
Structured H1 Command and Control-Loop Design
for Unmanned Helicopters

J. Gadewadikar∗

Alcorn State University, Lorman Mississippi 39096

F. L. Lewis† and Kamesh Subbarao‡

University of Texas at Arlington, Fort Worth, Texas 76118

and

Ben M. Chen§

National University of Singapore,

Singapore 117576, Republic of Singapore

DOI: 10.2514/1.31377

The aim of this paper is to present rigorous and efficient methods for designing flight controllers for unmanned

helicopters that have guaranteed performance, intuitive appeal for the flight control engineer, and prescribed

multivariable loop structures. Helicopter dynamics do not decouple as they do for the fixed-wing aircraft case, and so

the design of helicopter flight controllers with a desirable and intuitive structure is not straightforward. We use an

H1 output-feedback design procedure that is simplified in the sense that rigorous controller designs are obtained by

solving only two coupled-matrix design equations. An efficient algorithm is given for solving these that does not

require initial stabilizing gains. An output-feedback approach is given that allows one to selectively close prescribed

multivariable feedback loops using a reduced set of the states at each step. At each step, shaping filters may be added

that improve performance andyield guaranteed robustness and speed of response. The net result yields anH1 design

with a control structure that has been historically accepted in the flight control community. As an example, a design

for stationkeeping and hover of an unmanned helicopter is presented. The result is a stationkeeping hover controller

with robust performance in thepresence of disturbances (includingwind gusts), excellent decoupling, andgood speed

of response.

Nomenclature

A = system or plant matrix
as = longitudinal blade angle
B = control-input matrix
bs = lateral blade angle
C = output or measurement matrix
D = disturbance matrix
Din = inner-loop disturbance matrix
Do = outer-loop disturbance matrix
d�t� = disturbance
G = nominal plant
Gs = loop-shaped plant
K = static output-feedback gain matrix
p = roll rate in the body-frame components
Q = state weighting matrix
q = pitch rate in the body-frame components
R = control weighting matrix
r = yaw rate in the body-frame components
rfb = yaw-rate feedback
U = velocity along the body-frame x axis

u�t� = control input
V = velocity along the body-frame y axis
W = velocity along the body-frame z axis
X = inertial position x axis
xin�t� = inner-loop state vector
xo�t� = outer-loop state vector
Y = inertial position y axis
yin�t� = inner-loop output vector
yo�t� = outer-loop output vector
Z = inertial position z axis
z�t� = performance output
� = system L2 gain
�in = L2 gain inner loop
�o = L2 gain outer loop
� = pitch angle
� = roll angle
 = yaw angle

I. Introduction

O VER the past few years, there has been significant interest in
using unmanned aerial vehicles for applications such as search

and rescue, surveillance, and remote inspection. Rotorcraft
(especially helicopters) have several significant advantages over
conventional fixed-wing platforms in conducting several of these
tasks. The advantages are exemplified by certain unique capabilities
of rotorcraft; for example, they can hover and they can take off and
land in very limited spaces. The ability to reliably follow prescribed
3-D position and yaw commands in the presence of disturbances is a
requirement common to rotary-wing unmanned aerial vehicles
(UAVs). Position-tracking control system design for a UAV is
challenging because strong coupling among all states is present in the
rotorcraft, which must be confronted in any design technique.
Moreover, the rotor flexibility dynamics must generally be included
in any design to guarantee stability robustness [1]. In fixed-wing
aircraft control, by contrast, the dynamics conveniently decouple in
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equilibrium flight. There is a body of knowledge and expertise in the
design of flight controllers that have suitable structure for specific
applications [2]. Multiloop controllers can be designed with inner
rate loops and outer position- or attitude-control loops. In helicopter
control, the dynamics do not decouple and all the dynamics must
generally be used when closing any loops. This makes it difficult to
provide rotorcraft flight controllers with desirable intuitive
structures.

The aim of this paper is to present rigorous and efficient methods
for designing flight controllers for unmanned helicopters that have
guaranteed performance, intuitive appeal for the flight controls
engineer, and prescribed multivariable loop structures. We use an
H1 output-feedback design procedure that allows one to selectively
close prescribed multivariable feedback loops and to preserve
control structures that have been historically accepted in the flight
control community, while obtaining guaranteed performance.

Several linear and nonlinear control strategies have been proposed
for control of helicopters and samples can be found in [3–5], such as
the adaptive feedback linearization approach, in which a neural
network approximates the uncertainties and the network weights are
updated adaptively, based on the trajectory-tracking errors [3,4].
Although the controllers are efficient, one introduces additional
dynamics to synthesize the controller. Further, this makes the
controller of very high order and there is no optimality guaranteed
against the specific classes of disturbances/uncertainties considered.

Multiloop approaches are discussed extensively in [6–8]. A static
inner loop was computed using eigenstructure assignment, and an
outer dynamic loop was computed usingH1 synthesis [6]. An inner
loop was designed using the linear quadratic regulator (LQR)
technique, a standard H1 outer loop [7], and four body angular
measurements (roll and pitch angles and rates), and the rotor lag and
flap state measurements and their derivatives are fed back. An inner-
loop attitude feedback control, midloop velocity feedback control,
and the outer-loop position-control approach on anUAV is shown in
[8], in which a multiloop single-input/single-output control structure
is employed. Other approaches include helicopter control based on
eigenstructure assignment using all the states simultaneously [9] and
a hybrid �=H1 design and its application to flight control of a
helicopter [10]. To summarize, a lot of work has been pursued, but
several problems are still open. Many of the approaches are
theoretically appealing but have one or more of the following issues:
they are difficult to implement, they lack structure, they do not have
disturbance rejection formulation, they are difficult to solve for
higher-order systems, and they can impose numerical problems.

In this paper, we employ a static output-feedback (OPFB) control
structure based on H1 theory. The static output-feedback approach
allows one to selectively close prescribed multivariable feedback
loops and preserve control structures that have been historically
accepted in the flight controls community, while obtaining guaran-
teed performance. Static OPFB design, as opposed to dynamic
output feedback with a regulator, is suitable for the design of aircraft
controllers of prescribed structure [2].

It is well known that the OPFB optimal control solution can be
prescribed in terms of three coupled-matrix equations [11]: namely,
two associated Riccati equations and a spectral radius coupling
equation. A sequential numerical algorithm to solve these equations
is presented in [12]. OPFB stabilizability conditions that only require
the solution of two coupled-matrix equations are given in [13–15].
Linear quadratic suboptimal control with static output feedback
involving linear matrix inequalities (LMIs) is discussed [16]. Some
recent LMI approaches for OPFB design are presented in [17–19].
These allow the design of OPFB controllers using numerically
efficient software (e.g., LMI Control Toolbox for MATLAB [20]).
Many of the solution algorithms are difficult to implement, difficult
to solve for higher-order systems, may impose numerical problems,
and may have restricted solution procedures such as the initial
stabilizing-gain requirements.
H1 design has been considered for static OPFB; Hol and Scherer

[21] addressed the applicability of a matrix-valued sum-of-squares
techniques for the computations of LMI lower bounds. Conditions
for a static output loop-shaping controller in terms of two coupled-

matrix inequalities are presented in [22]. The application of loop-
shaping procedures has lead to several improvements in helicopter
control system design methods [23].

In this paper, we demonstrate that high-performance low-order
controllers for the robust stabilization of autonomous helicopters
can be easily and efficiently computed using the H1 static
output-feedback techniques given in [4,24,25]. We present an
approach to helicopter flight control design based on output-
feedback H1 techniques that allows one to selectively close
prescribed multivariable feedback loops one loop at a time, using a
reduced set of states for feedback at each step. At each step, shaping
filters may be added to improve performance and provide guaranteed
robustness and good speed of response. The output-feedback
approach allows one to selectively close prescribed multivariable
feedback loops using a reduced set of states and to preserve control
structures that have been historically accepted in the flight controls
community, while obtaining guaranteed performance.

We use anH1 approach for static OPFB design that only requires
the solution of one associated Riccati equation and a coupled-gain-
matrix condition. This is more straightforward than optimal control
techniques, which generally require solving three coupled-matrix
equations. An efficient recursive algorithm is given for solving the
output-feedback H1 design problem that does not require initial
stabilizing gains.

As an example, we present a design for stationkeeping and hover
control of an unmanned helicopter. The hover configuration in
general is an unstable configuration, which can be effectively
modeled using a linear model. In the presence of disturbances, the
helicopter exhibits deviations in the dynamical states that complicate
the control problem because the helicopter dynamical states are very
tightly coupled. For example, in hover, pitchmotion is almost always
accompanied by forward and vertical motion and all three states need
to be controlled simultaneously [26]. Moreover, the rotor flexible
dynamics must be included [1].

An inner loop is first designed for attitude control (roll and pitch
angles and all three body rates) using a subset of the state variables by
output-feedback design. In the next formulation, shaping filters are
added and a second output-feedback design using a second subset of
the states is closed to provide position �X; Y; Z� and yaw tracking.
The result is a stationkeeping hover controller with robust per-
formance in the presence of disturbances (including wind gusts),
excellent decoupling, and good speed of response, as verified by
simulation. Though the net result is a controller that does feed back
most of the state variables (though not the rotorflexible states), a two-
loop design is used in which we use only a reduced set of states in
each loop for feedback. This gives better structure and robustness.
The net result is that the inner attitude-control loop is faster than the
outer position-control loop, so that the attitudes respond quickly to
allow effective position-tracking.

The paper is organized as follows. Section II details the formula-
tion of necessary and sufficient conditions forH1 OPFB control. A
solution algorithm is proposed in Sec. III. Section IV illustrates the
UAV model controller structure, H1 loop-shaping design
procedure, and simulation results with disturbance effects.

II. Necessary and Sufficient Conditions
for H1 OPFB Control

In this section, we present a method for finding H1 static OPFB
gains. It is seen that theH1 OPFB gain is computed in terms of only
two coupled-matrix equations. This is a simpler problem to solve
than the optimal OPFB problem given in terms of three coupled
equations [11]. Moreover, a numerical algorithm is given to solve
these equations that does not require an initial stabilizingOPFBgain.

A. System Description and Definitions

Consider the linear time-invariant system of Fig. 1 with control
input u�t�, output y�t�, and disturbance d�t� given by

_x� Ax� Bu�Dd; y� Cx (1)
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and a performance output z�t� that satisfies

kz�t�k2 � xTQx� uTRu (2)

withQT �Q � 0 and RT � R > 0. It is assumed that C has full row
rank (a standard assumption to avoid redundant measurements).

A static output-feedback control is given by

u��Ky��KCx (3)

By definition, the pair �A;B� is said to be stabilizable if there exists
a real matrixK such that A � BK is (asymptotically) stable. The pair
�A;C� is said to be detectable if there exists a real matrix L such that
A � LC is stable. System (1) is said to be output-feedback
stabilizable if there exists a real matrix K such that A � BKC is
stable.

B. Bounded L2 Gain Design Problem

The system L2 gain is said to be bounded or attenuated by � ifR1
0 kz�t�k2 dtR1
0 kd�t�k2 dt

�
R1
0 �xTQx� uTRu� dtR1

0 �dTd� dt
� �2 (4)

for any nonzero energy-bounded disturbance input d. Call �� the
minimum gain for which this occurs. For linear systems, there are
explicit formulas to compute the minimum gain [27]. Throughout
this paper, we shall assume that � is fixed and � > ��. The case when
� � �� is calledH1 control. It is desired to find a static OPFB gainK
such that the system is stable and the L2 gain is bounded by a
prescribed value �. The actuator signal ismathematically represented
in theL2 gain definition. This approach allows the adjustment of both
for the best L2 gain performance and a LQR-type relative weighing
[11].

The following theorem gives necessary and sufficient conditions
for the existence of bounded L2 gain static OPFB control [25].

Theorem: For a given � > ��, there exists an OPFB gain such that
A0 	 �A � BKC� is asymptotically stable, with L2 gain bounded by
� if and only if

1) �A;C� is detectable and there exist matrices L and P� PT � 0
such that

2)

KC� R�1�BTP� L� (5)

3)

PA� ATP� CTC� 1

�2
PDDTP� PBR�1BTP� LTR�1L� 0

(6)

III. Solution Algorithm

Most existing iterative algorithms for OPFB design require the
determination of an initial stabilizing gain, which can be very
difficult for practical aerospace systems such as the stabilization of an
autonomous rotorcraft in hover. The following algorithm is proposed
to solve the two coupled design equations in the preceding Theorem.
Note that it does not require an initial stabilizing gain, as opposed to
Kleinman’s [28] state-feedback algorithm and the OPFB algorithm
of Moerder and Calise [12], because it uses a Riccati equation
solution, not a Lyapunov equation, at each step.

1) Initialize: set n� 0 and L0 � 0, and select �, Q, and R.

2) nth iteration: solve for Pn in

PnA� ATPn �Q�
1

�2
PnDD

TPn � PnBR�1BTPn

� LTnR�1Ln � 0 (7)

Evaluate gain and update L

Kn�1 � R�1�BTPn � Ln�CT�CCT��1 (8)

Ln�1 � RKn�1C � BTPn (9)

Check convergence. If converged, go to step 3, otherwise set n�
n� 1 and go to step 2.

3) Terminate: set K � Kn�1.
The convergence can be checked using the norm of Kn�1 � Kn

(e.g., kKn�1 � Knk< ", where " is a small number and operator k k
denotes the matrix norm).

Note that this algorithm uses well-developed techniques for
solving available Riccati equations, for instance, those provided in
MATLAB. It generalizes the algorithm in [15] to the case of nonzero
initial gain. It is shown in Sec. IV that this algorithm is also suitable to
find static output-feedback gains for loop-shaped plants.

Lemma: If this algorithm converges, it provides the solution to
Eqs. (5) and (6).

Proof: Clearly, at convergence, Eq. (7) holds for Pn. Note that
substitution of Eq. (8) into Eq. (9) yields

Ln�1 � R
R�1�BTPn � Ln�C��C � BTPn

At convergence, Ln�1 � Ln 	 L and Pn 	 P, so that

L� �BTP� L�C�C � BTP

or

BTP� L� �BTP� L�C�C

This guarantees that there exists a solution K to Eq. (5) given by
K � R�1�BTP� L�C�. □

IV. Design Example

TheH1 output feedback is illustrated via aUAV simulation. First,
an inner loop is designed for attitude control (roll and pitch angles
and all three body rates) using a subset of the state variables by
output-feedback design. Then shaping filters are added and a second
output-feedback design is demonstrated using a second subset of the
states to provide position �X; Y; Z� and yaw tracking.

A. System Description

The controller design is based on an 11-state linear model of a
Raptor-90 helicopter, shown in Fig. 2. The results are based on the

x
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=
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2

Kyu −=

d

u

z

y
RuuQxxz

Cxy
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=
++=
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d

u

z

y

Fig. 1 System description.

Fig. 2 Raptor-90 helicopter.
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model derived at the National University of Singapore. A linearized
model for the hover operating condition was established. The model
currently used is a state-space representation of a helicopter,modeled
as a six-degree-of-freedom rigid-body augmented with servo/rotor
dynamics and artificial yaw-damping dynamics [29]. The state
vector physically shown in Fig. 3 contains 11 states and can be
expressed as

xin � 
U V p q � � as bs W r rfb �T

The yaw-rate feedback rfb is included in the state vector. For
miniature rotorcraft, rfb could be expressed by a first-order low-pass
filter [30]. The rotor flexibility dynamics as, bs are also included, as
required for robust controller design [1]. These states cannot be used

for feedback purposes, immediately rendering state-feedback design
methods inappropriate for these states.

The input vector can bewritten as uin � 
 �lat �long �col �ped �T ,
where �lat is the lateral channel input and affects roll motion, �long is
longitudinal channel input and affects pitch, �ped is pedal channel
input that affects yaw motion, and �col is the collective channel. In
helicopters, there is a high degree of coupling between lateral and
longitudinal dynamics [5].

B. Inner-Loop Controller Design

In a recent publication by Gadewadikar et al. [31], loop-shaping
andH1 methods are applied to track pitch and roll. The objective of
this paper is to offer position control, and hence an inner loop is first
designed that stabilizes the orientation; that is, the primary variables
to be controlled in the inner loop are the pitch angle, the roll angle,
and three extra rate gyros measuring pitch angular rate, roll angular
rate, and yaw angular rate will also be used for feedback purposes.
Thus,five system states constitute the output vector for the inner loop
yin � 
� � p q r �T . The rotorcraft equations mentioned were
trimmed in a hover configuration to obtain the reference trim
condition. The nonlinear equationswere then linearized for the hover
configuration based on the reference values obtained [2]. The state
variable model of the helicopter is of the form

_x in � Ainxin � Binuin �Dindin; yin � Cinxin

xin 2 R11; uin 2 R4; yin 2 R5
(10)

where

Ain �

�0:1778 0 0 0 0 �9:7807 �9:7807 0 0 0 0

0 �0:3104 0 0 9:7807 0 0 9:7807 0 0 0

�0:3326 �0:5353 0 0 0 0 75:7640 343:8600 0 0 0

0:1903 �0:2940 0 0 0 0 172:6200 �59:9580 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 �1 0 0 �8:1222 4:6535 0 0 0

0 0 �1 0 0 0 �0:0921 �8:1222 0 0 0

0 0 0 0 0 0 17:1680 7:1018 �0:6821 �0:1070 0

0 0 �0:2834 0 0 0 0 0 �0:1446 �5:5561 �36:6740
0 0 0 0 0 0 0 0 0 2:7492 �11:1120

2
66666666666666664

3
77777777777777775

Bin �

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0:0632 3:3390 0 0

3:1739 0:2216 0 0

0 0 19:9250 0

0 0 2:0816 �74:3640
0 0 0 0

2
66666666666666664

3
77777777777777775

; Cin �

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0

2
66664

3
77775

and the disturbance dynamics Din are discussed in Sec. IV.C.
The control structure shown in Fig. 4 is an attitude-stabilization

control loop. In the presence of disturbances, the inner loop arrests
the buildup in the rotational velocities and maintains the attitude of
the helicopter by controlling the attitude states’ roll and pitch. This is
imperative for the hover controller (designed later), because

deviations in pitch and roll angles will also result in X and Y
translations.

An output-feedback control input of the form is selected as

uin ��Kinyin � uic (11)

Fig. 3 Helicopter states in body-frame coordinate system.
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The input vector uic � 
 ulat ulong ucol uped �T will be used as
control input in the outer-loop design stage. The output-feedback
gainKin is determined from the algorithm described in Sec. III using
the state variable model in Eq. (10).

For the computation of the output-feedback gain Kin, it is
necessary to select weighting matrices Q and R. Note that in the
inner-loop designQ is a constant (11 � 11)matrix andR is a constant
(4 � 4) matrix, such that QT �Q � 0 and RT � R > 0. A diagonal
structure is used for Q and R. The diagonal entries are tuned
iteratively; that is, for a given selection of Q and R, the algorithm is
used to find the OPFB gain Kin. The closed-loop system is then
simulated and if the results are not satisfactory,Q andR are modified
and the procedure is repeated. To avoid the excitation of unmodeled
high-frequency dynamics, the control input and velocity states are
heavily penalized [30].Note that the termuTRu in Eq. (4)weights the
deviations from the trim value of control, thereby reducing excessive
control activity, which should be small to make the helicopter ride
smoother and use less fuel. The resulting output-feedback gainKin is

Kin �

0:8984 �0:0525 0:0306 �0:0131 0

0:0445 0:9612 0:0084 0:0589 0

�0:1648 �0:2251 �0:0626 �0:0836 �0:0037
�0:0175 �0:0249 �0:0050 �0:0097 �0:2300

2
664

3
775

The gain parameter � defines the desired L2 gain bound. For the
initial design, a fairly large � is selected. If the algorithm converges,
the parameter � may be reduced. If � is taken too small, the algorithm
will not converge because the algebraic Riccati equation has no
positive semidefinite solution. After some design repetitions, which
were performed very quickly using the algorithm, we found the
smallest value of the gain to be 0.62. To compare this with popular
design methods [27], it was shown that the smallest value of L2 gain
was greater than that for state feedback and dynamic output feedback
[25]. H1 static output-feedback methods have a bigger bound than
state-feedback and dynamic output-feedback compensator methods,
because the static output feedback is a subset of state feedback.

C. Wind Turbulence Model

The disturbance vector d given in Eq. (10) has wind components
along the 
X Y �T fuselage axes, and disturbance input matrix D
defines the dynamics involved with body-frame X and Y velocities.
For this example, Din is a 11 � 2 matrix and is constituted from the
first two columns of the plant matrix Ain:

din � 
dU dV �T (12)

Hall, Jr. and Bryson, Jr. [1] modeled the wind components along the
fuselage axes by independently excited correlated Gauss–Markov

processes:

�
_dU
_dV

�
� �1=�c 0

0 �1=�c

� ��
dU
dV

�
� ��Bw

�
qU
qV

�
(13)

Equation (13) is a shaping filter for the wind, where qU and qV are
independent with zero mean, �c � 3:2 s is the correlation time of the
wind �qU (�qV � 20 ft=s),Bw is the turbulence input identity matrix,
and �� 1=2 is the scalar weighting factor.

D. Inner-Loop Simulation Results with Disturbance Effects

The static output-feedback solution derived in Sec. III is applied to
obtain an output-feedback controller to stabilize a loop-shaped plant.
The controller is then simulated, subject to the wind disturbances, to
evaluate the efficacy of the proposed control law. The closed-loop
system is shown in Fig. 5, in which the exogenous disturbance input
d�t� is a random variable, shown in Fig. 6, generated in the time
domain to match statistical properties of the turbulence model, as
discussed in Sec. IV.B.

To verify the design, a simulation is performed. The perturbed
initial state was selected as

xin�0� � 
 0 0 0 0 0:1 0:2 0 0 0 0 0 �T

The closed-loop responses in roll and pitch are given in Fig. 7. It can
be observed that roll and pitch angles converge very quickly,
indicating a fast inner loop. It is important to mention that although
the inner loop has good control on the attitude states, it cannot hold

Fig. 4 Controller structure.

Fig. 5 Simulation with turbulence model.

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

time in seconds

Disturbance velocities in the body fixed X & Y axes (m/s)

du

dv

Fig. 6 Random disturbance vector.
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position of theUAV in hover. Position-tracking in hover is addressed
in the next section.

E. Outer-Loop Controller Design

To meet the objective to maintain the station position, it is
imperative to add an outer tracking loop (the primary variables to be
controlled in the outer loop are the positions X, Y, and Z; body rates
U, V, and W; and yaw angle). Seven system states constitute the
outer-loop output vector:

yo � 
X Y Z U V W  �T

The control structure is shown in Fig. 8. PrecompensatorsGlat�s�,
Glong�s�, Gcol�s�, and Gped�s� shape the commands from the control
law before closing the loop. The loop-shaping procedure is explained
in Sec. IV.G. In this example, loop-shaping for the outer loop is not
required for stationkeeping because

1) Addition of the effective integrators for synthesizing positions
from the transformed velocity components (body to inertial)

compensates for the band-limited zero-mean disturbance noise
getting into the lateral channel.

2) Coupling in the position-control commands is negligible.
Note that, in general, loop-shaping may be required to deal with

disturbances that are not exactly the kind discussed in this paper.
The inner closed loop without the disturbance dynamics can be

shown to be given by

_x in � Aicxin � Binuic (14)

where Aic � Ain � BinKinCin is the inner closed-loop system matrix.
An inertial measurement unit can be used to measure the position
[29]. Assuming zero bank and pitch angles, the position and yaw
dynamics are

d

dt

 X Y Z �T � 
 r U V W �T (15)

The overall state vector, including position and yaw states, can be
expressed as

Fig. 7 Roll and pitch responses (inner loop).

Fig. 8 Outer- and inner-loop controller structure.
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xo

�
U V p q � � as bs W r rfb  X Y Z �T

One can easily find the matrixH of dimension 4 � 11 that satisfies

d

dt

 X Y Z �T �Hxin (16)

working with Eqs. (15) and (16) to obtain

_xo �
�
Aic

H

����00
�
xo �

�
Bin

�0

�
uic

yo � 
X Y Z U V W  �T
(17)

The augmented dynamics including disturbance effects is given as

_xo � Aoxo � Bouic �Dodo; yo � Coxo xo 2 R15

uic 2 R4; yo 2 R7 (18)

An outer-loop output-feedback control input is selected as

uic ��Kovr (19)

where

vr � 
 �X � Xr� �Y � Yr� �Z � Zr� U V W � �  r� �T
(20)

Note that the vector vr facilitates remote pilot-tracking commands
�Xr; Yr; Zr� being sent, whereas measured output variables yo are
used for feedback onboard. The output-feedback gain Ko is
determined from the algorithm described in Sec. III using the state
variable model described in Eq. (18). Note that QT �Q � 0 and
RT � R > 0. The system matrices Ao and Bo can be easily found by
simple algebraicmanipulations, and outputmatrixCo is composed of
unity and zero elements so that outer-loop measurement states are
included. The outer-loop disturbance dynamics are discussed in
Sec. IV.F. In the outer loop, the weighting matrices Q and R are
chosen such that position-tracking states are weighted more and the
control inputs are within the specified range of actuation [30]. The
gain parameter �o in the outer loop is found to be 1.3450. The
resulting outer-loop output-feedback gain is

Ko �

0:0250 0:2808 0:0206 0:0355 0:3426 0:0110 �0:0196
�0:2554 0:0204 0:0320 �0:3351 0:0152 0:0166 �0:0266
0:0302 �0:0214 0:2555 0:0452 �0:0286 0:1652 0:0680
0:0023 �0:0018 0:0044 0:0033 �0:0026 0:0049 �3:6507

2
664

3
775

F. Disturbance Effects in the Outer Loop

In the inner loop, we used the model of the wind components as
disturbance. To further see the efficacy of the design, disturbances
can be formulated by injecting noise into the helicopter control
channels. In this particular example, the disturbance is injected into

the lateral channel via an external wind gust affecting the lateral
channel. The disturbance input matrix in the outer loop is given as

Do

�
0 0 0 0 0 0 0:0632 3:1739 0 0 0 0 0 0 0 �

A band-limited white-noise source is used to simulate disturbance
input signal do.

G. H1 Loop-Shaping Design Procedure

Wewill now formally state the design procedure for loop-shaping.
The loop-shaped plant with controller is shown in Fig. 9. The
objective of this approach is to balance the tradeoff between
performance and robustness in loop-shaping. The procedure couples
loop-shaping design with H1 output-feedback control techniques.
There exists a large amount of published material relating to loop-
shaping [32], including using a precompensator W1 and a
postcompensator W2 to shape the singular values of the nominal
plant to achieve a desired open loop, combining the nominal plantG
and the compensators to form the shaped plant Gs, choosing
weighting matricesQ and R for Gs, and using theH1 static output-
feedback algorithm to find the static output-feedback gain. The
algorithm is described in Sec. III.

H. Outer-Loop Simulation Results with Disturbance Effects

The figures described here illustrate the effectiveness of the
design. Case 1 in Fig. 10 shows the tracking plots for position
commands. The UAV is commanded from initial position vectors
�X1; Y1; Z1� to �X2; Y1; Z1�, �X1; Y1; Z1� to �X1; Y2; Z1�, and
�X1; Y1; Z1� to �X1; Y1; Z2�. The results clearly show command-
following as well as channel-decoupling.

Case 2 in Fig. 11 shows the regulation properties of the closed-
loop system: that is, how the UAV converges to the assigned station
position �X; Y; Z� from a different initial position vector (X ��X,
Y ��Y, and Z��Z). One can also see that the yaw angle is
maintained at the commanded value. Case 3 in Fig. 12 is an
illustration of the successful following of a yaw step commandwhile
maintaining the position. Figure 13 shows the disturbance rejection
of a disturbance in the lateral channel.

Remark: The net result is that the inner attitude-control loop is
faster than the outer position-control loop, and so the attitudes
respond quickly to allow effective position-tracking. This is clearly
seen by comparing Figs. 7 and 12with 10. . The response timesTr for
the position states X, Y, and Z are 2.7387, 2.5041, and 1.3117 s, and
the response times Tr for attitude states �, �, and  are 0.4960,
0.5612, and 0.1797 s, where parameterTr is the time taken from10 to
90% of the final value [33].

One can impose a time-scale separation by selecting the LQR state
weighting matrix to be larger in the inner-loop design. In this
example, the design has actually automatically imposed a time-scale
separation.

In some cases, when relative LQR weighting is not satisfactory,
one can further enforce the time-scale separation by loop-shaping
with the filters. Note that the framework is general enough to include

precompensators and postcompensators so that classical loop-
shaping can be applied to improve the performance, followed by a
rigorousH1 solution given in [11]. A set of constant gains achieves
these control tasks, and the order of the controller is the lowest
possible.

Fig. 9 Loop-shaped plant with controller.
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V. Conclusions

The problem of disturbance attenuation with stability using static
output feedback for linear time-invariant systems was studied.
Necessary and sufficient conditionswere developed,which yield two

coupled-matrix design equations to be solved for the output-
feedback (OPFB) gain. A computational algorithm to solve for the
output-feedback gain that achieves prespecified disturbance
attenuation is given. The algorithm requires no initial stabilizing

Fig. 10 Case 1: position commands.

Fig. 11 Case 2: stationkeeping.
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gain, in contrast to other existing recursive OPFB solution
algorithms. This procedure allows output-feedback control design
with prespecified controller structures and guaranteed performance.
A robust controller for stabilizing an autonomous rotorcraft in hover
was designed using the algorithm defined in the paper.
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