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In this paper, we present a 3D rotating laser-based navigation framework for micro aerial vehicles (MAVs) to fly autonomously in dynamic
environments. It consists of a 6-degree of freedom (DoF) localization module and a 3D dynamic mapping module. A self-designed rotating
laser scanner generates dense point clouds in which 3D features are extracted and aligned. The localization module is able to solve scan
distortion issue while estimating the 6-DoF pose of MAVs. At the same time, the dynamic mapping module can further eliminate dynamic
trails so that a clear dense 3D map is reconstructed. The dynamic targets are detected based on the spatial constraints and therefore
without the need of dense point cloud clustering. Through filtering the detected dynamic obstacles, the localization approach can be robust
to the dynamic environment variations. To verify the robustness and effectiveness of our proposed framework, we have tested our system
in both real indoor environment with dynamic obstacles and outdoor foliage condition using a customized MAV platform.
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1. Introduction

The applications of MAVs on autonomous tasks have been
intensively studied [1–3]. Despite numerous configurations
of MAVs, the fundamental requirements for automation of
MAVs essentially tend to coincide: (1) Onboard sensing
capability: the MAV should utilize the onboard sensors such
as LIDAR [4], vision [5] and multiple sensors (sonar and
radar) [6] to obtain information about an unknown envi-
ronment. (2) Onboard processing capability: based on the
sensing information, the onboard processor should achieve
accurate state estimation and environment mapping for
navigation [7]. (3) Onboard state feedback capability: the
sensing information from external sensors should be

fused with onboard inertial measurement unit (IMU) for
a real-time closed feedback control loop [8]. The above
capabilities are critical to the safe navigation of MAVs. More
importantly, they are in fact interdependent, performance
deterioration of any single component could degrade the
whole performance of the autonomous MAV. To summarize,
the above-mentioned capabilities can be formed into sens-
ing, perception (including state estimation and mapping)
and control modules correspondingly.

Regarding the execution of autonomous tasks in GPS-
denied environments for an MAV, the crucial first require-
ment is to locate itself. Moreover, obstacles should be reli-
ably detected in real time to generate an obstacle-free path
for flying [9]. Traditionally, the underlying assumption for
the simultaneous localization and mapping (SLAM) is a
static environment because the current map measurement
should be registered into a previous global map. The prac-
tical situation includes a lot of moving targets which could
confuse the perception algorithm. The perception module is
no longer dealing with the static environment alone.
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For an autonomous system, the moving targets could
degrade the performance in following conditions: (1) If the
perception module still works (can estimate the ego-motion
of MAVs), then the map cannot update correctly in the dy-
namic environments and leave dynamic trails [10]. The
dynamic trails could further affect the planning since the
obstacles cannot be detected appropriately. (2) The worst
condition is the failure of perception module because the
environment is no longer static, the ego-motion of MAVs
could not be estimated anymore.

In this paper, we present a customized integrated system
consisting of an MAV platform with an onboard processor, a
rotating laser-based localization module, and a dynamic
mapping module. The MAV platform provides onboard
computation and flying capability. The localization module
utilizes the continuous rotating laser scans to achieve a
high-frequency motion estimation update. Also, the dy-
namic mapping module detects and eliminates the moving
target for both localization and real-time mapping. The
developed solution allows for reliable motion estimation
and efficient dynamic map update. The effectiveness of the
proposed framework is evaluated in multiple environments.

2. Related Works

The demanding of MAVs to fly autonomously in GPS-denied
environments such as indoor and forest are rapidly grow-
ing. Making use of different platforms and sensors for per-
ception, several research groups have carried out some
demonstrations for practical applications.

Among all the proposed solutions, the vision-based ap-
proach is selected commonly by ignoring the illumination
change issue [11]. Stephan Weiss et al. [7] from ASL use an
onboard monocular camera together with an IMU to achieve
autonomous flight. Similarly, Forster et al. [12] deployed a
similar sensor setup, but a semi-dense image registration
approach. The proposed approach for MAV autonomous fly
shows that the motion estimation can be efficient and ro-
bust through pixel intensity-based alignment. However,
a computationally expensive dense mapping module is
required for a complete 3D navigation [13].

To observe scene depth directly, many groups utilize the
stereo camera [14]. However, this approach could fail in the
textureless environment. The RGBD camera is widely ap-
plied for MAVs’ indoor navigation tasks because it can
measure the depth from projecting infrared pattern [2].
Compared with passive camera systems, the infrared pat-
tern can estimate the depth of the textureless condition
such as the white wall. However, the view field of the in-
frared pattern is limited which could cause problems when
the obstacles are out of the field of view. To cope with this

issue, it is straightforward to equip with multiple RGBD
cameras. However, the computational cost rises corre-
spondingly.

The laser-based state estimation technologies are adop-
ted mainly by unmanned ground vehicles (UGVs). For in-
stance, the utilization of 2D LIDAR on small size UGVs —
Hector SLAM [15] estimates the 2D motion and boost it to
3D with multiple sensors. Together with the height mea-
surement, a 3D Octomap can be constructed for obstacle
detection. However, this approach relies on the reliable and
varying height measurements or else it will result in an
inconsistent or incomplete 3D map. Similar to this ap-
proach, Morris et al. [16] utilize the sparse visual features
together with the 2D LIDAR for motion estimation. It is still
not a direct 3D measurement. Different from 2D LIDAR, the
3D LIDAR could provide accurate 3D dense range mea-
surements regardless of the illumination variation. The
sensing capability of 3D LIDAR makes it possible for UGVs
to detect obstacles in all directions. Combining with camera
systems for state estimation, the sensing and perception
modules are robust and effective. Considering the size and
weight limitations, the 3D LIDARs are rarely utilized on
MAVs. Besides that, the power consumption of a 3D LIDAR
could lead to the reduction of endurance.

A combination of a camera for localization and laser for
obstacle detection is another choice: Either monocular
camera or stereo camera can provide a 6-DoF motion so
that the state estimation is not limited to 2D planar space.
Based on the state estimation information, either the static
or rotating LIDAR can construct a 3D map. A similar ap-
proach is proposed by Cover et al. [11], but this combina-
tion could not work in the dark environment and with
obstacles out of view. Matthias et al. [4] build a MAV plat-
form with the camera system for odometry and rotating
laser scanner for obstacles detection. However, illumination
variation and the textureless scene will bring the failure of
motion estimation.

To deal with moving objects in the scene, most of the
vision-based approaches reject moving targets implicitly in
the motion estimation phase through the iterative process
[17], but this approach is not very effective to handle slow-
moving targets and is computationally expensive. Laser-
based methods typically handle this by checking the in-
consistency between different scans. Burgard et al. [18]
propose to differentiate the dynamic and static cells in 2D
grid map by the expectation maximization. This approach is
straightforward to extend to 3D but expensive in compu-
tation due to the ray-tracing. Azim and Aycard [19] pro-
posed a moving object detection method by representing
point clouds as an octree-based occupancy grid. Each voxel
in the occupancy grid is labeled as free or occupied by ray-
tracing. Dynamic voxels are detected with both free or dy-
namic labels in different scans. They are further clustered
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and filtered to provide dynamic object bounding box. Asvadi
et al. [20] used voxel grids to represent the dense 3d
structure. Each voxel is qualified by counting the number of
points that fall into the same voxel. After consecutive scans,
the objects with large occupancy value are regarded as
stationary since multiple scan points should be mapped into
the same voxel. Otherwise, those with small occupancy
values are detected as moving obstacles. The detection re-
sult is further refined with a 2D counters and log likelihood
ratio.

In this paper, we develop a motor-driving 2D laser scan
system that can estimate the ego-motion and structure of
the 3D environment. It is specially designed for MAVs by
compromising size, range and weight. Motion is estimated
by matching laser scans in an online-built 3D map. Because
the sequential range measurements are relative to the dy-
namic position of the rotating sensor, hence careful scan
distortion compensation is implemented to get an accurate
motion measurement in this setup. To address the dynamic
mapping problem, we explicitly detect the moving objects in
the point cloud and remove them during the mapping
process. The moving object detection method is inspired
from [10] by checking the change between scans. This
method represents point cloud on a spherical coordinate
system and does not rely on either voxel grid or octree-
based occupancy grid. The inconsistency checking is sim-
plified to a distance checking problem, which can detect the
moving objects efficiently.

3. System Configuration

We define the body frame of the MAV platform as B and
local laser coordinate as L. We use a Dynamixel motor to
provide high torque with available rotation speed. For the
rotating laser device, one rotation of the laser range finder
is from �90� to 90� in CW or 90� to �90� in CCW. This is
denoted as � while the x-y plane is the 0� planar plane.
Thus, for kth rotation, the laser coordinate is expressed as
Lk . The global coordinate is O. The coordinate system il-
lustration is shown in Fig. 1. For a single laser point p in kth
rotation, the coordinate is expressed as X B

k;l;p, X
L
k;l;p and X O

k;l;p,
correspondingly. All the defined coordinate systems are
right-handed.

In this paper, a sensing and perception module for MAV
in dynamic environments is presented. The proposed al-
gorithm contains the following components:

. Feature extraction and alignment: extract the defined
feature from 2D laser scan and align the scans in 3D point
cloud sequence.

. Motion estimation: estimate the motion based on the
optimization of feature alignment error metric.

. Dynamic mapping: update the 3D map for dense mapping
and motion estimation refinement.

The following section will describe the above components
in detail, and the algorithm is given in Algorithm 1.

3.1. Feature extraction and alignment

We use feature-based method for motion estimation. This
section explains the feature detection and association. The
challenges of point cloud in a real environment include the
large data size, data noise and outliers which make the
feature extraction quite difficult as described by Abdul [21].
In their work, outlier rejection and robust fitting are applied
to extract reliable features from the point cloud. Fortu-
nately, edge and plane points on a single 2D scan are a good

Algorithm 1 Feature-Based Localization and Dynamic
Mapping Algorithm

for Points ∈ scan (L) do
SearchEdgePoint p
SearchFlatPoint q
for Points ∈ scan (L + 1) do

if HasMatchingPoints then
DPoint2Line ← DistanceFunction(p)

if HasMatchingPoints then
DPoint2Plane ← DistanceFunction(q)

MinimizeDistance(DPoint2Line, DPoint2Plane)
for Points ∈ scan (L) do

SphericalCoordinate(p, Localization)
for Points ∈ scan (L + 1) do

if SpatialDifference(p, Localization) then
Points p ∈ static

return Localization, Points p

Fig. 1. Coordinate system illustration in front view.
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choice as indicated in [22]. To this end, we select the feature
points p in each scan instead of all points in an assembled
point cloud to build the correspondence between consecu-
tive point clouds. For 2D laser scan, the variation of a
scanning point in a local neighborhood is used to represent
the feature point. For a point p in a single scan l of kth
rotation, the average length of the edges lavg;p adjacent to it
in a local neighborhood:

lavg;p ¼
1
N

X
q2NðiÞ

ðX L
k;l;p � X L

k;l;qÞ
�����

�����; ð1Þ

where N stands for total number of points adjacent to p and
q stands for the neighbor point of p. A relative variation
ratio Rk;l;p is defined to select edge point ek;l;i (with a vari-
ation ratio larger than threshold) or flat point fk;l;i (with a
variation ratio smaller than threshold).

Rk;l;p ¼
lavg;p

jjX L
k;l;pjj

: ð2Þ

In our work, since we have extracted feature points as edge
points and flat points, two Euclidean distance-based rela-
tionship will be built accordingly to associate the feature
points in different rotations.

. To an edge point p in kth rotation, we can search for the
nearest neighbor point of p, m in ðk þ 1Þth rotation from
the beginning of ðk þ 1Þth rotation through reprojection. In
order to build a point to line correspondence, we further
search for a neighbor point of m in consecutive scan and
denote it as n. We can calculate the distance from the edge
point p to its corresponding line by the following equation:

de ¼
jvl � vej

jvlj
; ð3Þ

where vl stands for ðX L
kþ1;l;m � X L

kþ1;l;nÞ and ve stands for
ðX L

k;l;p � X L
kþ1;l;mÞ.

. To a flat point q in kth rotation, we need to search for the
nearest neighbor point of q in ðk þ 1Þth rotation through
reprojection, denoted as r. After that, another two
neighbor points of r, s and t need to be searched so that
three non-collinear points can construct a plane. The
objective is to minimize the distance from the flat point q
to its corresponding plane. The unit normal of the plane
can be calculated as

n ¼ vp1 � vp2
jvp1 � vp2j

; ð4Þ

where vp1 is ðX L
kþ1;l;s � X L

kþ1;l;rÞ and vp2 is ðX L
kþ1;l;t �

X L
kþ1;l;rÞ. The distance from flat point q to its corresponding

plane can be calculated as

dp ¼ n � vp; ð5Þ
where vp stands for ðX L

k;l;q � X L
kþ1;l;rÞ.

3.2. Motion estimation

Translation and rotation of a 3D point p in ðk þ 1Þth rota-
tion X L

kþ1;l;p with respect to last laser frame Lk are expressed
by

Xk;l;p ¼ bX L
kþ1;l;p ¼ RX L

kþ1;l;p þ P; ð6Þ
where

R ¼
1 0 0
0 c� �s�
0 s� c�

2
4

3
5 c� 0 s�

0 1 0

�s� 0 c�

2
4

3
5 c� �s� 0

s� c� 0
0 0 1

2
4

3
5;

P ¼
px
py
pz

2
4

3
5:

Here, �; � and � are the MAV body euler angles corre-
spondingly.

Motion estimation is to calculate the transformation re-
lationship T k

kþ1 ¼ ðRk
kþ1; P

k
kþ1Þ utilizing feature corre-

spondences. We can further express the transformation
relationship as a nonlinear function f ,

f ðX L
kþ1;l;pÞ ¼ Xk;l;p: ð7Þ

Consider the point to line correspondence in Eq. (3). To
estimate the motion between ðk þ 1Þth rotation and kth
rotation, we need to minimize the distance de to 0 as de-
scribed in following function:

de ¼ w1ðf ðXkþ1;l;mÞ; f ðXkþ1;l;nÞÞ ! 0: ð8Þ
Similarly, the point to plane distance dp can be expressed by

dp ¼ w2ðf ðXkþ1;l;rÞ; f ðXkþ1;l;sÞ; f ðXkþ1;l;tÞÞ ! 0: ð9Þ
Through combining the feature point correspondence, we
can build a nonlinear function wðT k

kþ1Þ ¼ d to express ð8Þ
and ð9Þ. Therefore, the squared error function can be
established as

S ¼ ðwðT k
kþ1ÞÞ2: ð10Þ

Since the objective value of wðT k
kþ1Þ is 0. To minimize the

objective function, mainly two methods can be adopted for
real time application, Levenberg–Marquardt(LM) [23]
method and Trust-Region-Reflective method (TRR) [24].
Compared with the LM approach, TRR is more accurate and
less costly when the incrementally updated result is far
away from solution. The update step �i ¼ ðT k

kþ1Þiþ1 �
ðT k

kþ1Þi can be obtained by solving

min
�i2N

 ið�iÞ; ð11Þ

where  ið�Þ ¼ gT�þ 1
2 �

TH�. g and H are the gradient and
Hessian, respectively, of w evaluated at ðT kþ1

k Þi and Δ k > 0
is the trust region radius. We can further define the
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acceptable ratio by

rk ¼
ð ið0Þ �  ið�iÞÞ

ðwðT k
kþ1Þ � wðT k

kþ1 þ �iÞÞ
; ð12Þ

which is used to decide the iteration of trial step �i.

3.3. Dynamic mapping

The safety of autonomous navigation of MAVs requests the
3D map updating with dynamic obstacles detection. Once
the dynamic obstacles are properly detected and removed,
the perception module could perform a good localization
based on the static objects. In the proposed framework, an
efficient structure is kept for dense 3D mapping so that it
could maintain a consistent dense representation in the
long term. In this paper, we only discuss the 3D map
without dynamic objects for perception.

The fundamental assumption to identify the dynamic
objects is the consistency of visibility. In the continuously
updating environment, if a point along the laser ray is vi-
sually blocked by a point that we previously observed, the
previous point could be further considered as the dynamic
moving target. Instead of directly adopting the ray-tracing
for visibility validation [25], the point cloud representation
for the map is utilized to ensure smooth information flow.
Moreover, the spherical coordinates representation is in-
troduced to represent the geometrical information. The
usage of spherical coordinate allows storing the depth of
the point in a 2D distance map format [26] so that the
dynamic obstacles can be efficiently detected. To a point p
in one point cloud set, its corresponding spherical coordi-
nate form is

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
;

� ¼ atan2ðy; xÞ;
� ¼ arccos

z
�

� �
:

ð13Þ

To a point cloud set which is generated by the kth rotation
of laser V o

k in global coordinate, its associated spherical
coordinate form is V s

k . Initially, we assume that most of the
points in V s

k are static. The spatial difference between a
point X s

kþ1;l;p and X s
k;l;p is calculated by

kX s
kþ1;l;p � X s

k;l;pk: ð14Þ
The spatial difference serves to distinguish between the
dynamic points and static points. Moreover, the angle be-
tween X s

kþ1;l;p and upcoming new point in local spherical
coordinate could further propagate the knowledge on the
points. The higher the angle difference is, the less the pre-
vious knowledge has changed. Through this approach, the
dynamic points are removed so that the motion could be
correctly updated.

4. Experimental Results

The proposed framework is verified in the real environment
directly instead of simulation environments to show the
robustness and efficiency of the solution. In the designed
experiments, the MAV has a maximum flying speed of
1:5 m/s. An onboard camera is installed for online visuali-
zation of the scene.

The MAV platform is shown in Fig. 2. It is designed by
NUS UAV Group with the capability of wind resistance and
heavy payload. The platform has a 128 cm tip to tip length
and a maximum 2 kg payload weight. A self-designed power
distribution module provides multiple power sources for
onboard electronics. The onboard flight controller is Pix-
hawk with customized flight control algorithms. We use the
Intel NUC computer (i7-5557U) as the onboard processing
unit.

The Dynamixel RX-24F servo motor with 0.29� rotation
resolution and �150� rotation range is used to spin a
Hokuyo UTM-30LX laser scanner with a frequency of 1 Hz.
The laser scanner provides range data with 270� field of
view and effective range of 30 m at 40Hz. This rotating
laser scanner is installed forward-facing on the MAV with a
3D-printing case. We also installed dampers between the
casing and MAV frame to reduce vibration.

4.1. Flying in indoor corridor environment

We first test our system in an indoor corridor environment
to verify the accuracy of the motion estimation module and
mapping module without dynamic obstacles. Figure 3
shows the image of the corridor.

Since the ground truth of the motion estimation is not
available, the accuracy of the motion estimation is evaluated

Fig. 2. Customized MAV platform.
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by the reconstructed point cloud map. Figure 4 shows the
reconstructed corridor.

The total travel distance in the corridor is around 50
meters. The final closed-loop error is less than 0.25m. We
can see from the map that vertical walls keep upright and
floor can be recognized as a flat surface.

Figure 5 shows close details of the structure in the map.
The image sample of the related area is shown in Fig. 6. We
measure the width of each cubicle with the 3D information
from the map and compare it with the distance measured
manually with a rangefinder. The average error is within
5 cm. It is demonstrated that the accuracy of motion esti-
mation is good enough since the reconstructed environment
well represented real condition.

4.2. Flying in outdoor foliage environment

Our system is further tested in a typical outdoor foliage
environment shown in Fig. 7. In this experiment, the MAV
can autonomously localize itself without any prior knowl-
edge. The 3D point cloud is shown in Fig. 8. As we can
see, the ground and wall in front are well-reconstructed

Fig. 3. Corridor environment.

Fig. 4. Reconstructed corridor environment.

Fig. 5. Reconstructed detail of the corridor environment.

Fig. 6. Image detail of the corridor.

Fig. 7. Outdoor foliage environment.
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as planes, and the branches of trees are well-depicted.
This experiment demonstrates the capability of our
system working in outdoor foliage environment. Based
on the reconstructed environment, the robustness of the

feature-based localization approach is verified since the
Manhattan world assumption does not exist.

4.3. Hovering with dynamic obstacles

This experiment is designed to test the dynamic module
specifically. The MAV is controlled by the information from
the motion estimation module in the presence of moving
obstacles. The failure of the map updating could lead to the
dynamic trails as shown in Fig. 9. Based on the experimental
result, the dynamic mapping module removes the continu-
ously moving obstacle (target in black rectangle) success-
fully and keeps a static map for further motion estimation
refinement as shown in Fig. 10. During the dynamic ob-
stacle removal phase, the point cloud map is down-sampled
to reduce the data size and achieve real-time performance.
Hence, the final map looks sparser than the original one.

5. Conclusion

In this paper, we present a rotating laser-based motion es-
timation and dynamic mapping framework to achieve MAV
autonomous navigation in a GPS-denied environment. The
proposed framework solves the laser distortion issue by
feature-based matching. The ego-motion of MAV is further
estimated from point-to-line and point-to-plane optimiza-
tion. In addition, the dynamic trail is resolved by point-
based filtering instead of the voxel grid-based ray-tracing.
To verify the accuracy and robustness of the proposed
framework, we conduct multiple experiments in different
environments, respectively. We demonstrate the accuracy
and robustness of our proposed framework in the experi-
ments through analysis and comparison. Based on the result
analysis, the rotating laser-based framework estimates the
ego-motion of MAV while filtering the dynamic obstacles
successfully.
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