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Al~lract--Motivated by a crucial role blocking zeros play in 
deciphering the strong stabilizability of a given system, a 
careful study of blocking zeros is undertaken here. After 
developing certain properties of blocking zeros and based on 
the multiplicity structure of invariant zeros, we identify what 
kind of invariant zeros are blocking zeros. For controllable 
and observable systems, an invariant zero is a blocking zero 
if and only if its geometric multiplicity is equal to the normal 
rank of the transfer function of the given system. This result 
leads to delineation of the class of controllable and 
observable time-invariant linear systems into two subclasses, 
(1) "simply SISO" systems whose normal rank is unity, and 
(2) "truly MIMO" systems whose normal rank is greater 
than unity. In a "simply SISO" system, every invariant zero 
is a blocking zero and hence a "simply SISO" system is not 
necessarily strongly stabilizable. On the other hand, a "truly 
MIMO" system with distinct invariant zeros does not have 
any blocking zeros and hence is always strongly stabilizable. 
Also, given any "truly MIMO" system, there always exists 
an arbitrarily small perturbation of its dynamic matrix such 
that the perturbed system has no blocking zeros and hence is 
strongly stabilizahle. In this sense, one can say that a MIMO 
system "almost always" has no blocking zeros and hence is 
"almost always" strongly stabilizable. 

1. Introduction 
IT HAS BEEN ACKNOWLEDGED since late 1970s and early 
1980s, that zeros of a multivariable dynamic system come 
into picture at the core of every design philosophy. Several 
types of zeros have been defined in the literature. For a 
comprehensive review of the existing definitions of zeros and 
their properties, see a well written paper by Schrader and 
Sain (1989). Among various zeros, system zeros, invariant 
zeros, transmission zeros, decoupling zeros and infinite zeros 
are by now well defined and studied by a number of 
researchers. In this note, we focus our attention on blocking 
zeros which form a subset of transmission zeros which 
themselves form a subset of invariant zeros. Our primary 
objective is to identify clearly what kind of invariant zeros 
(or transmission zeros) are blocking zeros. Our interest in 
blocking zeros arises because of the critical role played by 
them in characterizing strongly stabilizable systems; namely, 
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blocking zeros are the relevant zeros in the parity interlacing 
property (Youla et al., 1974; Vidyasagar, 1985) that defines 
the class of plants that are stabilizable by a stable 
compensator using measurement feedback. Strong stabi- 
lizability plays a significant role in a variety of control issues, 
e.g. study of robust stabilization and simultaneous 
stabilization of uncertain systems. Also, recently, it has been 
shown that strong stabilizability of a system is a necessary 
condition for the system to have at least one target loop 
transfer function which is defined in terms of a state feedback 
gain, and which is recoverable by using only measurement 
feedback controllers (Chen et al., 1992). Besides the role 
played by blocking zeros in characterizing strongly 
stabilizable systems, as shown in Ferreira (1976), they also 
serve to characterize the essential feature that the error 
transfer function matrix of an asymptotic tracking control 
system must possess. 

Here, at first we review and discuss the differences 
between various definitions of blocking zeros that exist in the 
literature. Choosing a particular definition of a blocking 
zero, we characterize blocking zeros in terms of invariant 
zeros (or transmission zeros) and their multiplicity structure. 
This process of characterization reveals several important 
properties of blocking zeros. In particular, it leads to a clear 
division of all controllable and observable linear time- 
invariant systems into two distinctly different families, one 
consisting of "simply SISO" systems and another consisting 
of "truly MIMO" systems. A "simply SISO" system is a 
system, the normal rankll of whose transfer function is unity; 
while a "truly MIMO" system is a system having the normal 
rank of its transfer function greater than unity. Our results 
show that (1) a "simply SISO" system has all its invariant 
zeros as blocking zeros, and (2) a "truly MIMO" system does 
not have any blocking zeros whenever all its invariant zeros 
are distinct. Since all its invariant zeros are blocking zeros, a 
"simply SISO" system is strongly stabilizable if and only if it 
satisfies a certain interlacing property (Youla et al., 1974; 
Vidyasagar, 1985) among its invariant zeros and poles. In 
contrast to this, since a "truly MIMO" system does not have 
any blocking zeros whenever all its invariant zeros are 
distinct, the distinctness of its invariant zeros alone 
guarantees that a "truly MIMO" system is strongly 
stabilizable. That is, no inter-relationship whatsoever among 
its invariant zeros and poles of a "truly MIMO" system is 
required for its strong stabilizability whenever all its invariant 
zeros are distinct. Our next result shows that given any "truly 
MIMO" system characterized by a matrix quadruple 
( A , B ,  C ,D) ,  there always exists an arbitrarily small 
perturbation of its dynamic matrix A such that the perturbed 
system has no blocking zeros and hence is strongly 
stabilizable. In this sense, we can say that a MIMO system 
"almost always" has no blocking zeros and hence is "almost 
always" strongly stabilizable. Note that the word "almost 
always" is well defined in the context of this paper as it refers 
to arbitrarily small perturbations in the matrix A, but not 

[I The normal rank of a rational transfer function is its rank 
over the field of rational functions. 
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necessarily in B and not necessarily in C. This we believe is a 
practically significant and exploitable result. 

Throughout the paper,  A '  denotes the transpose of A, / 
denotes an identity matrix while 1 k denotes the identity 
matrix of dimension k x k. A(A) denotes the set of 
eigenvalues of A. The open left and closed right half s-planes 
are, respectively denoted by % and ~+ while ~ denotes the 
entire s-plane• With an abuse of notation, we use 0 to 
indicate a scalar zero as well as a vector zero or a matrix zero 
of appropriate dimension understood from the context. 
Ker[V] denotes the kernel of V. We denote by 7/"g the 
maximal subspace of !R" which is (A + BF)-invariant and 
contained in Ker (C + DF) such that A{(A + BF)[~ ~] are 
contained in ~g ~_ q~ for some F. For the cases that ~g = % 
~g = ~ and % = :(+, we replace the superscript g in °Uu, 
respectively by *, - and +.  

2. Preliminaries 
Let us consider a linear time-invariant multivariable 

system X described by 

= A x + B u ,  y = C x + D u ,  (2.1) 

where x e ~" ,  u ~ !)t" and y e !It p. Without loss of generality, 
we assume that both [B',  D ' ] '  and [C, D] are of maximal 
rank. Let P(s) = C(sl~ - A ) - ~ B  + D be the transfer function 
of X. Also, let the irreducible transfer function of X be 
denoted by G(s), i.e. there are no cancellable factors in the 
elements of G(s). Moreover,  the normal rank of P(s) is 
denoted by m,.  In what follows, we give various definitions 
of blocking zeros that exist in the literature. 

Definition 2.1 (Youla et al., 1974). For the plant with 
transfer function P(s) which has no unstable hidden mode,  
the point s = so is a zerot  (blocking zero) of P(s) if it is a 
zero of every entry in P(s), i•e. if P(s.)  = O. 

Definition 2.2 (Ferreira, 1976; Ferreira and Bhattacharyya, 
1977)• The unique monic polynomial fl(s) which is the 
greatest common divisor of the numerators of the elements 
of G(s) is the blocking polynomial of G(s). The roots of 
]3(s) =0 ,  counting multiplicities, are the blocking zeros of 
G(s). 

Definition 2.3 (Vidyasagar, 1985). Assume that X is 
detectable and stabilizable. An s ~ ~' U {~o} where P(s) = 0 is 
called a right half plane blocking zero of P(s). 

Definition 2.4 (Patel, 1986). Given a system X with D ~ 0 ,  a 
scalar ~¢  ~g is a blocking zero of E if C .  adj (M, - A )  • B = 
0, where adj (.) denotes the adjoint of matrix (.). 

The blocking zeros defined by Patel include the decoupling 
zeros (uncontrollable and unobservable modes) of X while 
the blocking zeros defined by others exclude decoupling 
zeros• The rationale for the exclusion of decoupling zeros has 
been argued by Ferreira (1986). Also, Vidyasagar (1985) has 
defined only right hand plane blocking zeros including those 
at infinity. The definition of Ferreira and Bhattacharyya 
(1977) is the most general and desirable one. It can be 
reformulated in terms of P(s) rather than G(s) as follows. 
any finite point s = so ~ ~ is a blocking zero if P(s) tends to a 
zero matrix as s tends to s 0. This is the definition we use 
throughout this paper• 

Our goal here is the study of blocking zeros as related to 
invariant zeros and their multiplicity structure. Invariant 
zeros can equivalently be defined in several ways (see e.g. 
Macfarlane and Karcanias, 1976). We recall the following 
geometric definition of invariant zeros (see Wonham, 1985). 

Definition 2.5. Let F { ( ~ * / ~ + ) ~ ( ~ * / ~ ' - ) }  denote the 
class of maps F :  (~"--} ~ " )  such that (A + BF){(°F*/~ "+) (~ 
( W * / ~ - ) } c ( W * / ~ + ) ( ~ ( ~ * / ~ - ) .  Let A F = A + B F  and 
A F be the map induced by A~ in (~*  + ~+)  (~ ( W * / ~ - ) .  

t Youla et al. (1974) define it as a system zero. However  
the name system zero conflicts with that given by 
Rosenbrock (1970). It is evident from other definitions, what 
Youla et aL defined is a 'blocking zero'.  

Then the eigenvalues of fi.v are said to be the invariant zeros 
of X. 

We now proceed to recall the multiplicity structure of 
invariant zeros as is defined in Saberi et al. (1991). We first 
note that 5, F given in Definition 2.5 is independent  of 
F e F { ( ~ * / T  "+) (D ( ~ * / W - ) )  and that Z(AF) ~ ~,(AF). Let X 
be a nonsingular transformation matrix such that 

X -  tfi, pX --- J = Block Diag [Jl, J2 . . . . .  Jk], (2.2) 

where Jr, l = 1 to k are some n / x  n~ Jordan blocks, 

J, = Diag [z,, z, . . . . .  z,] + [00 /";- '  ].  (2.3) 

Definition 2.6• For any given z ¢~.(Av), let there be oz 
Jordan blocks of fi 'r as in (2.2) and (2.3) associated with z. 
Let n ~ ] , n z 2 , . . . , n z . , ,  be the dimensions of the cor- 
respon~iing J'ordan blocks. Then we say z is an invariant zero 
of X with multiplicity structure S*, 

S* = (nz. 1, n,, 2 . . . . .  n . . . .  }. (2•4) 

If n ~ l = n z 2  . . . . .  n~o =1  then we say z is a simple 
mvanant  zero of X. The geometric multiplicity of z is o,  and 
the algebraic multiplicity of z is p~ where p~ = n~. t + nz. 2 + 
• • • q -  n z , o z .  

The geometric and algebraic multiplicities of an invariant 
zero as defined here coincide with those defined in 
MacFarlane and Karcanias (1976)• However,  just the 
knowledge of algebraic multiplicities of an invariant zero, is 
not sufficient enough to define pseudo-state and input zero 
directions associated with an invariant zero. As pointed out 
by Saberi et al. (1991), one needs the above defined 
multiplicity structure of an invariant zero to define 
appropriate chains of its state and input zero directions. For 
further details in this regard, see Saberi et al. (1991). 

3. Main results 
This section gives our main results• We first have the 

following proposition which states the effect of static state 
feedback and static output feedback on blocking zeros• 

Proposition 2.1. Consider a system X with transfer function 
P(s) = C ( s l , - A ) - I B  + D. Let z be a blocking zero of Z, 
i.e. lim P(s) = 0. Then we have the following. 

s ~ z  

(1) There exists a state feedback law, u = F x  + v ,  

F e ~  '~×', such that IimPF(S)4~O, where Pr(s)  = 
S ~ 2  

( C + D F ) ( s I , - A - B F ) - ~ B + D ,  i.e. z is not a 
blocking zero of ( A + B F ,  B, C + D F ,  D). That is, 
blocking zeros are not necessarily invariant with 
respect to static state feedback. 

(2) For any static output feedback law, u = Ky + v, 
K ~  ,~R '~×p such that l m -  K D  is nonsingular (i.e, the 

closed-loop system is well-posed), .Jim PK(s) = 0 holds, 

where PK(s) is the closed-loop transfer function, and 
thus z remains as a blocking zero of PK(s). That is, 
blocking zeros are invariant with respect to static 
output feedback. 

Proof. Part 1. Let F be chosen such that z is completely 
unobservable in the pair (A + BF, C + DF). In this case, the 
closed loop system (A + BF, B, C + DF, D) does not have z 
as its transmission zero. Hence,  z is not a blocking zero of  
(A + BF, B, C + DF, D). 
Part 2. It is simple to obtain the state space equations of the 
closed-loop system under the static output feedback 
u = Ky + v as follows, 

= [A + B(I., - K D ) - ' K C ] x  + B ( I .  - r o ) - ' v ,  

y = [C + D(Im - K D ) - ' K C } x  + D(I. ,  - K D ) - ' v .  
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Let ~ = (sin - A )  - l .  T hen  we have,  

PK(s) = ([C + D(lm - K D ) - I K C ]  

x [(I) -1 - B(I. ,  - K D ) - ~ K C ] - ~ B  + D}(I . ,  - K D )  -1. (3.1) 

Next, recalling the matrix identity, 

(W + X Y Z )  -1 --- W -1 - W - 1 X ( Z W - 1 X  + Y - 1 ) - I Z W - X ,  

where W and Y are, respectively any nonsingular  k x k and 
n x n matrices,  we obtain 

[ ~ - '  - B(I, .  - K D ) - ' K C ] - '  

= • + ~B[lm - K(CdaB + O ) ] - t K C *  

= ~(I,,  + B[I,,, - K P ( s ) ] - ' K C ~ ) .  (3.3) 

Also,  since z is a blocking zero of Z,  let us note  that  

lim P(s)  = lira (CCPB + D)  = 0. (3.3) 
s ~ z  $ ~ z  

Then  in view of equat ions (3.1) to (3.3), we have the 
following reductions as s--* z: 

P~(s ) (& - KD )  

= [C + D(lm - K D ) - a K C ] ~  

x (1~ + B[I m - KP(s)]-1KCdP)B + O 

-*  [C + D(I,,, - K D ) - ~ K C ] * ( I ,  + BKCa~)B + D 

= ( C ~ B  + D) + C e ~ B K C ~ B  

+ D(I , ,  - D K ) - t K C ~ ( 1 ,  + BKCe#)B 

- ,  D ( I  m - K D ) - I ( I m  + K C * B ) K C d p B  - D K C ~ B  

= D(lm - K D ) - I K ( C e i ,  B + D ) K ( C O B  + O - D) 

---,0. 

Thus  lira PK(s)= 0 and hence z is a blocking zero of the 
$---*g 

closed-loop system. • 

We now state a theorem which identifies the necessary and 
sufficient condit ions under  which an invariant (or transmis-  
sion) zero becomes a blocking zero. 

Theorem 3.1. Consider  a controllable and observable system 
>7. Let  z be an invariant zero of Y with multiplicity structure 
$~* as in (2.4)• Then  z is a blocking zero of  >7 if and only if 
o,  = m~ where m~ is the normal  rank of the transfer function 
matrix P(s). 

Proof. f The fact that z is a blocking zero of >7 implies that  
P(z )  = C(zl~ - A ) - I B  + D = 0. Let  us define 

[to,, to2 . . . . .  to~] = lm' 

and 

x i = ( z I n - A ) - l B t o i ,  i = 1  . . . . .  m. 

Now it is trivial to see that Ix;, to'] ' ,  i = 1 to m, are linearly 
independent  and satisfy 

[ z l , - m  -~l[x,l 
C D JLtoiJ =0 .  

Thus z is an invariant zero of >7 with its geometric 
multiplicity a~ satisfying the condition, a z ~ m  u. But i f  
o, > m,,, it can easily be shown that X is neither completely 
controllable nor  completely observable,  which is a 
contradiction to the assumpt ion that X is controllable and 
observable. Hence ,  o~ = m , .  

To prove the sufficiency, we consider the following. If 
o~ = m , ,  then it is simple to verify using the result of  Saberi 
et al. (1991) that there must  exist x; and to~, i =  1 to 
m - m ,  + o~ = m, such that 

[ZlncA -Blrx, l 
D JLto.I = O, 

t An  alternate proof  of  this theorem can be generated by 
using the Smich-McMil lan  form of G(s)  as suggested by an 
anonymous  reviewer. 

where x ,  i = 1 to m, are linearly independent .  In what 
follows, we will show that w,  i = 1 to m, are also linearly 
independent .  First assume that  to;, i = 1 to m, are linearly 
dependent .  Then  there exist constants  c;, i = 1 to m, such 
that 

m 

X 0 = ~ CiX i ~ 0 and too = X Citoi = O. 
i=1  /=1  

This implies that 

(z l ,  - A)xo = Btoo = 0 and Cxo + Dtoo = Cxo = O, 

Hence,  z is an output  decoupling zero of  Y. contradicting the 
assumption that >7 is controllable and observable. This shows 
that toi, i = 1 to m, are linearly independent .  We next 
consider, 

P(z)[tol, to2 . . . . .  to,,,] 

= [C(zl ,  - A ) - l B  + D][tol, to2 . . . . .  tom] = 0. 

The above equat ion implies that  P ( z )  = 0. Thus  z is blocking 
zero of Y~. • 

Remark  3.1. The multiplicity of  a blocking zero z as defined 
by Ferreira and Bhat tacharyya (1977), is the multiplicity of  
the root z of  fl(s), the greatest  common  divisor of  the 
numerators  of  the e lements  of  G(s) .  It is straightforward to 
show that multiplicity of  z is equal to oc Z = 
min {nz,1, nz, 2 . . . . .  n . . . .  }. 

The following Proposition is identical to Proposition 2 of  
the Appendix  in Ferreira (1976). 

Proposition 3.2. Consider  a controllable and observable 
system >7, Let z be a blocking zero of  2; with its multiplicity 
equal to o G. Then  z is an invariant zero of  >7 with algebraic 
multiplicity greater  than or equal to mua , .  

Proof. In view of  Theorem 3.1, the fact that z is a 
blocking zero of >7 implies that a z = m  . and a~z= 
m i n { n z . l , n , ,  2 . . . . .  n . . . .  }. Then  by definition, z is an 
invariant zero with algebraic multiplicity Pz = nz.1 + nz.2 + 
• . .  + n z . o z > _ o j L  = m u o  G. • 

The following example illustrates the results of  Theorem 
3.1. 

Example. Consider  a controllable and observable system 
characterized by 

[i i1 i1 1 0 0 ,  B =  0 , 
A =  0 1 

0 1 1 

0 1 
C = [ ~  0 ,  : ] '  D = [ f  ~]" 

Then  it is simple to verify that m ,  = 2 and 

[11°il - 0 1 0 
A F =  0 1 " 

0 0 

Obviously, z = 1 is an invariant zero of Z with S~* = (2, 2}. 
Hence,  by Theorem 3.1, we can conclude that z = 1 is a 
blocking zero of  Y- with multiplicity o~ Z = 2. This can be easily 
verified from the transfer function P(s)  of  >7, where 

F 2 ( s - 1 )  2 ( s - 1 ) ! ~  

e ' "  I s ( s - 2 )  s ( s - 2 ) |  
= ] (s - 1) ( s -  1) 

L -~  ~ ~  s(s - 2) l 

Theorem 3.1 states clearly that for controllable and 
observable systems,  an invariant zero is a blocking zero if 
and only if its geometric multiplicity is equal  to the normal  
rank of the transfer function of the given system. To exploit 

AUTO 28:5-H 
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this result, we like to study next two major disjoint 
subclasses of linear time-invariant systems, (1) "simply 
SISO" systems whose transfer functions have a normal rank 
of unity, and (2) "truly MIMO" systems whose transfer 
functions have a normal rank greater than unity. The 
labeling and the distinction between "simply SISO" and truly 
MIMO" systems are obvious. Note that "simply SISO" 
systems include all single-input-single-output (SISO) syst- 
ems, single-input-multiple-output (SIMO) systems, multiple- 
input-single-output (MISO) systems and some very special 
class of multiple-input-multiple-output (MIMO) systems. It 
turns out "simply SISO'" and "truly MIMO" systems have 
radically different properties as to their blocking zero 
structure and strong stabilizability. The following proposi- 
tions explore these differences. 

Proposition 3.3. For a controllable and observable "simply 
SISO" system 37, all its invariant zeros are also blocking 
zeros. 

Proof. For a "simply SISO" system Z, by definition, the 
normal rank m, is unity. Also, trivially, all invariant zeros of 

have geometric multiplicity of unity. Hence, the result 
follows directly from Theorem 3.1. • 

Proposition 3.4. Consider a controllable and observable 
"truly MIMO" system 37. Also, let all the invariant zeros of 

be distinct. Then the given system ~z has no blocking zeros 
and hence is strongly stabilizable. 

Proof. The fact that all the invariant zeros of Z are distinct 
implies that for any invariant zero z of 37, we have o~ = 1. It 
follows then from Theorem 3.1 that )2 does not have any 
blocking zeros since by assumption m, > l. Thus, Z is 
strongly stabilizable. • 

One can deduce from Proposition 3.4 that a "truly 
MIMO" system may not be strongly stabilizable if it has one 
or more invariant zeros with geometric multiplicity greater 
than unity. However, the following proposition indicates that 
an arbitrarily small regular perturbation in the dynamic 
matrix A of the given MIMO system can render the 
perturbed system free of blocking zeros and hence the 
perturbed system is strongly stabilizable. 

Proposition 3.5. Given a controllable and observable "truly 
MIMO" system Z characterized by a matrix quadruple 
(A, B, C, D), and any positive E, there exists a regular 
perturbation 6A with iI~AII<E such that the system 
characterized by the matrix quadruple (A + 6A, B, C, D) 
does not have any blocking zeros and hence is strongly 
stabilizable. 

Proof. Given a system Z characterized by (A, B, C, D), it is 
simple to verify that there exist nonsingular transformations 
U and V such that 

UDV=[Io° 00], (3.4) 

where mo is the rank of matrix D, Hence without loss of 
generality, we assume that matrix D has the form given on 
the right hand side of (3.4). One can then rewrite the system 
of (2.1) as, 

rc01  01(u,4 
rYe) LCI] + [ I~0  0 J \ U l J '  

where the matrices B0, B~, Co and C~ have appropriate 
dimensions. Then a theorem of Sannuti and Saberi (1987), as 
well as Saberi and Sannuti (1990), implies that there exist 
nonsingular transformations F~, F2 and F 3 such that 

r a ~  0 LabCb L~fCf-] 
F~i(A _ BoCo)F, = IBcE~ A~ Lct, C b L~:C/] 

/ o  0 Z bt , LbfCfl' 
L BIE~ B fEe BfE h Af _1 

F?I[Bo B1]F~= Bo¢ 0 B c 
" Bob 0 ' 

. Bof B r 

F co<, C,,~ Cob Co,1 

= 0 0 0 I 

F2- IDF3 = 0 . 

0 

Here we note that rank (Bs) + rn o = rank (Cr) + rn~j = m,, 
rank (Be) = m - m~. Also, (Ai, Be, (7/) is square invertible 
with no invariant zeros. (Abb, Cb) is observable, (A, ,  B~) is 
controllable. Moreover, Aaa and A F are related by a 
similarity transformation, i.e. the eigenvalues of A~a are the 
invariant zeros of 37. Then it is simple to see that there exists 
an arbitrarily small regular perturbation in the sub-matrix 
A,~, say 6Aoo, such that A<,~ + 6A,,~ has distinct eigenvalues. 
Therefore, the invariant zeros of the perturbed system 
(A + 6,4, B, C, D) are also distinct. It follows then from 
Theorem 3.1 and Proposition 3.4 that (A + 6,4, B, C, D) 
does not have any blocking and thus is strongly stabilizable. 

We emphasize that the results of Proposition 3.5 cannot 
however be obtained for "simply SISO" systems. The 
importance of Propositions 3.3 and 3.4 and Proposition 3.5 
cannot be overemphasized in view of the role they play in 
characterizing the stong stabilizability (or a lack of it) of a 
given system. These propositions explicitly point out that 
"simply SISO" and "truly MIMO" systems have radically 
different properties. For a "simply SISO" system, as stated 
in Proposition 3.3, all invariant zeros are blocking zeros. 
Thus a "simply SISO" system is strongly stabilizable if and 
only if a certain interlacing property (Youla et al., 1974; 
Vidyasagar, 1985) among its invariant zeros and poles is 
satisfied. In contrast to this, since a "truly MIMO" system 
does not have any blocking zeros whenever all its invariant 
zeros are distinct, the distinctness of all its invariant zeros 
alone guarantees that a "truly MIMO" system is strongly 
stabilizable. That is, no inter-relationship whatsoever among 
its invariant zeros and poles of a "truly MIMO" system is 
required for its strong stabilizability whenever it has only 
distinct invariant zeros. When a "truly MIMO" system does 
not have distinct invariant zeros, it could have blocking 
zeros; hence it may or may not be strongly stabilizable. 
Apparently then, the lack of strong stabilizability of a "truly 
MIMO" system is deeply rooted in the multiplicity structure 
of its invariant zeros. However, in view of Proposition 3.5, 
let us note that there exists an arbitrarily small regular 
perturbation which can destroy the multiplicity structure of 
invariant zeros and there by rendering a "truly MIMO" 
system free of blocking zeros. Thus we can infer that a "truly 
MIMO" system almost always has no blocking zeros and 
hence is almost always strongly stabilizable. On the other 
hand, as mentioned earlier, a "simply SISO" system must 
satisfy a certain interlacing property among its invariant 
zeros and poles in order to be strongly stabilizable; a small 
perturbation of its parameters will not be enough to render it 
strongly stabilizable if it is not already so. This then is the 
essential difference between "truly MIMO" systems and 
"simply SISO" systems. 

In most control system design considerations, the interest 
normally is in blocking zeros which lie in the closed right-half 
complex plane, i.e. in right-half plane blocking zeros. In fact, 
in Definition 2.3, Vidyasagar had cleverly defined the 
blocking zeros only in ~+ for detectable and stabilizable 
systems. It is easy to show that all the results obtained so far 
in this section for controllable and observable systems, are 
applicable to detectable and stabilizable systems as well if we 
consider only the right-half plane blocking zeros. In 
particular, we have the following theorem. 
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Theorem 3.2. Consider a detectable and stabilizable system 
Z. Let z • c¢+ be an invariant zero of ~ with multiplicity 
structure S~* as in (2.4). Then z is a right-half plane blocking 
zero of Z if and only if o Z = m,. Moreover, the multiplicity 
of blocking zero z is equal to o~=min{n~.~, 
n z ,  2 ,  • . . , n z ,  a z } .  

Proof. It follows along the same lines as Theorem 3.1. • 

We emphasize that all the Propositions 3.2 to 3.5 also 
carry over to detectable and stabilizable systems for the case 
of right-half plane blocking zeros. That is, in these 
Propositions, when detectable and stabilizable systems are 
considered, the words "invariant zero" and "blocking zero" 
must, respectively be replaced by "right-half plane invariant 
zero" and "fight-half plane blocking zero". Also, we have 
the following proposition. 

Proposition 3.6. Consider a detectable and stabilizable 
system • with [B', D']' and [C, D] being of maximal rank. If 
either B or C is not of maximal rank, then ~7 does not have 
any blocking zeros and hence it is strongly stabilizable. 

Proof. It is well known that there exist non-singular state, 
input and output transformations Is, F~ and Fo such that 

A~ = F,-1AF~., Bs = Fj-IBFi, 

C, = FoCF,, D~ = Fo lDF i ,  

where 

Here we note that r -> 0 is the rank of matrix D. It is simple 
to see from the special structures of Cs and D s given in (3.5) 
that if Cs is not of maximal rank, i.e. Co is not of maximal 
rank, g ( z )  = C,(zl,,~ -As ) - lBs  + D s ~ 0  and hence P(z) 
cannot be identically zero for any z • ~. Thus, Z does not 
have any blocking zeros and hence it is strongly stabilizable. 
By similar arguments, one can see that :~ is strongly 
stabilizable when B is not of maximal rank. • 

As shown in Proposition 3.1 blocking zeros can be 
removed by some static state feedback. However, the 
following proposition shows that the right-half plane blocking 
zeros are invariant under a state feedback which preserves 
the detectability of the closed-loop system. 

Proposition 3.7. Consider a detectable and stabilizable 
system ~. Let 

~: := {F • ~,,×n I (A + BF, C + DE) is detectable}. 

Also, let z • ~+ be a blocking zero of Z. Then z is invariant 
under a state feedback law, u = Fx, F • :~, i.e. z is also a 
blocking zero of the closed-loop system (A + BF, B, C + 
OF, D). 

Proof. It is well known that the invariant zero structure of 
is preserved in (A + BF, B, C + DF, D). Also, the normal 
rank over the field of rational functions of (C + DF)(sl~-  
A -  BF)-~B + D is equal to m u. Hence, the result follows 
from Theorem 3.2 due to the fact that (A + BF, B, C + DF, 
D) is detectable and stabilizable. • 

4. Conclusions 
As they play a dominant role in characterizing strong 

stabilizability of a system, we focus our attention here on an 
in depth study of blocking zeros and their properties. We 
identify what kind of invariant zeros turn our to be blocking 
zeros. In the course of this identification, we show that all 

controllable and observable linear time invariant multivari- 
able systems can be divided into two categories; "simply 
SISO" systems having normal rank of their transfer functions 
as unity, and "truly MIMO" systems having the normal rank 
of their transfer functions greater than unity. Our results 
show that a simply SISO system has all its invariant zeros as 
blocking zeros, and a truly MIMO system does not have any 
blocking zeros whenever all its invariant zeros are distinct. 
Moreover, we show that the distinctness of its invariant zeros 
alone guarantees that a truly MIMO system is strongly 
stabilizable. That is, no inter-relationship whatsoever among 
its invariant zeros and poles of a truly MIMO system is 
required for its strong stabilizability whenever all its invariant 
zeros are distinct. Thus, since the multiplicity structure of 
invariant zeros of a truly MIMO can be changed by an 
arbitrarily small regular perturbation of its parameters, any 
truly MIMO system is almost always strongly stabilizable. In 
contrast to this, a simply SISO system is strongly stabilizable 
if and only if it satisfies a certain interlacing property among 
its invariant zeros and poles. Arbitrarily small perturbations 
in its parameters cannot render a simply SISO system 
strongly stabilizable if it is not already so. 
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