsystem &3

P
, i.e., the

quadruple (AI ,B,CI
2
,D

2
), has already been transformed

into the special coordinate basis as given in Theorem 2.4.
To be more speci"c, we re-write its SCB in following
compact form:

AI "B
0
C

2,0
#

C
A~

aa
0 0 ¸~

ab
C

b
0 ¸~

ad
C

d
0 A0

aa
0 ¸0

ab
C

b
0 ¸0

ad
C

d
0 0 A`

aa
¸`
ab

C
b

0 ¸`
ad

C
d

0 0 0 A
bb

0 ¸
bd

C
d

B
c
E~

ca
B
c
E0

ca
B
c
E`

ca
¸
cb

C
b

A
cc

¸
cd

C
d

B
d
E~

da
B
d
E0

da
B
d
E`

da
B
d
E

db
B
d
E

dc
A

dd

D
:"B

0
C

2,0
#AM , (C.6)

B"C
B~
0a

0 0

B0
0a

0 0

B`
0a

0 0

B
0b

0 0

B
0c

0 B
c

B
0d

B
d

0
D, B

0
"C

B~
0a

B0
0a

B`
0a

B
0b

B
0c

B
0d

D, (C.7)
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CI
2
"C

C~
0a

C0
0a

C`
0a

C
0b

C
0c

C
0d

0 0 0 0 0 C
d

0 0 0 C
b

0 0 D, (C.8)

C
2,0

"[C~
0a

C0
0a

C`
0a

C
0b

C
0c

C
0d

],

D
2
"C

I 0 0

0 0 0

0 0 0D (C.9)

and

V_(&3
P
)"ImGC

I 0 0

0 I 0

0 0 0

0 0 0

0 0 I

0 0 0
DH. (C.10)

It is simple to note that condition (dI ) implies that

EI "[(E~
a
)@ (E0

a
)@ 0 0 (E

c
)@ 0]@. (C.11)

Next, for any f3Vj(&3 Q ) with j3C3, we partition f as
follows:

f"[(f~
a
)@ (f0

a
)@ (f`

a
)@ (f

b
)@ (f

c
)@ (f

d
)@]@. (C.12)

Then, condition (e8 ) implies that CI
2
f"0, or equivalently

C
2,0

f"0, C
b
f
b
"0 and C

d
f
d
"0. (C.13)

By De"nition 2.2, we have

C
AI !jI EI

C
1

D
1
DA

f

gB"0 (C.14)

for some appropriate vector g. Clearly, (C.14) and (C.11)
imply that

(AI !jI)f"!EI g"(w w 0 0 w 0)@, (C.15)

where w's are some vectors of not much interests. Note
that (C.13) implies

(AI !jI)f"(B
0
C

2,0
#AM !jI)f"(AM !jI)f

"C
w

w

(A`
aa
!jI)f`

a
#¸`

ab
C

b
f
b
#¸`

ad
C

d
f
d

(A
bb
!jI)f

b
#¸

bd
C

d
f
d

w

(A
dd
!jI)f

d
#B

d
f
x

D

"C
w

w

(A`
aa
!jI)f`

a
(A

bb
!jI)f

b
w

(A
dd
!jI)f

d
#B

d
f
x

D, (C.16)

where

f
x
"E~

da
f~
a
#E0

da
f0
a
#E`

da
f`
a
#E

db
f
b
#E

dc
f
c
. (C.17)

(C.15) and (C.16) imply

(A`
aa
!jI)f`

a
"0, (A

bb
!jI)f

b
"0 (C.18)

and

(A
dd
!jI)f

d
#B

d
f
x
"0. (C.19)

Since A`
aa

has all its eigenvalues in Cc, (A`
aa
!jI)f`

a
"0

implies that f`
a
"0. Similarly, since (A

bb
,C

b
) is com-

pletely observable, (A
bb
!jI)f

b
"0 and C

b
f
b
"0 imply

f
b
"0. Also, (C.19) and C

d
f
d
"0 imply that

C
A

dd
!jI B

d
C

d
0 DA

f
d

f
x
B"0. (C.20)

Because the triple (A
dd

,B
d
, C

d
) is invertible and is free of

invariant zeros, (C.20) implies that f
d
"0 and f

x
"0.

Thus, we have

f3KerMB
d
[E~

da
E0
da

E`
da

E
db

E
dc

0]N (C.21)

and hence

Vj(&3 Q )LKerMB
d
[E~

da
E0
da

E`
da

E
db

E
dc

0]N.

(C.22)

Moreover, f has the following property:

f"[(f~
a
)@ (f0

a
)@ 0 0 (f

c
)@ 0]@3V_(&I

P
). (C.23)

Obviously, (C.23) together with condition (fI ) imply

V_(&3
P
)MS_(&I

Q
)XG Z

j|Cs0
Vj(&3 Q )H. (C.24)

Similarly, for any m3S_(&I
Q
), conditions (e8 ) and (g8 ) imply

that CI
2
m"0 and

AI m"(w w 0 0 w 0)@. (C.25)

Now, it is straightforward to show that

m3KerMB
d
[E~

da
E0
da

E`
da

E
db

E
dc

0]N (C.26)

and hence

S_(&3
Q
)LKerMB

d
[E~

da
E0
da

E`
da

E
db

E
dc

0]N.

(C.27)
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Eqs. (C.22) and (C.27) imply that

KerMB
d
[E~

da
E0

da
E`
da

E
db

E
dc

0]N

MS_(&3
Q
)XGZ

j|C0

Vj(&3 Q )H. (C.28)

Next, we partition AI !zI as follows,

AI !zI"X
1
#X

2
C

2
#X

3
#X

4
#X

5
, (C.29)

where

X
1

:"

C
A~

aa
!zI 0 0 ¸~

ab
C

b
0 ¸~

ad
C

d
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

B
c
E~
ca

B
c
E0
ca

B
c
E`
ca

¸
cb

C
b

A
cc
!zI ¸

cd
C

d
0 0 0 0 0 0

D,(

C.30)

X
3
"C

0 0 0 0 0 0

0 0 0 0 0 0

0 0 A`
aa
!zI 0 0 0

0 0 0 A
bb
!zI 0 0

0 0 0 0 0 0

0 0 0 0 0 A
dd
!zI

D, (C.31)

X
2
"C

B~
0a

0 0

B0
0a

¸0
ad

¸0
ab

B`
0a

¸`
ad

¸`
ab

B
0b

¸
bd

0

B
0c

0 0

B
0d

0 0
D,

X
4
"C

0 0 0 0 0 0

0 A0
aa
!zI 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
D (C.32)

and

X
5
"C

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

B
d
E~
da

B
d
E0
da

B
d
E`
da

B
d
E
db

B
d
E
dc

0
D.
(C.33)

It is simple to see that

Im(X
1
)LV_(&3

P
)WG Y

@j@/1

Sj(&3 P )H, (C.34)

Ker(X
3
)MV_(&3

P
)MS_(&3

Q
)XG Z

@j@/1

Vj (&I Q )H. (C.35)

Also, (C.28) implies that

Ker(X
5
)MS_(&3

Q
)XG Z

@j@/1

Vj (&3 Q)H. (C.36)

It follows from the proof of Theorem 3.1 that as eP0

DD[CI
2
#D

2
F
P
(e)][zI!AI !BF

P
(e)]~1DD

=
(i

P
, (C.37)

where i
P

is a "nite positive constant independent of e.
Moreover, under condition (dI ), we have

[CI
2
#D

2
F
P
(e)][zI!AI !BF

P
(e)]~1EI P0, (C.38)

and

[CI
2
#D

2
F
P
(e)][zI!AI !BF

P
(e)]~1X

1
P0, (C.39)

pointwise in z as eP0. By (A.70), we have

[CI
2
#D

2
F
P
(e)][zI!AI !BF

P
(e)]~1X

4
P0, (C.40)

pointwise in z as eP0. Dually, one can show that

DD[zI!AI !K
Q
(e)C

1
]~1[EI #K

Q
(e)D

1
]DD

=
(i

Q
, (C.41)

where i
Q

is a "nite positive constant independent of e. If
condition (e8 ) is satis"ed, the following results hold:

CI
2
[zI!AI !K

Q
(e)C

1
]~1[EI #K

Q
(e)D

1
]P0, (C.42)

X
3
[zI!AI !K

Q
(e)C

1
]~1[EI #K

Q
(e)D

1
]P0 (C.43)

and

X
5
[zI!AI !K

Q
(e)C

1
]~1[EI #K

Q
(e)D

1
]P0, (C.44)

pointwise in z as eP0.
Finally, it is simple to verify that the transfer matrix

from the disturbance w to the controlled output h of the
closed-loop system comprising system (C.2) and control-
ler (C.3) is given by

¹
hw

(z, e)"[CI
2
#D

2
F
P
(e)][zI!AI !BF

P
(e)]~1EI

#CI
2
[zI!AI !K

Q
(e)C

1
]~1[EI #K

Q
(e)D

1
]

#[CI
2
#D

2
F
P
(e)][zI!AI !BF

P
(e)]~1

](AI !zI)[zI!AI!K
Q
(e)C

1
]~1[EI#K

Q
(e)D

1
].

Using (C.29), we can re-write ¹
hw

(z, e) as

¹
hw

(z, e)"[CI
2
#D

2
F
P
(e)][zI!AI !BF

P
(e)]~1EI

#CI
2
[zI!AI !K

Q
(e)C

1
]~1[EI #K

Q
(e)D

1
]

1120 Z. Lin, B. M. Chen / Automatica 36 (2000) 1103}1122



# [CI
2
#D

2
F
P
(e)][zI!AI !BF

P
(e)]~1

](X
1
#X

2
C

2
#X

3
#X

4
#X

5
)

][zI!AI !K
Q
(e)C

1
]~1[EI #K

Q
(e)D

1
].

Following (C.37)}(C.44), and some simple manipulations,
it is straightforward to show that as eP0, ¹

hw
(z, e)P0,

pointwise in z, which is equivalent to DD¹
hw

DD
=
P0 as

eP0. Hence, the full order output feedback controller
(81) solves the H

=
-ADDPMS for the given plant (1),

provided that all the conditions of Theorem 2.2 are
satis"ed. h

Appendix D = Proof of Theorem 4.2

It is su$cient to show Theorem 4.2 by showing that
the following controller:

&3
RC

(e):
dx

c
"A

RC
(e)x

c
#B

RC
(e)y,

u8 "C
RC

(e)x
c
#DI

RC
(e)y

(D.1)

with A
RC

(e), B
RC

(e), C
RC

(e) being given as in (95), and

DI
RC

(e)"[0, F
P1

(e)!F
P2

(e)K
R1

(e)], (D.2)

solves the H
=

-ADDPMS for (C.2).
Again, it is trivial to show the stability of the closed-

loop system comprising with (C.2) and the controller
(D.1) as the closed-loop poles are given by jMAI #BF

P
(e)N

and jMA
R
#K

R
(e)C

R
N, which are asymptotically stable

for su$ciently small e. Next, it is easy to compute the
corresponding closed-loop transfer matrix from the dis-
turbance w to the controlled output h,

¹
hw

(z, e)"CI
2A

0

I
n~k
B[zI!A

R
!K

R
(e)C

R
]~1

][E
R
#K

R
(e)D

R
]# [CI

2
#D

2
F

P
(e)]

][zI!AI !BF
P
(e)]~1(AI !zI)A

0

I
n~k
B

][zI!A
R
!K

R
(e)C

R
]~1[E

R
#K

R
(e)D

R
]

#[CI
2
#D

2
F

P
(e)][zI!AI !BF

P
(e)]~1EI .

Following the result of Chen (1991) (i.e., Proposition
2.2.1), one can show that

A
0

I
n~k
BS_(&

QR
)"S_(&3

Q
)WC~1

1
MIm(D

1
)N (D.3)

and

A
0

I
n~k
B Z
@j@/1

Vj(&QR
)" Z

@j@/1

Vj (&3 Q). (D.4)

Hence, we have

A
0

I
n~k
BAS_(&

QR
)XG Z

@j@/1

Vj(&QR
)HB

"MS_(&3
Q
)WC~1

1
MIm(D

1
)NNXG Z

@j@/1

Vj (&3 Q )H
LS_(&3

Q
)XG Z

@j@/1

Vj(&3 Q )H. (D.5)

The rest of the proof follows from the same lines as those
of Theorem 4.1. h
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