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Nomenclature
�β = propulsive coefficient
βc = control input concerning thrust
CD = drag coefficient
CL = lift coefficient
C �L = roll moment coefficient
CM = pitch moment coefficient
CN = yaw moment coefficient
CY = lateral force coefficient
δa = aileron deflection angle, rad
δe = elevator deflection angle, rad
δr = rudder deflection angle, rad

I. Introduction

D ESIGNINGan aircraft forMars presents a very challenging task
that involves flying through theMartian atmosphere, which has

low pressure and density. Such an extraterrestrial aircraft should have
many flight characteristics that differ from that of a typical Earth
aircraft [1]. On the one hand, the thin atmosphere flight of a Mars
airplane tends to have a very low aerodynamic damping in
combination with high subsonic Mach numbers and very low
Reynolds numbers, thereby leading to unfavorable control results [2].
In particular, actuator saturation easily occurs as a result of the low
atmosphere density and small assembled wing area. On the other

hand, Martian atmospheric conditions may vary 20% or more from
these nominal values as a result of the surface wind and different
location [3]. Therefore, steady tracking performance, transient
response property, and system robustness are critical for flight control
to accomplish the challenging deep-space exploration task under a

high-subsonic low-Reynolds-number regime.
For a Mars airplane, Hjartarson et al. [4] presented a blend ofH∞

and proportional–integral controller to stabilize the aircraft under
complicated flight conditions. Similarly, Bhattacharya et al. [5]
provided the framework of the general mixed sensitivityH∞ control

to solve the longitudinal reference tracking problem, and the results
showed that the designed controller can tolerate a potential 70%plant
uncertainty. Brown et al. [6] dealt with the work on the design,
construction, and flight testing of a Mars airplane demonstrator to
show the system stability, control, and performance of the proposed
Mars airplane. Nevertheless, these methods give more attention to
system robustness than to transient performance, which contributes
to the overall control qualities [7]. To this end, the present study uses
the composite nonlinear feedback (CNF) technique proposed by
Chen et al. [8] to design a novel flight control law for aMars airplane.
This controller consists of a linear and a nonlinear feedback control
law without any switching element, such that the CNF design is
capable of capturing the time-optimal maneuver in asymptotically
tracking situations [9]. Thus, the proposed controller considers
integrated control performances consisting of fast settling time,
small overshoot, and strong robustness in the unknown Martian
environment.
The remainder of this paper is organized as follows. Section II

explores the longitudinal and lateral/directional model trans-
formation of the Mars airplane using feedback linearization theory.
Section III considers the design problem of the flight control law by
applying theCNF technique and analyzes and proves accordingly the
system stability and robustness. Section IV provides an illustrative

example of the proposed controller for a nonlinear model of theMars
airplane, in which the tracking performances are compared using the
CNF control and pole displacement method.

II. Control-Oriented Model Transformation of a Mars
Airplane

The task of the Aerial Regional-Scale Environmental Survey
(ARES) is to obtain scientific data on Mars that cannot be acquired
fromeither ground vehicles or orbiters [3]. However, in contrast to the
Earth’s atmosphere, the Martian atmosphere is spare and composed
of carbon dioxide. Thus, the Mars atmospheric model must be
identified first before building a model of a Mars airplane. In
particular, the Mars global reference atmospheric model (Mars-
GRAM) can describe the density variations for a given altitude in

relation to solar longitude [10]. On this basis, this work adopts the
simplified atmospheric model in the simulation [4]. Furthermore, the
model properties of an ARES airplane, which consists of the
aerodynamic data and geometrical parameters in [5], are used to
validate the effectiveness of the proposed methods.

A. Longitudinal Model and State Transformation

We assume that the coupling relations between the longitudinal
and lateral/directional modes are weak as a result of the relative
small aerodynamic forces as well as the anticipated exploration
task, which ensures that the Mars airplane maintains the level flight
to acquire the valuable data from the planet’s surface. To this end,

the nonlinear longitudinal model of the Mars airplane is depicted
in [11]
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8>>>>><
>>>>>:

_V � T cos α−D
m − g sin γ

_γ � L�T sin α
mV − g cos γ

V
_q � My∕Iy
_α � q − _γ
_h � V sin γ

(1)

In Eq. (1),V, γ, q, α, and h are the airspeed, flight path angle, pitch
rate, angle of attack, and altitude, respectively; m and Iy denote the
mass and pitchmoment of inertia, respectively; and the liftL, dragD,
pitch momentMy, and thrust T determine the flight characteristics of
the Mars airplane and are calculated by L � 0.5ρV2SCL,
D � 0.5ρV2SCD, My � 0.5ρV2S �cCM, and T � TM

�β, where �c, S,
and TM denote the mean aerodynamic chord, wing area, and
maximum thrust, respectively. Additionally, the propulsive model is
considered to be

��β � −2ξϖ _�β −ϖ2 �β�ϖ2βc, whereϖ and ξ denote
the frequency and damping ratio of the propulsive system,
respectively. For simplicity, the air density ρ and acceleration due to
gravity, g, are used as the function of flight height.
For Eq. (1), the presence of a nonminimum phase zero in the

transfer function Δγ∕Δδe is caused by the lift corresponding to the
elevator deflection [12]. In particular, Zδe � −�1∕m��∂L∕∂δe� is
very small for the Mars airplane because of the very low atmospheric
density, such that this nonminimum phase zero is located to the far
right. Meanwhile, a lag is apparent between the flight path and pitch
angles because the Martain atmosphere density slope, along with
altitude, is relatively low [13]. On this basis, this work ignores the
influence of the lift and drag corresponding to the elevator deflection
on the control design, and the corresponding aerodynamic
coefficients of the longitudinal model in Eq. (1) are expressed by

8<
:

CL � fL�α�
CD � fD�α�

CM � fMy
�α; q� � fδeδe

(2)

where fδe denotes themoment coefficient with respect to the elevator.
Furthermore, the nonlinear longitudinal model of theMars airplane is
rewritten as

�
_X � f�X� �G�X�U

y � H�X� (3)

where the flight state vector X is defined as X � �V; γ; α; �β; h� 0; the
control input vector U is considered to be U � �δe; βc� 0; and the
output vector is given as y � �V; h� 0. In addition, G � �gδ; gβ� 0
represents the input matrix, whereas f, H, gδ, and gβ denote the
vectors determined by the longitudinal airplane model in Eq. (1).
Therefore, this airplane model can be regarded as a two-input/two-
output nonlinear system.
Consider the nonlinear model in Eq. (3); we assume that f,H, gδ,

and gβ are smooth. In this case, the third-order derivative of V is
expressed by [14]

V�3� � V�3�
0 � b11δe � b12βc (4)

whereV�3�
0 , b11, and b12 are the resultingmodel parameters regarding

the velocity, and they are determined by the standard form of the
feedback linearization. For this reason, the Lie derivative of function
H along f is adopted by

LfH � ∂H
∂X

f�X� (5)

Similarly, Lk
fH�k � 2; 3; : : : � indicate the higher-order Lie

derivatives, whereas LδeH is used to represent the Lie derivative of
the function H corresponding to δe. Following the result of [14],
we have LfV � _V, L2

fV � �V, L3
fV � V�3�

0 , LgδL
2
fV � b11, and

LgβL
2
fV � b12, such that the three time derivatives of V depend

explicitly on the control inputs δe and βc. The same Lie derivative
operation is in turn conducted for h, yielding

h�4� � h�4�0 � b21δe � b22βc (6)

where h�4�0 , b21, and b22 denote the resulting model parameters

regarding the altitude. Furthermore, consideringLfh � _h,L2
fh � �h,

L3
fh � h�3�, L4

fh � h�4�0 , LgδL
3
fh � b21, and LgβL

3
fh � b22, we

simultaneously define XV � �z1; z2; z3� 0 � �V; LfV; L
2
fV� 0, Xh �

�z4; z5; z6; z7� 0 � �h; Lfh; L
2
fh; L

3
fh� 0, and z � �XV; Xh� 0. The

equivalent model corresponding to the nonlinear model [Eq. (1)] is
then given by [15]

�
V�3�

h�4�

�
�

�
V�3�
0

h�4�0

�
�

�
b11�z� b12�z�
b21�z� b22�z�

��
δe
βc

�
� F0 � B�z�U

(7)

According to Eq. (7), we know that the resulting model has a full
vector relative degree r � 7, and this indicates that the control goal is
to guarantee system stability for Eq. (7) because there is no zero
dynamics for the nonlinear model of Eq. (1). In other words, the
nonlinear model is completely linearized if Eq. (2) is satisfied [16]
because the relative degree is equal to the order number of the
nonlinear model.

B. Lateral/Directional Model and State Transformation

For the given flight point, the lateral/directional model of a Mars
airplane is simplified as

8>>>>><
>>>>>:

mV _β � Y −mV�−p sin α� r cos α�
_ϕ � p� �r cos ϕ� q sin ϕ� tan θ

_ψ � 1
cos θ �r cos ϕ� q sin ϕ�

_p � �L
Ix

_r � N
Iz

(8)

In Eq. (8), β, ϕ, ψ , p, and r denote the sideslip angle, roll angle,
yaw angle, roll rate, and yaw rate, respectively; and Ix and Iz are the
roll moment of inertia and yaw moment of inertia, respectively. The
lateral force Y, roll moment �L, and yaw moment N are computed by
Y � 0.5ρV2SCY , �L � 0.5ρV2SbC �L, and N � 0.5ρV2SbCN , where
b is the wingspan. Furthermore, we assume that CY , C �L, and CN are
determined by

8<
:

CY � fYβ
C �L � fML

� fδaδa
CN � fMN

� fδrδr

(9)

where fY , fML
, and fMN

are the model coefficients with respect to β;
and fδa and fδr are the lateral/directional nonlinear aerodynamic
parameters related to δa and δr. Afterward, taking the second
derivation of β and ψ , we have

8<
:

�ψ � �ψ0 � 0.5 cos ϕρV2Sbfδr
cos θIz

δr
�β � �β0 � 0.5 sin αρV2Sbfδa

Ix
δa −

0.5 cos αρV2Sbfδr
Iz

δr
(10)

where

8<
:

�ψ0 � �q cos ϕ−r sin ϕ��p�r cos ϕ tan θ�q sin ϕ tan θ�
cos θ � 0.5 cos ϕρV2SbfMN

cos θIz

�β0 � 0.5ρV2SfY _β
mV � 0.5 sin αρV2SbfML

Ix
− 0.5 cos αρV2SbfMN

Iz

(11)

According to Eq. (11), we know that the nonlinear lateral/
directional model can be linearized if the longitudinal states are fixed
under the assumption that the coupling relations between the
longitudinal and lateral/directional modes are neglected.
Based on the equivalent models in Eqs. (7) and (10), the control

law using the CNF technique can be designed accordingly to
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guarantee the satisfactory control performances involving fast

settling time, small overshoot, and strong robustness.

III. Flight Control Law Design Using Composite
Nonlinear Feedback Technique

The design goal of this section is to obtain a flight control law for

the Mars airplane using the CNF technique, such that the resulting

closed-loop system remains stable and the systemoutputs can rapidly

track the given commands. Without loss of generality, the equivalent

model of the longitudinal model in Eq. (7) is regarded as the control

design object; thus, the step-by-step control design procedure using

the CNF technique is as follows.
Step 1: Design a linear feedback law [8]

�
UVL � FVXV �GVVc

UhL � FhXh �Ghhc
(12)

for the equivalent form of Eq. (7)

�
_XV � AVXV � BVϒV; YV � V � CVXV
_Xh � AhXh � Bhϒh; Yh � h � ChXh

(13)

where ϒV � V�3�, ϒh � h�4�, GV � −�CV�AV � BVFV�−1BV �−1,
and Gh � −�Ch�Ah � BhFh�−1Bh�−1. Additionally, Vc and hc are
the step commands with regard to the flight velocity and altitude,
whereas FV � �fV1; fV2; fV3� and Fh � �fh1; fh2; fh3; fh4� indicate
the resulting vectors, as determined by the next step.
Step 2: Design a nonlinear feedback part

�
UVN � ρVB

0
VPV�XV − XVe�

UhN � ρhB
0
hPh�Xh − Xhe� (14)

where XVe�GVeVc�−�AV�BVFV�−1BVGVVc; Xhe � Ghehc �
−�Ah � BhFh�−1BhGhhc; and PV and Ph are determined by

�
PVAV � A 0

VPV − PVBVR
−1
V B 0

VPV �QV � 0

PhAh � A 0
hPh − PhBhR

−1
h B 0

hPh �Qh � 0
(15)

where QV and Qh are the given positive-definite matrices; RV > 0
and Rh > 0 indicate the selected scalars; and ρV and ρh denote the
designed nonpositive nonlinear terms to improve the tracking
performance. Furthermore, FV and Fh in Eq. (12) are decided by

�
FV � −R−1

V B 0
VPV

Fh � −R−1
h B 0

hPh
(16)

Step 3: The linear feedback control law and nonlinear feedback
portion are combined to constitute the CNF control law

�
ϒV � UVL �UVN

ϒh � UhL �UhN
(17)

Step 4: If thematrixB is full rank, the flight control law is obtained as

�
βc
δe

�
�

�
b11 b12
b21 b22

�−1��ϒV

ϒh

�
−
�
V�3�
0

h�4�0

��
(18)

Furthermore, we consider the input saturation for the nonlinear

airplane model; the control design goal is to develop a flight control

law using CNF so that the outputs y � �V; h� 0 can asymptotically

track the step references yc � �Vc; hc� 0. First, the equivalentmodel in

Eq. (7) is reshaped as

�
_z � Azz� Bzvz; vz � F0�z� � B�z� sat�U�

y � Czz
(19)

where U � �uV; uh� 0 � �βc; δe� 0, and “sat” represents the saturation

function. The resulting system matrices denote Az � diag�AV; Ah�,
Bz � diag�BV; Bh�, and Cz � diag�CV; Ch�.
Accordingly, the flight control law using CNF in Eq. (18) can be

reshaped as follows:

U � B�z�−1��Fzz�Gzyc� � ρzzB
0
zPz�z −Gzeyc� − F0�z�� (20)

where Pz�diag�PV;Ph�, Fz � diag�FV; Fh�, Gz � diag�GV;Gh�,
ρzz � diag�ρV; ρh�, and Gze � diag�GVe;Ghe�. Substituting

Eqs. (15) and (20), we have

U � B�z�−1�Fz�z −Gzeyc� − ρzzRzFz�z −Gzeyc� − F0�z�� (21)

where Rz � diag�RV; Rh�. Let ρz � Izz − ρzzRz, where Izz is the

unity matrix; we obtain

U � B�z�−1�ρzFz�z −Gzeyc� − F0�z�� (22)

Afterward, we assume that there exists a scalar μ > 0, and a set of
scalars τi ∈ �0; 1�, i � V, h exist, so that

XiV � fX: X 0PzX ≤ μg ⇒ ke 0
i B

−1�zt�kkFzXk ≤ �1 − τi� �ui (23)

where zt represents a chosen nominal point; �ui denotes themaximum

valuewith respect to the control input; and ei is a vector inwhich only
the ith element of ei is 1 and the others are zero. Furthermore, the

subsequent theorem is given next.
Theorem 1: Suppose that 1) f, gδ, gβ, andH in Eq. (3) are smooth

vectors on a compact and connected set χ of Rn, and 2) B�z� is

invertible at ∀ z ∈ Z, in which z � Φ�X� is nonsingular on χ.
Then, the control law [Eq. (18)] can drive the system outputs

y � �V; h� 0 to asymptotically track the step commands yc �
�Vc; hc� 0, if the following are true.
1) There exist a set of scalars, τi ∈ �0; 1�, i � V, h so that

ke 0
i B

−1�z�F0�z�k ≤ τi �ui; ∀ z ∈ Z (24)

2) ρz � diag�ρzV; ρzh�, and ρzi is a continuous function for i � V,
h. Let Xt be a chosen nominal point so that

min�ρzV ; ρzh� >
1

2
; σmin�Rp� >

1

2
; ∀ z ∈ Z (25)

where Rp � B�z�B−1�zt�, zt � Φ�Xt�, and zt ∈ Z. σmin denotes the
minimal singular value.
3) LetXiV be the initial value ofX. Then, ziV and a step reference yc

satisfy

ziV −Gzeyc ∈ XiV; ziV � Φ�XiV� (26)

Proof: See Appendix A.
Remark 1: The designed control law for the lateral/directional

model is similar to that in Eq. (18) for theMars airplane, and this topic

is not discussed here due to limitations of space. In general, the flight

control structure can be built for the Mars airplane using the CNF

technique depicted in Fig. 1.
Remark 2: ρzi, i � V, h corresponds to e 0

i y so that ρzi can be

designed as a continuous function of the tracking error to

automatically and smoothly result in low and high damping ratios to

improve the dynamic performance. According to ρz � Izz − ρzzRz,

we have

�
ρzV � 1 − ρV∕RV

ρzh � 1 − ρh∕Rh
(27)
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This shows that Theorem 1 is always satisfied if ρV and ρh are

nonpositive functions, so that the choices of ρzV and ρzh can be based
on this theorem. A low damping ratio is required to achieve fast rising

and regulating time when the tracking error is large. A higher

damping ratio is provided to decrease the overshoot when the output

reaches the target of a step reference. For instance, the following

choices of ρV and ρh are smooth and nonpositive functions of

eV � V − Vc and eh � h − hc:

�
ρV � −εV je−τV jeV j − e−τV jV0−Vcjj
ρh � −εhje−τhjehj − e−τhjh0−hc jj (28)

whereV0 and h0 indicate the nominal flight point; and εV , εh, τV , and
τh are suitable positive scalars that can be chosen in terms of the

desired track performances, that is, fast settling time and small

overshoot. At the initial response, when the controlled outputs are

away from the step commands, the influence of the nonlinear portion

are limited because the nonlinear parts are small. By contrast, when

the track errors reach the given commands, the nonlinear part

becomes effective. Correspondingly, the overshoot of the output

response for the Mars airplane decreases accordingly.
Remark 3: The main goal of adding the nonlinear part is to change

the damping ratios of the closed-loop system as the outputs approach

the step commands [17]. However, the dynamic inversion controller

needs some level of robustness to relieve the undesired dynamics

caused bymodel uncertainties [18]. On this basis, the nonlinear gains

ρV and ρh must be discussed, given that they can also improve

stability robustness. Considering the model uncertainties ωV and ωh

and substituting Eqs. (12–18) into Eq. (7), we have

�
_EV � AeVEV � BeVρVB

T
VPVEV � BeVωV

_Eh � AehEh � BehρhB
T
hPhEh � Behωh

(29)

where

�
EV � �eV; _eV; �eV � 0; AeV � �AV � BVFV�; BeV � BV

Eh � �eh; _eh; �eh; e�3�h � 0; Aeh � �Ah � BhFh�; Beh � Bh

(30)

Furthermore, a Lyapunov function is defined:

ΓL � ΓV � Γh � 1

2
E 0
hPhEh �

1

2
E 0
VPVEV (31)

The time derivative of ΓV is determined by

_ΓV � E 0
V ��AV � BVFV� 0PV � PV�AV � BVFV��EV

� 2ρVE
0
VPVBVB

0
VPVEV � �B 0

eVPVEV � E 0
VPVBeV�ωV

� −E 0
VQVEV − �γVE 0

VPVBV − ωV∕γV�2 � ω2
V∕γ2V

≤ −E 0
VQVEV � ω2

V∕γ2V (32)

where γ2V � −2ρV � R−1
V , and integrating the preceding inequality

from t � 0 to T0 yields

ΓV�T0� �
Z

T0

0

kEV�t�k2QV
dt ≤ ΓV�0� � γ−2V

Z
T0

0

kωVk2 dt;

0 ≤ T0 < ∞ (33)

The preceding equation shows that an H∞ performance is
achieved [19]. From ΓV in Eq. (33), we know that EV ∈
ΩVΔ � fEV jE 0

VPVEV ≤ 2ΓV�0� �M2
V∕γ2Vg, so that the closed

system can maintain stability robustness. Furthermore, Eq. (29) is
reshaped as

_EV � �AV � BVFV � ρVBeVB
T
VPV�EV � BeVωV (34)

Based on Eq. (34), it is clear that eigenvalues of the closed-loop
system can be affected by the function ρV . Under such a
circumstance, the classical feedback control concept can be applied,
where the auxiliary system GauxV�s� for EV is defined as [8]

GauxV�s� � Caux�sI − Aaux�−1Baux � B 0
VPV�sI − AV − BVF�−1BV

(35)

Following the result of [8], the poles of the closed-loop system for
EV in Eq. (34) approach the locations of the invariant zeros of
GauxV�s� as jρV j becomes larger and larger. In other words, jρV j
affects the poles of the closed-loop system of Eq. (34) in relation to
the stability of the closed-loop system. The same analysis process is
in turn conducted for Γh in Eq. (31). As a result, the proposed control
law using the CNF technique not only ensures the stability of the
closed-loop system but also suppresses the effect of uncertainties.

IV. Illustrative Example

This study uses the airplane model with respect to the ARES
configuration to validate the feasibility of the presented control law
[5]. Using the least-squares fitting methods for these aerodynamic
coefficients in [5], the resulting aerodynamic expressions are
approximately obtained by

Fig. 1 Flight control structure for Mars airplane using CNF technique.
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8>>>>>><
>>>>>>:

CL � 5.0512α� 0.2346

CD � 2.3114α2 − 0.0096α� 0.0364

CY � −0.2578β
C �L � 0.0688β − 0.1490δa
CM � 1.9091α2 − 0.5638α� 0.0401 − 0.8595δe
CN � 0.0859β − 0.0802δr

(36)

The flight control lawwith CNF is applied for the nonlinear model

of the Mars airplane with input saturation to demonstrate the

improvement of the transient performance relative to that with the
control law using the pole displacement method. We choose RV and
Rh as the identity matrix. Afterward, the nonlinear gain functions in
Eq. (28) are selected as εV � εh � 10 and τV � τh � 0.2.
In the simulation, we account for the comparative results between

the controller using CNF and that using the pole placement method
provided in [20]. This controller is based on the pole placementmethod
and Lyapnouv equation to ensure the Hurwitz stability. When
passing through 200 s, the response curves are acquired corresponding
to hc � h0 � Δhc � 2540 m, Vc � V0 � ΔVc � 230.06 m∕s,

Fig. 2 Contrast track curves between using CNF and using pole placement.

Fig. 3 Flight states and control inputs between using CNF and using pole placement.
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ϕc � ϕ0 � Δϕc � 1 deg, and ψc � ψ0 � Δψc � 1 deg where

V0 � 150.06 m∕s, h0 � 2440 m, ϕ0 � 0 deg, and ψ0 � 0 deg.
They are shown in Figs. 2 and 3.

Figure 2 demonstrates the contrast curves between using CNF and

using pole placement. Owing to the nonlinear part of the CNF control

law in Eq. (14), the velocity and altitude output can rapidly track the

commands signals in contrast to the control law using the pole

placement method, including faster settling time and smaller

overshoot. Figure 3 shows that the change curves of the angle of

attack and control inputs gently return to the anticipated balance

values resulting from the control action, whereas the last time of the

control input saturation reduces as the nonlinear part for CNF takes

effect. The change curves of the nonlinear gains along with the track

errors are provided in Fig. 4.

Figure 4 shows that the nonlinear gains can be regulated to result in

a low damping ratio to achieve a fast rising time when large tracking

errors exist and a high damping ratio to remove the overshoot caused

by the low damping ratio when the track error approaches zero.

Furthermore, the dynamic performance indices with regard to the

overshoot and settling time are provided in Table 1.

According to Table 1, we know that the dynamic performance

indices using the flight control law with CNF are better than those

Fig. 4 Change curves of nonlinear gains along with the track errors.

Fig. 5 Track response curves for uncertain model.
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using the pole placement method. For example, settling time

decreases dramatically because of the existence of the nonlinear part

of CNF. In addition, actual atmospheric conditions on Mars may

change 20% or more due to location, season, and time of day [3]. To

this end, we further consider the 30% random uncertainties of the

aerodynamic forces and the 50% random uncertainties of the

aerodynamic moments. When the control law using CNF is applied,

the corresponding results are shown in Figs. 5 and 6.

Figures 5 and 6 show that the response results are satisfactory

even in the case of the large uncertainties and that the velocity and

altitude tracking errors are kept small as the response process enters

the steady state. Additionally, the nonlinear gains of CNF can make

the designed control law achieve better flight performances. The

control inputs also induce the jigger in relation to the random

uncertainties, which indicates that the closed system has a

satisfactory self-adaptive control ability to suppress uncertain

disturbances caused by the existence of the nonlinear gains ρV and ρh,
thereby improving stability robustness. In summary, the CNF

technique assists to ameliorate control qualities, including fast

settling time, small overshoot, and strong robustness for the Mars

airplane.

V. Conclusions

This study proposes a designmethod of flight control law using the
composite nonlinear feedback technique for the Mars airplane. This
proposed control law is further applied to a nonlinearmodel of aMars
airplane, and the simulation results display that the proposed control
law improves the dynamic performance with input saturation. More
importantly, the strong robustness of the closed-loop system is
ensured for the Mars airplane even while considering large uncertain
disturbances.

Appendix: Proof of Theorem 1

Let ~z � z −Gzeyc; then,

U � B�z�−1ρzFz ~z − B�z�−1F0�z� (A1)

When ~z ∈ XiV , it implies that

ke 0
i B

−1�zt�kkFz ~zk ≤ �1 − τi� �ui (A2)

When 0 < kρzk ≤ σmin�Rp�, considering Eq. (25), we have

ke 0
i B

−1�z�ρzk ≤ ke 0
i B

−1�z�kkρzk ≤ ke 0
i B

−1�z�kσmin�Rp�
≤ ke 0

i B
−1�z�Rpk � ke 0

i B
−1�zt�k (A3)

With Eqs. (23), (A2), and (A3), we have

ke 0
i B

−1�z�ρzFz ~zk ≤ ke 0
i B

−1�z�ρzkkFz ~zk ≤ ke 0
i B

−1�zt�kkFz ~zk
≤ �1 − τi� �ui (A4)

Then, with Eqs. (24) and (A4),

juij ≤ ke 0
i B

−1�z�ρzFz ~zk � ke 0
i B

−1�z�F0�z�k ≤ �ui (A5)

Fig. 6 Flight states and control inputs for uncertain model.

Table 1 Dynamic performance indices in the track process

Control
modes

Overshoot
using CNF,

%

Overshoot using
pole placement,

%

Settling
time using
CNF, s

Settling time
using pole
placement, s

Altitude
control

1.16 7.99 41.10 75.79

Velocity
control

6.85 11.68 69.65 90.94

Roll
angle
control

28.13 34.35 3.91 8.21

Yaw
angle
control

5.8e-5 16.65 2.53 5.31
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Thus,

�sat�uV�; sat�uh�� 0 � B�z�−1�ρzFz�z −Gzeyc� − F0�z�� (A6)

When kρzk > σmin�Rp� > 0,

ui � e 0
i B

−1�z�ρzFz ~z − e 0
i B

−1�z�F0�z�
r � e 0

i B
−1�z� ~ρzFz ~z� e 0

i B
−1�z��ρzσFz ~z − F0�z�� (A7)

where ~ρz � ρz − ρzσ and ρzσ � diag�ρzV ; ρzh� − εI, where anyof ρzV
and ρzh is replaced with σmin�Rp� if it is larger than σmin�Rp� and ε is
positive and near to zero introduced if necessary so that ~ρz is

invertible. Thus, kρzσk < σmin�Rp� and

�sat�uV�; sat�uh�� 0 � qzB
−1�z� ~ρzFz ~z� B−1�z��ρzσFz ~z − F0�z��

(A8)

where qz � diag�qzV; qzh�, and qzV , qzh ∈ �0; 1�. Finally, Eqs. (A6)
and (A8) are integrated as

�sat�uV�; sat�uh�� 0 � B�z�−1��ρzFz�z −Gzeyc� − F0�z�� (A9)

�ρz �
�

ρz 0 < kρzk ≤ σmin�Rp�
B�z�qzB−1�z� ~ρz � ρzσ kρzk > σmin�Rp� > 0

(A10)

Accordingly, the closed-loop system comprising Eqs. (19) and

(22) can be expressed by

_~z � �Az � Bz �ρzFz� ~z (A11)

To prove stability, we choose a Lyapunov function as

Γz � ~z 0Pz ~z (A12)

Then, the derivative of Γz can be computed along the direction of

Eq. (A11) and with Eq. (15), and it is written by

_Γz � _~z 0Pz ~z� ~z 0Pz
_~z

� ~z 0�−Qz � PzBz�R−1
z − R−1

z �ρz − �ρzR
−1
z �B 0

zPz� ~z (A13)

When kρzk ≤ σmin�Rp�, we have

_Γz � − ~z 0Qz ~z� ~z 0PzBzR
−1
z �I − 2ρz�B 0

zPz ~z ≤ − ~z 0Qz ~z < 0

(A14)

When kρzk ≥ σmin�Rp�, we have

_Γz � ~z 0�−Qz � PzBz�R−1
z − R−1

z �ρz − �ρzR
−1
z �B 0

zPz� ~z
� − ~z 0Qz ~z� ~z 0PzBzR

−1
z �I − 2ρzσ�B 0

zPz ~z

− ~z 0PzBzRρ��p 0
ρ�−1qzp 0

ρ � pρqzp
−1
ρ �RρB

0
zPz ~z (A15)

where, Rρ � � ~ρzR−1
z �1∕2 and pρ � R−1

ρ B�z�. Considering

λmin��p 0
ρ�−1qzp 0

ρ � pρqzp
−1
ρ � � 2 min�qzV; qzh� (A16)

and with Eqs. (25), (A15), and (A16), we have

_Γz ≤ − ~z 0Qz ~z < 0 (A17)

These imply that, once ~z ∈ XiV , ~z will never be out of XiV and
_Γz < 0 if Eqs. (24) and (25) are satisfied. Therefore, based on
~z � z − Gzeyc, the system outputs can asymptotically track the step
commands. Correspondingly, this completes the proof of Theorem 1.
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