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a b s t r a c t

In this paper, we present the design and implementation of an autonomous flight control law for a small-
scale unmanned aerial vehicle (UAV) helicopter. The approach is decentralized in nature by incorporating
a newly developed nonlinear control technique, namely the composite nonlinear feedback control,
together with dynamic inversion. The overall control law consists of three hierarchical layers, namely,
the kernel control, command generator and flight scheduling, and is implemented and verified in flight
tests on the actual UAV helicopter. The flight test results demonstrate that the UAV helicopter is capable
of carrying out complicated flight missions autonomously.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Unmanned aerial vehicles (UAVs) have recently aroused
great interest in industrial and academic circles, because of
their potential applications in many areas and their scientific
significance in academic research. UAVs are capable of carrying out
work where the surrounding environment is dangerous to human
beings and they can be utilized as platforms with maneuverability
and versatility for pure academic research. Among various types
of UAVs, the UAV helicopter is an excellent platform for academic
research as it is safely manipulated in a manual mode and is easily
operated in an automatic mode. Many research groups worldwide
have chosen such a platform for their academic purposes (see, for
examples, Bortoff (1999), Kim, Shim, and Sastry (2002), McKerrow
(2004), Roberts, Corke, and Buskey (2002) and Shim, Kim, and
Sastry (2000), and the references therein).
Small-scale UAV helicopters are commonly upgraded from

radio-controlled hobby helicopters by assembling an avionics
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system (Cai, Peng, Chen, & Lee, 2005; Sprague et al., 2001). The
function of the avionics system is to collect measurement signals,
drive the actuators, and support communications and real-time
operations of autonomous flight control laws. One of the core
issues in designing a fully autonomous UAV helicopter is to
effectively design and implement sophisticated flight control laws.
Diverse methods, such as H∞ control (Weilenmann, Christen,
& Geering, 1999), the model predictive approach (Shim, Kim, &
Sastry, 2003), the differential geometry method (Isidori, Marconi,
& Serrani, 2003) and the neural network approach (Enns & Si,
2003), have been explored to design autonomous flight control
laws for small-scaleUAVhelicopters. Thework of (Marconi &Naldi,
2007) provides some useful theoretical guidelines in controlling
helicopters. However, many of the works focus merely on the
design of kernel control laws and/or in certain specific flight
conditions and are only verified by simulation.
The objective of our work is to design a fully autonomous flight

control law that is able to perform various flight missions for a
UAV helicopter, and to verify the feasibility and operability of
the UAV in actual flight tests. The proposed flight control scheme
consists of three parts, namely, the kernel control law, command
generator and flight scheduling. The function of the kernel control
law is to guarantee the asymptotic stability of the aircraft motion
with respect to the surrounding air. The role of the command
generator is to produce flight commands or references to the
kernel control layer, and finally the task of the flight scheduling
part is to generate the flight references for pre-scheduled flight
tasks or flight missions. Since the time scale associated each part
of the overall flight control system is hierarchical in nature, the
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flight control law can be designed in a decentralized fashion.
A newly developed nonlinear control technique, namely, the
composite nonlinear feedback (CNF) control method (Chen, Lee,
Peng, & Venkataramanan, 2003; He, Chen, & Wu, 2005), which
has successfully been applied to solve many real-life problems, is
employed to design the kernel control law based on the identified
linear model of the UAV helicopter using in-flight data. Dynamic
inversion (Isidori et al., 2003), capable of fully dealing with
nonlinearities in affine systems, is adopted to design the command
generator based on the kinematical models of the UAV. Lastly, the
flight scheduling is described in a discrete event system that causes
the helicopter to fly in some pre-determined flight conditions.

2. Dynamic and kinematic models of UAV helicopter

The UAV system studied in this paper, named HeLion, is
upgraded from a radio-controlled bare helicopter, Raptor 90, by
assembling an effective avionics onboard system mounted under
the fuselage of the helicopter (Cai et al., 2005). The helicopter is
1,410 mm in length, 190 mm in width, and 476 mm in height, and
itsmaximal takeoffweight is 15 kg. Itsweight increases from4.9 kg
to 11 kg after integrating all the necessary components. Its main
rotor has a diameter of 1,605 mm and its tail rotor has a diameter
of 260 mm. The helicopter is equipped with an engine, which
produces a power of 2.28 kW at the spinning rate of 15,000 rpm,
and it can be operated manually with a remote control unit. The
range of its practical spinning rate is from2,000 rpm to 16,000 rpm.
The gear ratio of the engine rotor to the main rotor to the tail rotor
is 8.45:1:4.65. The bare helicopter is capable of performing various
flight tasks including hover and agile flight. As the flight speed of
small-scale helicopters is relatively low, its effect in aerodynamics
can be safely ignored and it is feasible practically to use a linear
model in hovering and near-hovering flight conditions. A linear
model of HeLion for such flight conditions has been identified
in Cai, Chen, Peng, Dong, and Lee (2006) with in-flight data and
is given as(
ẋ1
ẋ2

)
=

[
A1 0
0 A2

](
x1
x2

)
+

[
B1 0
0 B2

]
u, (1)

where the state variables

x1 =
(
Vx, Vy, φ, θ, ωx, ωy, a, b

)′
, x2 = (Vz, ψ, ωz, wf)′ ,

andwhere Vx, Vy, Vz (in m/s) are the ground velocities measured in
the (x, y, z)-directions of the body frame, respectively. φ, θ and ψ
(in rad) are respectively the roll, pitch and yaw angles, and ωx, ωy
and ωz (in rad/s) are the corresponding roll, pitch and yaw angular
rates, a and b (in rad) are the first harmonics of longitudinal and
lateral flapping angles of themain blade tip-path plane, and finally,
ωf is a state variable of a built-in filter in the yaw channel. The
control input is given by

u = δ − δ0, (2)

where δ0 is the trim values of the control input command, and
δ =

(
δr, δp, δc, δt

)′, with δr, δp, δc and δt being respectively the
roll cyclic, pitch cyclic, collective and tail rotor commands, which
all have a normalized value in [−1, 1], with 1 being equivalent to
π/4 rad. For HeLion, the maximum values that the input channels
can take are respectively 0.35, 0.35, 0.12 and 0.4. Themeasurement
output of the UAV system is

y =
(
Vx, Vy, φ, θ, ωx, ωy, Vz, ψ, ωz

)′
. (3)

In the hovering condition, δ0 = (0.05, 0.02,−0.22, 0)′ when
the spinning rate of the main blades is 1750 rpm. Under such an
operating condition, the corresponding system data are
A1 =

A11 A12 0 A14
0 0 I2 0
A31 0 0 A34
0 0 A43 A44

 , B1 =

 000
B41

 ,

A2 =

A55 A56 0
0 A66 0
A75 A76 A77
0 A86 A87

 , B2 =

B52 0
0 0
B72 B73
0 0

 ,
where

A11 =
[
−0.1778 0
0 −0.3104

]
, A12 =

[
0 −9.781

9.781 0

]
,

A14 =
[
−9.781 0
0 9.781

]
, A31 =

[
−0.3326 −0.5353
0.1903 −0.2940

]
,

A34 =
[
75.764 343.860
172.620 −59.958

]
, A43 =

[
0 −1
−1 0

]
,

A44 =
[
−8.1222 4.6535
−0.0921 −8.1222

]
, A55 = −0.6821,

A56 =
[
0 −0.1070

]
, A66 =

[
0 1

]
,

A76 =
[
0 −5.5561

]
, A86 =

[
0 2.7492

]
,

A75 = −0.1446, A77 = −36.674, A87 = −11.1120,

B41 =
[
0.0496 2.6224
2.4928 0.1740

]
, B52 = 15.6491,

B72 = 1.6349, B73 = −58.4053.

The kinematical model is relatively simple and is given by(ṗx
ṗy
ṗz

)
= B′b

(Vx
Vy
Vz

)
, (4)

where px, py, pz are respectively the displacements (in m) of
helicopter in the (x, y, z)-directions of the north-east-down (NED)
frame, and Bb is the transformation matrix from the NED frame to
the body frame with

Bb =

[ cθcψ cθ sψ −sθ
−cφsψ + sφsθcψ cφcψ + sφsθ sψ sφcθ
sφsψ + cφsθcψ −sφcψ + cφsθ sψ cφcθ

]
, (5)

where s? = sin(?) and c? = cos(?). Lastly, the height of the aircraft
is given by h = −pz.

3. Design of autonomous flight control law

The schematic diagram of the autonomous flight control law
is shown in Fig. 1, in which the overall flight control system is
hierarchically divided into three layers: (1) the kernel control layer,
which is to guarantee the asymptotic stability of the aircraftmotion
with respect to the surrounding air and to track flight commands
Vxc, Vyc, Vzc, and ψc; (2) the command generator layer, which is
to generate flight commands by tracking flight references pxr, pyr
and pzr from the flight scheduling layer; and lastly (3) the flight
scheduling layer, which is to generate flight references based on
pre-schedule flight tasks or flight missions. As demonstrated later
in actual test results, such a control scheme has proven to be very
effective and yields an excellent performance.

3.1. Kernel control layer

The structure of the kernel control law is decentralized in nature
and is shown in Fig. 2. The kernel control law is decoupled into
two parts, i.e., the rolling/pitching control and the heaving/heading
control. The rolling/pitching control is hierarchically divided into
the velocity, attitude and swashplate control components. The
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Fig. 1. Structure of the overall autonomous flight control.

Fig. 2. Structure of the kernel control system.

heaving/heading control is respectively decoupled into the heaving
and heading components. The velocity, swashplate and heaving
control components are designed with the pole assignment
method, whereas the attitude and heading control laws are
designed using the CNF control technique. The CNF controller
consists of a linear feedback control law and a nonlinear feedback
control law. The linear feedback law is designed to yield a closed-
loop systemwith a small damping ratio for a quick response, while
the nonlinear feedback law is used to increase the damping ratio
of the closed-loop system, when the system output approaches
the target reference, to reduce the overshoot. We refer interested
readers to Chen et al. (2003) and He et al. (2005) for more
detailed information on the CNF control technique. Information on
hardware components used in actual flight implementation can be
found in Cai et al. (2005).

3.1.1. Velocity control
The role of the velocity control is to design a control law such

that the state variables ofVx andVy are capable of tracking the flight
commands Vxc and Vyc as quickly as possible. The velocity control
law is carried out based on the following subsystem

ẋ11 = Ā11x11 + A12v11, (6)
where x11 = (Vx, Vy)′, Ā11 = A11 − A14A−134 A31 and

v11 = x31 + A−112 A14
[
x44 + A−134 A31x11

]
, (7)

where x31 = (φ, θ)′ and x44 = (a, b)′. We note that the term
associated with x11 is introduced in v11 to deal with the interaction
between the velocity and attitude control. An appropriate control
law is then obtained and is given by

v11 = F11x11 + G11

(
Vxc
Vyc

)
, (8)

where

F11 =
[
−0.00579 −0.11821
0.11702 −0.00116

]
(9)

is chosen such that Ā11+A12F11 is asymptotically stable, and G11 =
−A−112 (Ā11 + A12F11).

3.1.2. Attitude control
The attitude controller is designed based on the following

subsystem
ẋ33 = AΦx33 + BΦ v33, z33 = CΦ2x33 + DΦ2 v33, (10)
where x33 = (φ, θ, ωx, ωy)′,

AΦ =
[
0 I2
0 0

]
, BΦ =

[
0
A34

]
, (11)

the control input

v33 = x44 + A−134 A31x11, (12)
and the controlled output z33 is characterized by

CΦ2 =
[
I2 0

]
, DΦ2 = A−112 A14. (13)

Attitude control is to make z33 track the signal v11 of (8). Following
the design procedure of (Chen et al., 2003; He et al., 2005), a state
feedback CNF control law is obtained and is given by

v33 = FΦ x33 + GΦ v11 + ρΦB′ΦPΦ [x33 − HΦ v11] , (14)
where

FΦ =
[
−0.04802 −0.17774 −0.02595 −0.09596
−0.10928 0.01683 −0.06395 0.01119

]
is selected such that AΦ + BΦFΦ is asymptotically stable,
GΦ = [DΦ2 − (CΦ2 + DΦ2FΦ)(AΦ + BΦFΦ)−1BΦ]−1,

HΦ = −(AΦ + BΦFΦ)−1BΦGΦ, (15)
and PΦ > 0 is the solution of the Lyapunov equation,

(AΦ + BΦFΦ)′PΦ + PΦ(AΦ + BΦFΦ) = −WΦ (16)
withWφ = diag{0.01, 0, 01, 0.001, 0.001},

ρΦ = diag

{
−β1

∣∣∣∣∣e−α1|φ̃| − e−11− e−1

∣∣∣∣∣ ,−β2
∣∣∣∣∣e−α2|θ̃ | − e−11− e−1

∣∣∣∣∣
}

with β1 = 1, α1 = 0.1 and β2 = 0.6, α2 = 0.1, and(
φ̃

θ̃

)
= x31 −

[
I2 − A−112 A14(FΦHΦ + GΦ)

]
v11. (17)

3.1.3. Swashplate control
To design a swashplate controller, we consider the following

subsystem characterized by
ẋ44 = A44 x44 + B41 v44, (18)
where x44 = (a, b)′, and the control input

v44 = B−141 A43 x32 +
(
u1
u2

)
, (19)

and where x32 = (ωx, ωy)′, and u1 and u2 are respectively the first
and second entries of the UAVmodel in (1). It is to design a control
law that such that x44 tracks

r44 = v33 − A−134 A31x11. (20)
For this subsystem, the state variables cannot be measured. We
would thus have to design a dynamic output feedback control law
instead. The following is an appropriate controller for controlling
the swashplate of the helicopter,
ẋc44 = (A44 − L44A34)xc44 − L44A31x11

+ B41v44 + (A44 − L44A34)L44x32 (21)
and
v44 = F44(xc44 + L44x32)+ G44r44, (22)
where

L44 =
[
0.010 0.025
0.025 0.010

]
, F44 =

[
−0.2605 −3.4751
−1.2188 −0.4924

]
are chosen such that A44 − L44A34 and A44 + B41F44 are stable, and
G44 = −B−141 (A44 + B41F44). Finally,(
u1
u2

)
= v44 − B−141 A43 x32. (23)
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3.1.4. Heave motion control
This part is to control Vz tracking the flight command Vzc. To

control the heave direction motion of the UAV helicopter, we use
the following subsystem

V̇z = A55Vz + B52v55, (24)
where the control input variable

v55 = B−152 A56 x66 + u3, (25)
and where x66 = (ψ, ωz)

′ and u3 is the third entry in the control
input vector of (1). A very simple static controller is obtained as
follows

v55 = F55Vz − B−152 (A55 + B52F55)Vzc. (26)
We select F55 = −0.052265 such that A55 + B52F55 < 0. It is clear
that

u3 = v55 − B−152 A56 x66. (27)

3.1.5. Heading motion control
Headingmotion control is to generate a controller such that the

state variableψ will follow the flight commandψc. The subsystem
we use for heading motion control is characterized by
ẋ66 = AΨ x66 + BΨ v66, (28)
where x66 = (ψ, ωz)′,

AΨ =
[
A66
A76

]
, BΨ =

[
0
B73

]
. (29)

The following state feedback CNF control law yields a very good
performance for the heading motion:

v66 = FΨ x66 + GΨ ψc + ρΨ B′Ψ PΨ (x66 − HΨ ψc) , (30)
where
FΨ =

[
0.01712 −0.08486

]
(31)

is chosen such that AΨ + BΨ FΨ is asymptotically stable,

GΨ = [−CΨ 2(AΨ + BΨ FΨ )−1BΨ ]−1, (32)

HΨ = −(AΨ + BΨ FΨ )−1BΨGΨ , (33)
Pψ > 0 is the solution of the Lyapunov equation,

(AΨ + BΨ FΨ )′PΨ + PΨ (AΨ + BΨ FΨ ) = −WΨ (34)
withWΨ = diag{0.034243, 1.7122× 10−6}, and finally

ρΨ = −β4

∣∣∣∣e−α4|ψ−ψc| − e−11− e−1

∣∣∣∣ (35)

with β4 = 1 and α4 = 0.1.
In order to transform the control law of (30) into the actual

input to the helicopter, we need to estimate the state variable ωf
associated to the built-in filter in the yaw channel, which can be
done as follows
ẋf = (A87 − LfA77)(xf + Lfωz)+ A86x66
− Lf (A75Vz + A76x66 + B72u3 + B73u4) , (36)

where Lf = −0.1 is chosen so that A87 − LfA77 < 0, and

ω̂f = xf + Lfωz. (37)
Finally, the 4th entry of the control input vector is given by

u4 = v66 − B−173
(
A75Vz − A77ω̂f − B72 u3

)
(38)

and the actual control signal that is injected into the UAV is given
by
δ = δ0 + u. (39)
This completes the design of the kernel control laws for the UAV
helicopter system.
3.2. Command generator

The command generator function is to generate necessary flight
commands associated with required flight missions. It can be
carried out using the dynamic inversion technique based on the
displacement equation or the kinematic model of the UAV system
in (4). More specifically, we note that (4) can be rewritten as(ṗx
ṗy
ṗz

)
= B′b

(Vx
Vy
Vz

)
= Vg

(cosψs cos θs
sinψs cos θs
− sin θs

)
, (40)

where Vg, θs and ψs are respectively the ground speed, flight path
angle and flight azimuth angle. The task of the command generator
is to generate flight commands, i.e., Vxc, Vyc, Vzc andψc, by tracking
the flight references of the scheduled steady and maneuvering
flights.
For a heading direction reference given in terms of ψr or ψ̇r,

ψc = ψr or ψc = ψ̇r1t + ψ, (41)

where1t is generally chosen to be the sampling period of the over-
all control system, which is 20 ms for HeLion. For flight references
given in terms of pxr, pyr and pzr or ḣr,(Vxc
Vyc
Vzc

)
= Bb

[kpx(px − pxr)
kpy(py − pyr)
kpz(pz − pzr)

]
(42)

where the last entry kpz(pz − pzr) can be replaced by −ḣr if it is
given, and

kpx = −0.3, kpy = −0.3, kpz = −0.5 (43)

are feedback gains chosen for our UAV helicopter. We note that
h = −pz. For flight references given in terms of Vgr and either one
of hr, θsr, θ̇sr and ψsr or ψ̇sr,(Vxc
Vyc
Vzc

)
= Bb Vgr

(cosψsc cos θsc
sinψsc cos θsc
− sin θsc

)
, (44)

where

θsc = arcsin
{
kh(h− hr)
Vg

}
or θsc = θ̇sr1t + θs (45)

or θsc = θsr, and

ψsc = ψsr or ψsc = ψ̇sr1t + ψs, (46)

andwhere kh = −0.5 is a feedback gain chosen for our UAV and1t
is chosen to be the sampling period of the overall control system.
Lastly, the detailed design of flight scheduling is to be given

in the next section for a flight envelope, which consists of flight
tasks including automatic takeoff, hovering, slithering, spiraling
and automatic landing.

4. Simulation and actual flight experiment

We illustrate the design of flight scheduling with a flight en-
velope experiment, which consists of tasks including automatic
takeoff, hovering, slithering, turning back, head turning, pirouet-
ting, vertical turning, spiral turning, and automatic landing. Table 1
gives the event-driven models of such an experiment. The specific
flight references of the scheduled steady and maneuvering flights
are given as follows:

(1) Takeoff: ḣr, pxr, pyr and ψr are constants.
(2) Hovering: pxr, pyr, pzr and ψr are constants.
(3) Slithering: ψsr = ψsr0 ± π/4, and hr, Vgr and ψr are constants.
(4) Head turning: hr, Vgr, ψsr and ψ̇r are constants.
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Table 1
Events in flight scheduling.

Step No Flight mission Transition condition Next step

0 Abnormal 2
1 Takeoff Lift up 15 m 2/0
2 Hovering Duration of 15 s 3/9/A
3 Slithering Duration of 32 s 4/0
4 Turning back Duration of 8 s 5/0
5 Head turning Duration of 32 s 6/0
6 Pirouetting Duration of 32 s 7/0
7 Vertical turning Duration of 62.8 s 8/0
8 Spiral turning Duration of 40 s 2/0
9 Landing Descend to ground A/0
A Termination

Fig. 3. Position and heading responses of the pirouetting motion.

Fig. 4. Yaw rate responses for the pirouetting motion.

(5) Pirouetting: ψr = ψs ± π/2, and hr, Vgr and ψ̇sr are constants.
(6) Vertical turning: Vgr, θ̇sr, ψsr and ψr are constants.
(7) Spiral turning: ψr = ψs or ψr = ψs + π , and Vgr, θsr and ψ̇sr
are constants.

(8) Landing: ḣr, pxr, pyr and ψr are constants.

Before conducting an actual flight for the UAV, we have run
a thorough simulation test on the system using our own built
hardware-in-the-loop simulation system, in which most of the
hardware components of the UAV system, including sensors, servo
controllers and wireless communications systems are to be kept
in the simulation loop. Shown in Figs. 3 and 4 are the comparison
of the performance of the flight control laws designed using the
CNF control technique and that of their linear counterparts for
the pirouetting motion. It is clear that the nonlinear control laws
outperform the linear ones.
Fig. 5. Actual flight paths and the references for the whole test.

Fig. 6. Tracking errors for the whole test.

Wehave conducted actual flight tests of the overall autonomous
flight control law on our UAV helicopter, HeLion, together the
onboard and ground supporting systems reported in Dong, Chen,
Cai, and Peng (2007). The sampling period used in the actual
experiment is 20 ms. To have a better sense on the quality of
the actual flight test, we show in Fig. 5 the actual position and
heading angles of the UAV and their references, and in Fig. 6 the
tracking errors throughout thewhole test. The results demonstrate
that HeLion with the autonomous flight control law effectively
completes the scheduled steady and maneuvering flights, and the
tracking errors are kept within the GPS accuracy level. Our design
is very successful. A video clip captured during the actual test
flight can be downloaded or viewed at the following web link,
http://uav.ece.nus.edu.sg/~bmchen/reports/fullflight.wmv.

5. Concluding remarks

A fully autonomous flight control law has been designed for our
UAV helicopter, HeLion, with a decentralized scheme incorporat-
ing the newly developed composite nonlinear control technique
and the dynamic inversion approach. The design has also been suc-
cessfully verified in the actual flight tests. The analysis of the re-
sulting closed-loop system shows that our design has achieved top
level flight performance by military standards. Unfortunately, due
to space limitation, we are unable to include such a result in the pa-
per. Interested readers can access a full version of this manuscript
at http://uav.ece.nus.edu.sg/~bmchen/reports/HeLion.pdf.

http://uav.ece.nus.edu.sg/~bmchen/reports/fullflight.wmv
http://uav.ece.nus.edu.sg/~bmchen/reports/HeLion.pdf
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