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Necessary and Sufficient Conditions for a 
Nonminimum Phase Plant to have a 
Recoverable Target Loop A Stable 

Compensator Design for LTR* 

BEN M. CHEN,t~t ALI SABERIt~ and P. SANNUTI§ 

All  possible recoverable target loop transfer funct ions fo r  a given plant  are 
characterized, necessary and sufficient conditions fo r  a given plant  to have 
at least one recoverable target loop are established, a compensator structure 
which has definite advantages over a conventional  observer based 
controller fo r  L T R  is developed. 
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Abstract--In connection with loop transfer recovery of 
nonminimum phase systems, the purpose of this paper is 
two-fold: (1) to study the set of recoverable target loops and 
to establish necessary or/and sufficient conditions for a given 
plant to have at least one recoverable target loop, and (2) to 
show that the compensator structure developed earlier in 
Chen, Saberi and Sannuti [(1991) Automatica, 27, 257-280] 
for minimum phase systems, can also recover any 
recoverable target loop for nonminimum phase systems as 
well while retaining all its advantages over conventional 
observer based controllers. 

1. INTRODUCTION 

LooP TRANSFER RECOVERY (LTR) has recently 
been studied with a vigorous interest by a 
number of authors including Athans (1986), 
Chen et al. (1991), Doyle and Stein (1979), 
Goodman (1984), Kwakernaak (1969), Niemann 
and Jannerup (1990), Niemann et al. (1991), 
Ridgely and Banda (1986), Stein and Athans 
(1987), Saberi et al. (1991a), Saberi et al. 
(1991b), Sogaard-Andersen and Neimann 
(1989), Sogaard-Andersen (1989), Saberi and 
Sannuti (1990), Zhang and Freudenberg (1987) 
and Zhang and Freudenberg (1990). The 
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problem of LTR is to design a measurement 
feedback controller such that the resulting loop 
transfer function is either exactly or approxim- 
ately equal to a target loop transfer function 
L(s) which meets the given specifications on 
sensitivity and complementary sensitivity func- 
tions. The original work of Doyle and Stein 
(1979) on LTR has two attributes: (1) it 
considered only left invertible and minimum 
phase plants, and (2) it used observer based 
measurement feedback controllers to recover a 
given target loop transfer function. In view of 
these two attributes, let us next review briefly 
the direction in which the research on LTR 
proceeded since the seminal work of Kwaker- 
naak (1969) and Doyle and Stein (1979). As 
shown in Doyle and Stein (1979) as well as in 
Saberi and Sannuti (1990), for left invertible and 
minimum phase plants, any given target loop 
transfer function designed via a state feedback 
control is recoverable asymptotically by an 
observer based controller employing an asy- 
mptotically infinite gain. Although Doyle and 
Stein (1979) considered only full order observer 
based structures, subsequent work by Saberi and 
Sannuti (1990) revealed that a reduced order 
observer can be used in place of a full order 
observer. To relieve the designer from attribute 
(1), recent work, especially that of Niemann and 
Jannerup (1990), Zhang and Freudenberg 
(1987), Zhang and Freudenberg (1990), Saberi et 
al. (1991a) and Saberi et al. (1991b) concentr- 
ated on general nonminimum phase plants. It 
turns out that not all target loops can be 
recovered by observer based controllers for 
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general plants. To understand thoroughly the 
mechanism of LTR, Saberi et al. (1991a) 
examined it in detail using observer based 
structures for controllers. The analysis there, 
while showing that neither exact LTR (ELTR) 
nor asymptotic LTR (ALTR) can in general be 
achieved, focused on three fundamental issues. 
The first issue was concerned with what can and 
what cannot be achieved for a given system and 
for an arbitrarily specified target loop transfer 
function, while the second issue was concerned 
with the development of necessary or/and 
sufficient conditions a target loop has to satisfy 
so that it can either exactly or asymptotically be 
recovered for the given system. The third issue 
dealt with the development of method(s) to test 
whether recovery is possible in a given subspace 
of the control space or not, i.e. to test whether 
projections of target and achievable sensitivity 
and complementary sensitivity functions onto a 
given subspace match each other or not. This 
analysis clearly shows that if there exists a target 
loop that can be recovered, it must satisfy some 
geometric conditions. However, Saberi et al. 
(1991a) considers only full order observer based 
structure for the controller, and it does not make 
any attempt to find out the conditions on the 
plant such that the plant has at least one target 
loop which is either exactly or asymptotically 
recoverable. 

One of the goals of this paper is to generalize 
as well as to complement the results of Saberi et 
ai. (1991a), that is (1) to characterize the set of 
recoverable target loops when the controller 
structure is general and is not necessarily 
observer based, and (2) to establish the 
necessary or/and sufficient conditions on the 
plant so that it has at least one recoverable 
target loop. In fact, given a general not 
necessarily minimum phase and not necessarily 
left invertible plant, we construct here an 
auxiliary system from it and show that the set of 
recoverable target loops for the given plant is 
nonempty if and only if the auxiliary system is 
stabilizable by a static output feedback control- 
ler. This then leads to a simple and surprising 
necessary condition on the given plant, namely, 
strong stabilizabilityt o f  the given nonminimum 
phase plant is a necessary condition for  the plant 
to have at least one recoverable target loop. 
However, the fact that the given plant is strongly 
stabilizable itself does not guarantee that there 
exists at least one recoverable target loop. 

t A plant is said to be strongly stabilizable if there exists a 
stable and proper compensator which stabilizes the plant 
(Vidyasagar, 1985). 

Moreover, we show that any recoverable target 
loop, whenever it exists, can always be 
recovered by a stable controller. 

Regarding the structure of controllers used for 
LTR, the entire literature on LTR with the 
exception of Chen et al. (1991) and Niemann et 
al. (1991), uses only observer based controllers. 
A question then arises of whether there are any 
advantages if one uses any arbitrarily structured 
controller. (Here we mean by any arbitrarily 
structured controller, any stabilizing controller 
which does not have any specific structure such 
as observer based, and has any arbitrary finite 
dimension.) In this connection, we show that 
the set of recoverable target loops for a given 
plant cannot be expanded by using any 
arbitrarily structured controller instead of an 
observer based one. That is, the set of 
recoverable target loops obtainable via observer 
based controllers is the same one as that obtain- 
able by any arbitrarily structured controller. 
However, it turns out that an observer based 
controller is not the best one in view of the 
required controller gain and band-width. Let us 
expand on this. As the conditions for ELTR are 
severe, one usually attempts to obtain ALTR 
whenever it can be done. ALTR invariably 
results in the use of high values of gain for the 
observer. However, use of high gain is not 
always practical as it brings with it the woes of 
high controller band-width and signal saturation. 
To liberate the designer from such woes, Chen et 
al. (1991) introduced earlier a compensator 
structure and studied the LTR for minimum 
phase and left invertible plants. The compen- 
sator structure introduced in Chen et al. (1991) 
has several distinct advantages over conventional 
observer based controllers of either full or 
reduced order type, i.e. the compensator is (a) 
open-loop stable, (b) guarantees closed-loop 
stability and above all (c) requires much smaller 
values of gain than the conventional observer 
based controller for the same degree of loop 
transfer recovery. The fact that the compensator 
requires a much smaller value of gain than the 
observer based controller, implies that the 
compensator band-width is much smaller than 
that of the conventional controller and thus one 
gains the freedom from the woes of saturation as 
well as insensitivity to noise or other high- 
frequency disturbances. We will show here that 
the compensator structure of Chen et al. (1991) 
along with its advantages is applicable for LTR 
of general nonminimum phase plants. In fact, we 
show that any target loop recoverable by any 
arbitrarily structured controller can also be 
recovered via an open-loop stable compensator 
o f  either full  order (dimension n) or reduced 
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order (dimension n -  p) while accruing all the 
advantages quoted in Chen et al. (1991). 

Some of the conditions we develop here (see 
in particular Theorem 3.1) involve subspace 
inclusions. The subspaces involved are well 
known invariant subspaces of a linear system. 
Such subspaces can be constructed easily 
following the special coordinate basis of a linear 
system (Sannuti and Saberi, 1987). A software 
package has been developed to construct the special 
coordinate basis, and hence the required sub- 
spaces of a given linear system (Lin et al., 1991). 

The paper is organized as follows. Section 2 
defines the LTR problem in precise terms. 
Section 3 deals with all the fundamental analysis. 
It develops the necessary and sufficient condi- 
tions such that the given nonminimum phase 
plant has at least one recoverable target loop. A 
clear interpretation of these conditions is also 
given. Also, we show here that the set of 
recoverable target loops obtainable by using 
observer based controllers cannot be expanded 
by using any arbitrarily structured controller. 
However, since one normally attempts to have 
asymptotic LTR, for a certain degree of 
recovery, one controller structure may have 
advantages over the other in view of the 
required controller gain and band-width. In 
Section 4, we advocate using the compensator 
structure of Chen et al. (1991) for a controller 
and show that it can also recover any 
recoverable target loop. We next move on to 
show the advantages of using the compensator 
structure for the controller over the conventional 
observer based controller structure. Numerical 
examples of Section 5 illustrate several aspects of 
the theory developed while Section 6 draws 
conclusions of our work. 

Throughout the paper, A' denotes the 
transpose of A, I denotes an identity matrix 
while Ik denotes the identity matrix of dimension 
k x k. A(A) and Re [A(A)], respectively denote 
the set of eigenvalues and real parts of 
eigenvalues of A. Similarly, O'max[A] and 
Omin[A], respectively denote the maximum and 
minimum singular values of A. Ker[V] and 
Im [V] denote, respectively, the kernel and the 
image of V. The open left and closed right half 
s-planes are, respectively, denoted by C- and 
C ÷. Also, ~p denotes the subring of all proper 
rational functions of s while the set of matrices 
of dimension I x q whose elements belong to ~p 
is denoted by ~l~l×q(~p). Also, we define a 
geometric subspace v+(A, B, C) for the system 
Z(A, B, C), as the maximal subspace of ~"  
which is (A + BF)-invariant and contained in 
Ker(C) such that the eigenvalues of (A + 
BF) [ v ÷ are contained in C + for some F. 

2. PROBLEM STATEMENT 
Let us consider a general nonminimum phase 

plant E, 

Yc = Ax  + Bu, y = Cx, (2.1) 

where the state vector x • 9t n, output vector 
y • ~R p and input vector u • ~R 'n. Without loss of 
generality, assume that B and C are of maximal 
rank. Let us also assume that Z is stabilizable 
and detectable. Let F be a full state feedback 
gain matrix such that (a) the closed-loop system 
is asymptotically stable, i.e. the eigenvalues of 
A - B F  lie in the left half s-plane, and (b) the 
open-loop transfer function when the loop is 
broken at the input point of the plantt meets the 
given frequency dependent specifications. The 
state feedback control is 

u = - F x ,  (2.2) 

and the loop transfer function evaluated when 
the loop is broken at the input point of the plant, 
the so called target loop transfer function, is 

L(s) -- F ~ B ,  (2.3) 

where • = ( s l - A )  - l .  Arriving at an appropri- 
ate value for F is concerned with the issue of 
loop shaping which is an engineering art and 
often includes the use of linear quadratic 
regulator (LQR) design in which the cost 
matrices are used as free design parameters to 
generate the target loop transfer function L(s) 
and thus the desired sensitivity and complemen- 
tary sensitivity functions. The next step of design 
is to recover the target loop using only a 
measurement feedback controller. This is the 
problem of loop transfer recovery (LTR) and is 
the focus of this paper. 

To explain it clearly, consider the configura- 
tion of Fig. 1 where C(s) and P(s) = C ~ B  are, 
respectively, the transfer functions of a control- 
ler and of the given plant. Given P(s) and a 
target loop transfer function L(s), one seeks 
then to design a C(s) such that the recovery 
error, 

e(s) =- L(s) - C(s)P(s), 

is either exactly or approximately equal to zero 
in the frequency region of interest while 

P(s/I 

C(s) [. 
FIG. 1. Plant-controller closed-loop configuration. 

t The loop can be broken at the output or at any other 
point. However ,  here without loss of  generality, we assume 
that it is broken at the input point. 
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guaranteeing the stability of the resulting 
closed-loop system. Achieving exact LTR 
(ELTR) is in general not possible even for left 
invertible and minimum phase systems. One 
seeks then approximate LTR. The notion of 
"approximate" LTR has to be defined a little 
carefully. Here we seek achieving LTR to any 
arbitrarily desired accuracy. In an attempt to 
make this feasible, one normally parameterizes 
C(s) as a function of a scalar parameter o and 
thus obtains a family of controllers C(s, o). We 
say asymptotic LTR (ALTR) is achieved if 
C(s, o)e(s)---~ L(s) pointwise in s as o---~ ~, i.e. 
E(s, o) ~ 0 pointwise in s as o---~ ~. 
Achievability of ALTR enables the designer to 
choose a member of the family of controllers 
that corresponds to a particular value of o which 
achieves a desired level of recovery. 
Traditionally in observer based controllers, such 
a parameterization is done by adding a fictitious 
process noise of intensity proportional to o 
which is injected into the system through the 
input into the plant. Then the observer gain is 
calculated by solving the resulting filter algebraic 
Riccati equations (AREs). In an asymptotic and 
time-scale structure assignment (ATEA) proce- 
dure of Saberi and Sannuti (1990) and Saberi et 
al. (1991b), appropriate parameterization of a 
controller assigns a chosen time-scale structure 
to the resulting closed-loop system. The relative 
fastness of fast time-scales is then adjusted as 
desired by tuning the parameter o. We now 
consider the following definitions in order to 
impart precise meanings to ELTR and ALTR: 

Definition 2.1. The set of admissible target loops 
T(Y) for the plant Y is defined by 

T('~~) = ( L ( s )  • ~m×m(~p) I L(S) 
= F~B,  and Z(A - BF) • C-}. 

Definition 2.2. L(s) • T(E) is said to be exactly 
recoverable (ELTR) if there exists a C(s)•  
d~m×p(~p) such that (i) the closed-loop system 
comprising of C(s) and P(s) as in the 
configuration of Fig. 1 is asymptotically stable, 
and (ii) C(s)P(s) = L(s). 

Definition 2.3. L(s)•  T(Z) is said to be 
asymptotically recoverable (ALTR) if there 
exists a parameterized family of controllers 
C(s,o)•d~m×p(~p), where o is a scalar 
parameter taking positive values, such that (i) 
the closed-loop system comprising of C(s, o) and 
P(s) as in the configuration of Fig. 1 is 
asymptotically stable for all o > o * ,  where 
0~<o*<oo, and (ii) C(s,o)e(s)---~L(s) po- 
intwise in s as a--* ~. Moreover, the limits, as 

o---~oo, of the finite eigenvalues of the closed- 
loop system should remain in C-. t 

Definition 2.4. L(s) belonging to T(Z) is said to 
be recoverable if L(s) is either exactly or 
asymptotically recoverable. 

Definition 2.5. The set of recoverable target 
loops for the plant Z is denoted by T.,a(Z). 

These definitions differ from the conventional 
ones of LTR as there is no prior structure 
assumed for either C(s) or C(s, o). 

It is well known that for left invertible and 
minimum phase plants, any arbitrary admissible 
target loop is asymptotically recoverable and 
hence TIn(Y) is equal to T(Z). On the other 
hand, if the given plant Z is not left invertible 
or/and of nonminimum phase, not all target 
loops are recoverable, i.e.T.m(Z) is not equal to 
T(Z). In fact, TIn(Y) might be an empty set. As 
mentioned in the Introduction, this paper has 
two goals, (1) to characterize T,,(Y) and to 
examine it carefully in order to establish the 
necessary or/and sufficient conditions on the 
given plant Z so that T,~(Z) is nonempty, and (2) 
to show that whenever a given target loop is 
recoverable, the open-loop compensator struc- 
ture of Chen et al. (1991) for the controller can 
always be used to recover the target loop. The 
design of a compensator and the advantages of 
using a compensator over the conventional 
observer based controller are also studied both 
theoretically as well as numerically by means of 
examples. 

3. NECESSARY AND SUFFICIENT CONDITIONS 
FOR T,~(Z) TO BE NONEMPTY 

This section deals with all the fundamental 
analysis on general nonminimum phase plants. 
At first, assuming that the set of recoverable 
target loops for Z, namely T.m(Y), is nonempty, 
we establish a condition in terms of a geometric 
subspace for a given L(s) to be an element of 
T,~(Z).. This condition on the geometric 
subspace leads to an interesting result, namely, 
T,n(Z) is nonempty if and only if an auxiliary 
system, derived from the given plant, is 
stabilizable by a static output feedback control- 
ler. Next, it is shown that strong stabilizability 
of the given plant is a necessary condition for 
T.m(Z) to be nonempty. However, strong 
stabilizability of the given plant alone does not 

t Here we have strengthened the notion of the closed-loop 
stability in order to exclude those cases having the limits, as 
o---~o0, of some finite eigenvalues of the closed-loop system 
being on the l'to axis. This avoids having an almost unstable 
behavior of the closed loop system for large o. 
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guarantee that it has at least one recoverable 
target loop. We prove next that any recoverable 
target loop for a given system Z can be 
recovered using an open-loop stable controller. 

We first have the following result. 

Theorem 3.1. Consider a stabilizable and detec- 
table system Z characterized by the triple 
(A, B, C), as in (2.1), which is not necessarily of 
minimum phase and which is not necessarily left 
invertible. Let L(s) be any admissible target 
loop transfer function of Z, i.e. L ( s ) •  T(Z), 
then L(s) is recoverable, i.e. L(s) • T,n(Z), if and 
only if v+(A, B, C) ~_ Ker (F). 

Proof. It is well known that any proper 
internally stabilizing controller of the given plant 
can be parameterized as a full order observer 
plus an additional stable compensator Q(s). The 
state space interpretation of such a controller 
can be written as follows, 

= A2 + Bu + K(y  - C$), 

Yc o = Aox  o + Bo(y  - C2), 

Yo = Coxo + Do(Y - C$), 

u =a  = - F ~ - y o ,  

where F and K are any fixed matrices such that 
A -  BF and A -  KC are asymptotically stable 
while in our case F is chosen to be the one that 
specifies the target loop FOB. Then it is shown 
in Niemann et al. (1991) that the recovery error 
Eo(s ) for such a controller is given by 

Eo(s ) -- MQ(S)[Im + Mo(s)]-t(Im + FOB),  

where 

Mo(s ) = F ( ~  -1 + KC)- IB  

- Q( s )C(~  -~ + KC)-IB,  (3.1) 

and where 

Q(s) = Co(sI - A o ) - I B o  + D o. 

It is now trivial to see that A L T R  is achievable 
using the general internally stabilizing controller, 
if and only if Omax[Mo(jto)] can be made 
arbitrarily small for all to, 0 ~< to < ~. One can 
parameterize Q(s) with a tuning parameter a as 
Q(s, a) and consequently Eo(s) and Mo(s ) are 
also parameterized as Eo(s, o) and Mo(s , o), 
respectively. Noting that the transfer function 
matrices F ( ~  -~ + KC) - tB  and C(~  -~ + KC)-~B 
are fixed and generally nonzero, then the 
problem of A L T R  is reduced to the problem of 
finding the conditions for the existence of 
Q(s, a) such that 

Mo(s, o)---~0 pointwise in s as o---, oo. 

This problem can be reformulated as a /4. 
optimization problem. Consider the following 
auxiliary system Zau, 

f .~ = (A - KC)'x + C'u + F' to, 

]~au:/Y = 0X ' +/into, 
[ z = B x .  

Also, let the output dynamic feedback be 

u = - Q ' ( s ,  o)y. (3.2) 

Then it is simple to verify that the transfer 
function from the controlled output z to the 
disturbance w, denoted by Tzw(s, o), is in fact 
given by 

o)= M3(s, o). 

Also, note that the stability of Q(s, a) is 
necessary for the internal stability of the 
closed-loop system consisting of Zau and (3.2). 
Hence, the problem of finding the conditions for 
the solution of the original A L T R  problem, i.e. 
the problem of finding the conditions for the 
existence of Q(s, a) such that 

Mo(s, o)--* 0 pointwise in s as o---~ ~, 

can equivalently be formulated as the problem of 
finding the conditions under which the infimum 
of a H ,  optimization problem for Zau is equal to 
zero, namely, as the problem of finding the 
conditions under which there exists a measure- 
ment output feedback controller as in (3.2) for 
Eau such that the / / , -norm of the transfer 
function from the controlled output z to the 
disturbance w can be made arbitrarily small as 
o---~ oo. It is shown in Khargonekar et al. (1988) 
that Ys, the in f imum/ / . -norm of the closed-loop 
transfer function from z to w under static state 
feedback is equal to the in f imum/ / . -norm of the 
closed-loop transfer function from z to w under 
dynamic state feedback. Now, let us define Y0 as 
the infimum of the /-/,-norm of the transfer 
function T~(s, a) under the dynamic output 
feedback. Then we have Yo -> Ys since the output 
dynamic feedback is a subset of a full state 
dynamic feedback. However, it follows from the 
results of Fujita et al. (1990) that the 
achievement of any arbitrary static state 
feedback can be exactly recovered using an 
output dynamic feedback since the system 
characterized by the quadruple (A' - 
C'K ' ,F ' ,O ,  Im) is square invertible and of 
minimum phase. Thus, Y0 = Ys and the problem 
of finding an internally stabilizing Q'(s, o) such 
that the/- / . -norm of Tz~(S, o) is arbitrarily small 
is reduced to the problem of finding a state 
feedback gain K'(o)  such that (i) Re [ ,~(A'-  
C'K~(o) - C'K')] < 0 for all o > o~' for some 
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o~'-> 0, and (ii) 

IlB'[sl, - A '  + c ' g '  + c'g~(o)]-lF'l l~ 

---~0 as o--->~, 

which is equivalent to 

F [ ~ - '  + (Ks(o) + K)C]-IB--~O 

pointwise in s as a---~ ~. 

Then, it follows from the results of Saberi et al. 
(1991a) that there exists such a gain Ks(o) 
satisfying the conditions (i) and (ii), if and only if 
v+(A, B, C) ~_ Ker (F). 

It is worth noting that in this case, the transfer 
function from z to w in the auxiliary system Zau 
under the state feedback gain K~(a), can be 
exactly recovered by using Q(s, tr) as 

a(s,  o) = F[sI n - m + (Ks(o) + g)c]-lgs(cr).  

Moreover, in this case, Mo(s, a) of (3.1) can be 
simplified as follows, 

Mo(s, o) = F (~  -~ + KC)-IB 

- a ( s ) C ( ~  -~ + KC)-IB 

= F (¢~  -1  + KC)-XB 

- F[~  -1 + (Ks(a) + K)CI - '  

X Ks(o)C(dP -1 q- KC)-~B. 

Now using the matrix identity, 

[(I )-1 "Jr" KC + Ks(cr)C]-~Ks(cr)C 

= I,, - [¢~-' + (Ks(o) + K ) C ] - ' ( ~  -x + KC), 

we have 

Mo(s, o) = F (~  -~ + KC)-IB 

- F{I~ - [ ~ - '  + (Ks(a) + K)C] -~ 

x ( ~ - '  + KC)}(~  -1 + KC)- 'B  

= F[d~ -~ + (Ks(o) + K)CI-~B. 

Hence, 

Mo(s, o)--~0 pointwise in s as o---> oo. 

This completes the proof of Theorem 3.1. 

Let us note that a finite step algorithm to 
construct the geometric space v+(A, B, C) of 
any given linear system can easily be given via 
the special coordinate basis (Sannuti and Saberi, 
1987). As such the necessary and sufficient 
condition of Theorem 3.1 can easily be used to 
come up with a simple and verifiable finite step 
algorithm which constructs the set of all 
recoverable target loops. Such a set obviously 
helps a designer at the onset of design to 
formulate a meaningful target loop transfer 
function. 

Theorem 3.1 leads to the next theorem which 
says that any L(s) that is recoverable, can be 

recovered by using only a controller having an 
observer based structure which could either be 
full or reduced order type depending on the 
designer's choice. In other words, T~(Z), the set 
of all recoverable target loops without any 
restriction on the type of controller one uses, is 
the same one as the set of all recoverable target 
loops obtainable by using only either full or 
reduced order type of observer based 
controllers. 

Theorem 3.2. Consider a stabilizable and detec- 
table system Z characterized by the triple 
(A, B, C), as in (2.1), which is not necessarily of 
minimum phase and which is not necessarily left 
invertible. Let L(s) be any recoverable target 
loop transfer function of Z, i.e. L ( s ) •  T,.n(Z), 
then L(s) can be recovered by both a full and a 
reduced order observer based controller. 

Proof. It is proven in Theorem 3.1 that any 
recoverable target loop of Z must satisfy the 
condition v+(A, B, C) ~_ Ker (F). Then it 
follows from the results of Saberi et al. (1991a) 
and Saberi et al. (1990) that any target loop 
which satisfies this geometric condition, 
i.e. v+(A, B, C ) ~  Ker (F),  can be recovered by 
both full and reduced order type of observer 
based controllers. 

Theorem 3.1 characterizes a recoverable 
target loop L(s) in terms of a geometric 
subspace of the given system Z. Perhaps, a more 
fundamental question that one needs to answer 
at this stage is "What  are the necessary or /and 
sufficient conditions on the system Z so that 
has at least one recoverable target loop?". This 
is pursued in Theorem 3.3. 

Theorem 3.3. Consider a stabilizable and detec- 
table system Z characterized by the triple 
(A, B, C), as in (2.1), which is not necessarily of 
minimum phase and which is not necessarily left 
invertible. Let no be the dimension of 
v÷(A, B, C). Also, let (~ be any full rank matrix 
of dimension ( n -  no)x  n such that Ker ((~)= 
v÷(A, B, C). Then the given system Y has at 
least one recoverable target loop, i.e. T,n(Z) is 
nonempty, if and only if an auxiliary system ~'~a 
characterized by the matrix triple (A, B, C) is 
stabilizable by a static output feedback 
controller. 

Proof. It follows from Theorem 3.1 that any 
admissible target loop L ( s ) = F O B  is re- 
coverable iff v+(A, B, C) ~_ Ker (F). Hence, 
Ker (t~) = v÷(A, B, C) implies Ker (C) _ 
Ker (F) and Im (F ')  ~_ Im (C'). Then we have 
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F = GC for some constant matrix G. It is trivial 
to verify that the existence of a recoverable 
target loop L(s)=Fd~B such that A - B F  is 
asymptotically stable is equivalent to the 
existence of a matrix G such that A -  BGC is 
asymptotically stable, i.e. the matrix triple 
(A, B, (~) is stabilizable by a static output 
feedback law. This completes the proof of 
Theorem 3.3. 

Theorem 3.3 gives necessary and sufficient 
conditions under which the set of recoverable 
target loops, T,~(Z), is nonempty. However, the 
condition given there is not conducive to any 
intuitive feelings. The following corollary gives a 
necessary condition which is surprising, as well 
as intuitively appealing. 

Corollary 3.1. The strong stabilizability of a 
plant X is a necessary condition for it to have at 
least one recoverable target loop. 

Proof. It is well known that any stabilizable and 
detectable system X can be stabilized by using an 
observer based controller. Now if the auxiliary 
system ~'~a is stabilizable by a static output 
feedback controller, then there exists a gain F 
such that A -  BF is asymptotically stable and 
v+(A, B, C) ~Ker  (F). Moreover, it follows 
from the results of Saberi et al. (1991a) that 
there exists an observer gain, K(o), such that 
A - K(o)C is asymptotically stable and 

M(s, o) = F[~ -1 + K(o)CI-1B--*O 

pointwise in s as e---~ oo. 

Next, considering a stabilizing full order 
observer based controller, 

C(s, o) = F[sI. - A + K(o)C + BF]- 'K(o) ,  

we examine its eigenvalues as o---~ oo. We have 

det [sin - A + K(o)C + BF] 

= det [~-1 + K(o)C] 

x det [I, + (~-1  + K(o)C)-~BF] 

= det [~-1 + g ( o ) C ]  

x det [Ira + F(r~ -x + K(o)C)-~B] 

= det [~-~ + K(o)C] 

x det [Ira + M(S, a)] 

--~ det [ S I  n - -  A + K(o)C] as o---~ oo. 

Thus the full order observer based controller is 
open-loop stable for sufficiently large o. We 
conclude then that the given system Z is strongly 
stabilizable as it can be stabilized by an 
open-loop stable controller. 

Corollary 3.1 tells us that any given system X 
must be strongly stabilizable in order to have at 
least one recoverable target loop. On the other 
hand, as seen from Theorem 3.3, strong 
stabilizability of X alone is not sufficient for 
T.m(X) to be nonempty. The following example 
illustrates this. 

Example 1. Consider a system Z characterized 
by 

1] [0] 
£ =  _ 2 x +  1 u, y = [ 0  1]x, 

which is of nonminimum phase with an invariant 
zero at s = 1. It is simple to verify that the given 
system is strongly stabilizable and v+(A, B, C) is 
spanned by [1,0]'. Hence, it follows from 
Theorem 3.1 that any recoverable target loop 
Fe~B must have the following form of F,  

F = [0 o:], 

where a~ is any constant. It is now straightfor- 
ward to verify that 

det [sI, - A + BE] = s 2 + (a~ + 1)s - (o~ + 1), 

which cannot be a Hurwitz polynomial for any 
re. Hence, this system has no recoverable target 
loop although it is strongly stabilizable. 

The fact that a nonminimum phase system 
must at least be strongly stabilizable for T.,~(Z) to 
be nonempty, raises the question whether it is 
possible to recover any recoverable target loop 
of X by using an open-loop stable controller. The 
following lemma answers the question 
affirmatively. 

Lemma 3.1. Any recoverable target loop for a 
given system Z can be recovered using an 
open-loop stable controller. 

Proof. In view of Theorem 3.3, we note that 
one can recover any recoverable target loop 
using only observer based controllers. Now, it 
can be easily seen, from the proof of Corollary 
3.1, that such a controller is also asymptotically 
stable for sufficiently large o. Hence the result of 
Lemma 3.1. 

4. A STABLE COMPENSATOR DESIGN FOR LTR 
In the previous section, we showed that the set 

of recoverable target loops obtainable by using 
only an observer based controller is the same 
one as that obtainable by using any arbitrarily 
structured controller. Then one wonders 
whether any advantages can be gained by using 
an arbitrarily structured controller instead of an 
observer based controller. To investigate along 
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these lines, let us first note that since ELTR in 
general is not possible even for left invertible 
and minimum phase systems, one seeks only to 
achieve ALTR whenever it can be done. Thus 
we focus in this section only on ALTR.  ALTR 
invariably results in the use of high gain for the 
observer. Use of high gain is not always practical 
as it brings with it the woes of high controller 
band-width and signal saturation. To liberate 
the designer from such woes, Chen et al. (1991) 
introduced earlier a compensator structure and 
studied the LTR for minimum phase and left 
invertible plants. The compensator structure 
introduced in Chen et al. (1991) has several 
distinct advantages over conventional observer 
based controllers of either full or reduced order 
type, i.e. the compensator is (a) open-loop 
stable, (b) guarantees closed-loop stability and 
above all (c) requires much smaller values of 
gain than the conventional observer based 
controller for the same degree of loop transfer 
recovery. The fact that the comI~ensator requires 
much smaller value of gain than the observer 
based controller implies that the compensator 
band-width is much smaller than that of the 
conventional controller and thus one gains some 
freedom from the woes of saturation as well as 
insensitivity to noise or other high-frequency 
disturbances. The intention of this section is to 
show that the compensator structure of Chen et 
al. (1991) along with its advantages is applicable 
for LTR of general nonminimum phase plants. 
As is true for the observer based controllers, we 
show that any recoverable target loop can be 
recovered by using the compensator structure for 
the controller. We will next compare the 
compensator structure with that of the conven- 
tional observer based structure, and show that 
for the same value of gain, compensator has a 
much better recovery than the observer has. 
We will also establish bounds on the sensitivity 
and complementary sensitivity functions for both 
observer based and compensator based struc- 
tures. These bounds again ascertain that the 
compensator structure has significant advantages 
over the observer based structure. In short, the 
message we want to convey in this section is that 
whenever one has a recoverable target loop, the 
use of compensator structure of Chen et al. 
(1991) for the controller is much preferable over 
a conventional observer based structure. Of 
course, whenever the given target loop is not 
recoverable, one can perhaps recover it partially. 
Determination of advantages of one controller 
structure over another for partial recovery, is 
still an open research problem and is a topic of 
our future research. 

Analogous to observer based controllers, 

there are two compensator structures, one full 
order type of dynamic order n and another 
reduced order type of dynamic order n - p .  
First, let us recall the full order compensator 
having the transfer function, 

C¢(s, o) = F[O -1 + K(o)C]- 'K(o).  (4.1) 

In the parameterized family of controllers given 
in (4.1), the only free design variable is the 
parameterized gain K(o). We need to para- 
meterize K(o) in such a way that there exists a 
o~ so that for all o > o~', the controller C~(s, o) 
is open-loop stable while capable of achieving 
ALTR. That is, the design of K(o) is to be done 
to meet the following goals: 
(1) (Stability of the closed-loop system.) The 
closed-loop system comprising the given system 
and the full order compensator is asymptotically 
stable, i.e. there exists a o~ such that for all 
o > o~, we have 

Re [X(AcI(Or))] < 0, 

where 

A c ' ( ° ) = [ A - K ( ° ) C  K ~  . (4.2) 

Moreover, the limits of all finite eigenvalues of 
A¢l(o) remain in C-.  
(2) (Recovery . )The  achieved loop transfer 
function Lc(jto, o), 

t,o(jto, o)= ccoto, o)POto), 

is asymptotically equal to the target loop L(jto) 
as o--,0% i.e. Cc(jto, o)P(jto)--*L(jto) point- 
wise in to as o--* oo. 
(3) (Open-loop stability of the compensator.) 
The compensator is open-loop asymptotically 
stable, i.e. there exists a o~' such that for all 
o > o~', we have 

Re [X(A - K(o)C)] < O. 

Next, let us recall a reduced order compen- 
sator. Without loss of generality, let us assume 
that 

c = [tp, o1, 

and hence the plant (2.1) can be written in the 
form, 

f~l = AHx~ + A 1 2 x  2 -t- B~u, 
(4.3) 

3~2 = A21Xl + mEEX2 + B2u, Y = Xl. 

Also, let the state feedback gain matrix F which 
achieves the target loop transfer function L(s) be 
partitioned in conformity with (4.3) as 

F = [Fx, F2]. 

The transfer function of the reduced order 
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compensator is given by, 

Ccr(S , O') = F2[sln_ p - Ar(O)]  -1 

x G,(o) + F, + 
where 

At(o) = A22 - Kr(O)A12, 

and 

(4.4) 

Gr( o) = A22Kr( O) - K,( o)At2K~( Ü) 

+ A21 - Kr(o)A11. 
In the parameterized family of controllers given 
in (4.4), the only free design variable is the 
parameterized gain K,.(o). We need to para- 
meterize K,(o) in such a way that there exists a 
o~', so that for all 0 > 0~'~, the controller C¢,(s, o) 
is open-loop stable while capable of achieving 
ALTR. That is, the design of K~(o) is to be 
done to meet the following goals: 
(1) (Stability of the closed-loop system.) The 
closed-loop system comprising the given system 
and the reduced order compensator is asymptot- 
ically stable, i.e. there exists a tr~ such that for 
all o > o~',, we have 

Re [~.(Ac.~(o))] < 0, 
where 

A22 - K,(o)A12 - K~(o)B1F2 
Aclr(O ) = -B1F2 

-B2F2 

A21 - K~(o)BIF1 Kr(O)A12] 

A l l  -- B1F1 AI2  l "  
/ 

A21 - B 2 F  l A22 .J 

Moreover, the limits of all finite eigenvalues of 
AaJo) remain in C-.  
(2) (Recovery . )The achieved loop transfer 
function L,( jw,  o), 

L~r(jOg, o)= C~r(jto, o)P(jto), 

is asymptotically equal to the target loop L(jto) 
as tr--~oo, i.e. C~r(jto, o)P( jw)-*L( jw)  point- 
wise in to as o---> o0. 
(3) (Open-loop stability of the compensator.) 
The compensator is open-loop asymptotically 
stable, i.e. there exists a 0~', such that for all 
o > o~',, we have 

Re [,~(A,(o))] < 0. 

The following lemma characterizes the re- 
covery error between the target and the achieved 
loop transfer functions. 

Lemma 4.1. The error Ec(s, o) between the 
target loop transfer function L(s) and Lc(s, o), 
the one realized by the full order compensator, 
is given by 

Ec(S, o)= M(s, o), 

where 

M(s, o) = F[dP-' + K(o)C]-'B. (4.5) 

Similarly, the error E¢r(s, o) between the target 
loop transfer function L(s) and L~r(S, o), the 
one realized by the reduced order compensator, 
is given by 

E.(s, o)= M#,  o), 
where 

Mr(S, o) 

= F2[022 ~ + K,(o)A,zI-'[Bz - K,(o)BI], 

and where "22 = (sl,._p - A22)- i. 

(4.6) 

Proof. The proof of this lemma for general 
nonminimum phase systems is exactly the same 
as that of a similar result for left invertible and 
minimum phase systems given in Chen et al. 
(1991). 

Theorem 4.1. Consider a stabilizable and detec- 
table system Y. characterized by the triple 
(A, B, C), as in (2.1), which is not necessarily of 
minimum phase and which is not necessarily left 
invertible. Let L(s) be any recoverable target 
loop transfer function of X, i.e. L(s)~ T,~(Z), 
then L(s) can be recovered via either a full or a 
reduced order type of compensator. 

Proof. It is shown in Saberi et al. (1991a) and 
Saberi et al. (1990) that whenever a target loop is 
recoverable, there exist gain matrices K(o) and 
K,(o) such that A -K(Ü)C and A22-  Kr(o)A12 
are stable matrices for all o > o * ,  where 
0~<o*<o0 while the limits of the finite 
eigenvalues of these matrices belong to C-.  
Also, K(Ü) and K,(o) guarantee that 

EJs, o)=M(s,  o ) - * 0  pointwise in s as o--~ ~, 

(4.7) 

and 

Ecr(s, o) = M,(s, o)- 0 
pointwise in s as o--,oo. (4.8) 

Hence, such K(a)  and Kr(o) achieve loop 
transfer recovery and yield open-loop stability of 
either a full or a reduced order type of 
compensator. Next, the stability of the closed- 
loop systems comprising the given system and 
the compensator, either full or reduced order, 
can be proven following the same line as in 
Theorems 5 and 10 of Chen et al. (1991). 

Remark 4.1. We point out that the exact 
structure and values of K(o) and K,(o) required 
to satisfy, respectively, (4.7) and (4.8), and to 
render A - K ( o ) C  and A 2 2 - g r ( o ) A 1 2  stable, 
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are not in general unique. Also, there are two 
methods of design available to find K(o) and 
Kr(o). The classical method introduced by 
Doyle and Stein (1979) is based on solving 
parameterized algebraic Riccati equations 
(AREs). Recently, a method based on asympto- 
tic time-scale and eigenstructure assignment 
(ATEA) has been introduced by Saberi and 
Sannuti (1990). For detailed comparison of these 
two methods, see Saberi et al. (1991b). 

We should note that in the proof of Theorem 
4.1, no explicit requirement is made on the given 
plant. The only condition we need is that the 
given target loop transfer function FcbB is 
recoverable. In fact, this is also true of all the 
results of Chen et al. (1991) although there we 
considered only left invertible and minimum 
phase systems. Hence, all of the following results 
follow from Chen et al. (1991) even though the 
given system we are considering now is not 
necessarily left invertible and not necessarily of 
minimum phase. 

We now pursue the advantages of the 
compensator structure over the conventional 
observer based structure. For an appropriate 
comparison, we recall next the following lemma 
which is analogous to Lemma 4.1, however it 
deals with observer based controllers. 

for all to. Furthermore, assume that 

Omi,[ L(jto ) ] = omi.[ F(jto - A)-IB] 

>> 1 for all to ~ De, (4.9) 

for some frequency region of interest, De. Then 
for all to ~ De, the mismatch between the target 
loop transfer function and the one achieved by 
the full order compensator is always less than the 
corresponding one achieved by the full order 
observer based controller. More specifically, we 
have 

Omax[Eo(jto, or)] 

>> ¢rmax[E~(jto, o)] for all to ~ De. (4.10) 

Similarly, assume that the same gain K~(o) is 
used for both the reduced order observer based 
controller and the reduced order compensator. 
Let o be such that Omax[M,(jto, o)] is small (say, 
<<1 but nonzero) for all to. Furthermore, assume 
that (4.9) is true. Then for all to e Dc, the 
mismatch between the target loop transfer 
function and the one achieved by the reduced 
order compensator is always less than the 
corresponding one achieved by the reduced 
order observer based controller. More specifi- 
cally, we have 

Omax[Eor(Jto , O')1 
>> Om.x[Ec~(jco, a)] for all co ~ D~. (4.11) 

Lemma 4.2. The error Eo(s, o) between the 
target loop transfer function L(s) and Lo(s, a), 
the one realized by the full order observer based 
controller, is given by 

eo(s  , o)  = M(s,  or)[l m + M(s, O)]--l(Im + FdPB), 

where M(s, o) is as in (4.5). Similarly, the error 
Eor(S, o) between the target loop transfer 
function L(s) and Lot(S, a), the one realized by 
the reduced order observer based controller, is 
given by 

Eor(S, o) = Mr(s, or)[Im + Mr(s, O)]--l(Im + FdpB), 

where Mr(s, a) is as in (4.6). 

Proof. The proof follows along the same lines 
as that of a similar result for left invertible and 
minimum phase systems given in Chen et al. 
(1991). 

Remark 4.2. It is well known (Doyle and Stein, 
1981) that in order to have good command 
following and disturbance rejection properties, 
the target loop transfer function L(jto) has to be 
large and consequently, the minimum singular 
value amin[L(jto)] should be large in the 
appropriate frequency region. Thus the condi- 
tion (4.9) is always satisfied in all practical 
situations. 

Proof. See Saberi et al. (1990, 1991a). 

We are now ready to show the advantages of 
compensator structure. We have the following 
theorem. 

Theorem 4.2. Consider a general stabilizable 
and detectable nonminimum phase plant. As- 
sume that the same gain K(a) is used for both 
the full order observer based controller and the 
full order compensator. Let o be such that 
Omax[M(jto , O)] is small (say, <<1 but nonzero) 

Remark 4.3. Due to the sign >> in (4.10) and 
(4.11), Theorem 4.2 clearly shows that the 
compensator structure requires much smaller 
value of gain and hence the controller 
bandwidth than that of the observer based 
structure for the same degree of recovery. 

We move on next to compare the sensitivity 
and complementary sensitivity functions achiev- 
able by full and reduced order compensators, 
with those achievable by full and reduced order 
observer based controllers. Let SF(S) and TF(S) 
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be the sensitivity and complementary sensitivity 
functions corresponding to the target loop 
transfer function L(s), 

SF(S) = [Im + L(s)] -1 and TF(S) =Im -- SF(S). 

Similarly, let us define the sensitivity and 
complementary sensitivity functions achievable 
by a particular controller as, 

S , ( s ,  o) = [I., + L,(s ,  o)1-' ,  

and 

T, (S ,  O) = I m - S , ( s ,  o ) ,  

where L,(s, o) is the correspondingly obtained 
loop transfer function. Here, the subscript * will 
be replaced, respectively, by c, cr, o and or, 
when the controller used is full order compen- 
sator, reduced order compensator, full order 
observer based and reduced order observer 
based. 

We have the following result. 

Theorem 4.3. Consider a general, stabilizable 
and detectable, nonminimum phase plant. 
Assume that the same gain K(o) is used for both 
the full order observer based controller and the 
full order compensator. Let o be such that 
omx[M(jto, o)] is small (say, <<1 but nonzero) 
for all to. Furthermore, assume that (4.9) is true. 
Then for all to e De, we have 

Om~[So(jto, O) -- S~(jto)I 

>> Omax[Sc(jto, o )  - SF(jto)], (4.12) 

and 

Omax[ To(jto , a ) -  TF(jto)] 

>> Omax[T~(jto, o) - Tv(jto)]. (4.13) 

Similarly, assume that the same gain K,(o) is 
used for both the reduced order observer based 
controller and the reduced order compensator. 
Let o be such that Omax[M,(jto, o)] is small (say, 
<<1 but nonzero) for all to. Furthermore, assume 
that (4.9) is true. Then for all to e De, we have 

Omax[Sor(Yto, (Y) - SF(jto)] 

~>~> Omax[Scr(jto , O) -- SF(j(D)] , (4.14) 

and 

Om~x[ Tor(jto, o ) -  TF(jto)] 

>> O m . , , [ T . ( j t o ,  o )  - TF(jto)I. (4.15) 

Proof. We first note the following: 

I m +  Lo(s ,  or) = I m + L ( s )  - Eo(s ,  o )  

= I m + L(s) - M(s, o) 

× [Ira + M(S, O)]--l[Im + L(S)] 

= [tin + M(S, tr)]--l[Irn + L(S)], 

and hence 

So(s, o) - SF(S) = SF(S)M(s, o). 

Similarly, we note that 

Im+ L~(S, O) =Im + L(S) - M(s, o) 

(4.16) 

= {Ira -- M(S,  o)[I  + L(s)] 

X [Ira + L(s)I, 

and hence 

So(s, o )  - S (s) 

=S~:(s)M(s, o ) [ Im+L(s ) -M(s ,  O)] -~. (4.17) 

From (4.16) and (4.17), we obtain 

So(s, o )  - s (s) 

= [S~(s, o) - SF(S)][Im + L(S) - M(s, o)]. 

Now it is simple to see that under the 
assumptions of Theorem 4.3, 

Omax[So(j0~, o)  - SF(/to)] 

>> OrnaxIS¢(jto, or) -- Sv(jto)] ,  Vto e O¢. 

This proves (4.12). Also, (4.13) to (4.15) follow 
along similar arguments. 

The above theorem shows once again that the 
compensator structure is much better than the 
conventional observer based structure. 

5. EXAMPLES 
In what follows we consider two examples to 

illustrate the theoretical results of Sections 3 and 
4. In these two examples, we illustrate the 
advantages of the compensator structure in two 
different ways. At first, we select the same gain 
K(o) or K,(o) for both the observer based 
structure and the compensator structure, and 
then for several values of o, we compare the 
performance of these two controller structures 
by plotting with respect to frequency for a given 
frequency range, (i) the target and achieved loop 
transfer functions and (ii) the maximum singular 
value of the recovery error. In another type of 
comparison, we fix, a priori, the required degree 
of recovery by specifying a highest tolerable 
value for the maximum singular value of the 
recovery error. Then, we obtain for both the 
controller structures the norm of the gain which 
meets the given specification. We also obtain the 
resulting 0dB bandwidth as well as the 
eigenvalues of the controller. The comparisons 
by both the methods show explicitly that the 
compensator structure for the controller has 
much better recovery properties than the 
observer based structure. 

Example 2. Consider the example given in 
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Zhang and Freudenberg (1990), 

- 1  0 0 0 1 0 - 1  0 0 
.2 = 0 0 -0 .2  0 x 

0 0 0 -0 .2  

-0 .5  1.25 1 
-2 .5  -2 .5  

+ 0.3 -1.25 u, 
1.5 3.5 / 

[; 010] 
Y= 1 0 1 x, 

which is square, invertible and of nonminimum 
phase with two invariant zeros at s = - 8  and 
s = l .  The geometric subspace v+(A,B, C) 
for this example is the span of [-0.138675 
-0.693375 0.138675 0.693375]'. Now let a tar- 
get loop L(s) be specified by the gain matrix, 

[ - 1 6 . 8 9 1 0  0.5782 -19.1586 1.0317] 
F=1_-290.0338 7.0068 -295.0560 8.01121" 

It is straightforward to verify that L(s)~ Tn(Z), 
i.e. L(s) is recoverable. Here, we used the 
ATEA algorithm of Saberi et al. (1991b) to 
obtain the following gain K(o), 

r ( o )  = 

I 3.75(1 - o) 0 . 7 5 0 -  1.25q 

25(0 - 1) 2.5(1 - 2 o ) /  

0.95(5o - 1) 0.25(1 - 3o ) / "  

5(1 - 50) 60 - 0.7 / 

This gain places the eigenvalues of A -  K(o)C, 
one precisely at - 8  and others asymptotically at 
-1,  - o  and - o .  Figure 2 (A) and Table 1 (A) 
give the maximum and minimum singular values 
of the target loop transfer function as well as those 
of the two recovered loop transfer functions, one 
for the full order compensator and another for 
the full order observer based controller, for 
several values of the tuning parameter a. On the 
other hand, for the same degree of recovery, 
Fig. 2 (B) and Table 1 (B) show (1) the 
maximum singular value graphs of the two 
different controller transfer functions, and (2) 
the required values of gains and the eigenvalues 
of the controllers. Again, these numerical results 
show clearly that the compensator structure has 
much better recovery properties than the 
observer based controller. 

Example 3. Consider the following system Z 
characterized by [_25_251000 _2j l 

.2= - 6  1 0.3 x +  u, 

1 0 0 - 

[ 000] 
Y= 1 0 0 x , 

which is square and invertible with one 
nonminimum phase invariant zero at s = 0.3. 
The geometric subspace v+(A, B, C) for this 
example is the span of [0 0 1 0]'. Now let a 
target loop, L(s)= FOB, be specified by the 
following gain matrix, 

F = [ - 1 3  50 0 10] 
11 250 0 50"  

It is trivial to see that v+(A, B, C)c_Ker(F) 
and hence L(s) ~ T~(Y), i.e. L(s) is recoverable. 
Here, we used ATEA algorithm of Saberi et al. 
(1990) to obtain the following gain matrix, 

for both the reduced order observer based 
controller and the reduced order stable compen- 
sator. This gain matrix Kr(o) places the 
eigenvalues o f - 4 2 2 -  Kr(o)A12 precisely at - 2  
and - ( o + 2 ) .  Figure 3 (A) and Table 2 (A) 
give the maximum and minimum singular values 
of the target loop transfer function as well as 
those of the two recovered loop transfer 
functions, one for the reduced order compen- 
sator and another for the reduced order observer 
based controller, for several values of the tuning 
parameter o. Once again, these numerical 
results show clearly that the compensator 
structure has much better recovery properties 
than the observer based controller. 

6. CONCLUSIONS 
In this paper, we first focused our attention on 

theoretical analysis and characterized the set of 
recoverable target loops for a given plant. We 
showed that the set of recoverable target loops 
for any stabilizable and detectable nonminimum 
phase system using an observer based controller 
is the same one as that obtainable using any 
arbitrarily structured controller. Moreover, we 
established the necessary and sufficient condi- 
tions on the plant such that it has at least one 
recover.able target loop. That is, the set of 
recoverable target loops for a given plant is 
nonempty if and only if a particular auxiliary 
system constructed from the given plant is 
stabilizable by a static output feedback control- 
ler. This result leads to a surprising necessary 
condition, namely the strong stabilizability of the 
given plant is a necessary condition for the plant 
to have at least one recoverable target loop. 
However, strong stabilizability of the given 
plant alone does not imply that the plant has at 
least one recoverable target loop. This is 
illustrated by an example. We also proved that 
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TABLE 1 (A). SUPREMUM OF MAXIMUM SINGULAR VALUES OF 
MISMATCH FUNCTIONS, FREQUENCY RANGE: 0.01-100 RAD/SEC 

Tuning parameter sup {Omax[Eo(jo))]} sup {Gmax[Ec(jO))]} 

Case 1 o = 5 1570.7 25.9476 
Case 2 a = 20 1397.7 6.4868 
Case 3 a = 100 876.3 1.2975 

any recoverable target loop can be recovered by 
using an open-loop stable controller. 

The second aspect of the paper deals with the 
design of practical controllers. Although ob- 
server based controllers can recover all 
recoverable target loops, in connection with 
ALTR which is the goal in practice, there are 
some inherent problems in using observer based 

TABLE 1 (B). COMPARISON OF OBSERVER BASED CONTROLLER 
VS STABLE COMPENSATOR FOR THE SAME DEGREE OF RECOVERY 

Degree of recovery 
sup {am.x[Eo(#O)] } ~ sup {amx[Ec(#O)] } ~ 6.4868 

f o r  0.01 ~< to ~< oo rad/sec 

Observer 
based controller Stable compensator 

Gain norm-2: 1.0844 x 106 713.11 
Eigenvalues: -29563 - 2 0  

-29522 - 17.8815 
- 8  - 8  
- 1.0034 - 1.1185 

( 0  dB) 
B a n d - w i d t h :  1.0092 x 107 rad/sec 7794 rad/sec 

controllers. More specifically, observer based 
controllers require high values of gain. The use 
of high gain brings with it the problems 
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TABLE 2 (A). SUPREMUM OF MAXIMUM SINGULAR VALUES OF 
MISMATCH FUNCHONS, FREOUENCY RANGE: 0 .001--  

1000 RAD/SEC 

Tuning parameter sup {Om,~[Eo(#O)]} sup (Ormax[Ec(jto)] } 

Case 1 o = 5 106.2351 7.2843 
Case 2 o = 20 84.1034 2.3177 
Case 3 o = 100 39.8388 0.4999 

assoc ia ted  with high con t ro l l e r  b a n d - w i d t h  and  
woes  o f  s ignal  sa tu ra t ion .  To  l i be ra t e  the  
des igner  f rom these  diff icult ies,  we a d v o c a t e  the  
use of  c o m p e n s a t o r  s t ruc tu re  o f  Chen  et al. 

(1991) for  the  con t ro l l e r .  A s  is the  case  wi th  the  
obse rve r  b a s e d  con t ro l l e r s ,  the  c o m p e n s a t o r  
s t ruc ture  o f  Chen  et al. (1991) can  also r ec ove r  
any r e c o v e r a b l e  t a rge t  loop .  M o r e o v e r ,  the  
c o m p e n s a t o r  s t ruc tu re  uses va lues  o f  gains  
o rde r s  of  m a g n i t u d e  less than  wha t  the  o b s e r v e r  
based  con t ro l l e r  does  for  the  s ame  d e g r e e  o f  
recovery .  This  is shown he re  bo th  t heo re t i c a l l y  
as well  as by  severa l  numer i ca l  example s .  A l s o ,  
the  theo re t i ca l  b o u n d s  on  sens i t iv i ty  and  
c o m p l e m e n t a r y  sens i t iv i ty  func t ions  o b t a i n e d  
here  conf i rm the  a d v a n t a g e s  o f  using the  
c o m p e n s a t o r  s t ruc tu re  ove r  the  o b s e r v e r  b a s e d  
con t ro l l e r  s t ruc ture .  In  shor t ,  we  be l i eve  tha t  the  
use of  c o m p e n s a t o r  s t ruc tu re  for  the  con t ro l l e r  
br ings  the  des ign  p r o c e d u r e  of  L T R  in to  
prac t ica l  d o m a i n .  

W h e n e v e r  a t a rge t  l oop  is no t  r e c o v e r a b l e ,  it  
m a y  be  pa r t i a l ly  r e cove rab l e .  W h e n  one  is 
in t e res t ed  in pa r t i a l  r ecove ry ,  inves t iga t ion  o f  
d i f ferent  types  o f  s t ruc tu res  for  con t ro l l e r s  
(which p e r h a p s  n e e d  no t  be  o p e n - l o o p  s tab le )  
and  the i r  re la t ive  mer i t s ,  is still  an  o p e n  r e sea rch  
p r o b l e m .  
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