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A Comprehensive UAV Indoor Navigation System

Based on Vision Optical Flow and Laser FastSLAM

WANG Fei1 CUI Jin-Qiang1 CHEN Ben-Mei2 LEE Tong H2

Abstract This paper presents a comprehensive control, navigation, localization and mapping solution for an indoor quadrotor

unmanned aerial vehicle (UAV) system. Three main sensors are used onboard the quadrotor platform, namely an inertial measurement

unit, a downward-looking camera and a scanning laser range finder. With this setup, the UAV is able to estimate its own velocity

and position robustly, while flying along the internal walls of a room without collisions. After one complete flight, with the collected

data the historic UAV path and the indoor environment can be well estimated. The autonomous navigation part of the system does

not require any remote sensory information or off-line computational power, while the mapping is done off-line. Complete flight tests

have been carried out to verify fidelity and performance the navigation solution.
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The development of advanced indoor navigation systems

for miniature unmanned aerial vehicles (UAVs) has aroused

extensive interest recently because of its great potential in

military and civil applications. If such a system can be

pragmatically implemented, it can be used for exploration

and mapping, search and rescue, and other strategic mis-

sions. However, this system has to be intelligent enough to

overcome problems caused by complicated indoor environ-

ments, such as scattered obstacles and denied reception of

GPS signals, and constraints of UAV platforms, for exam-

ple, unconventional mechanical design and limited payload.

It is noted that the topics of UAV modeling

and control[1−2], GPS-denied navigation[3−4], path

planning[5−7] and simultaneous localization and mapping

(SLAM)[8−9] are separately addressed by researchers in

areas including robotics, mechatronics, computer vision,

computer science, etc. Each of these topics covers a

breadth of literature. With the knowledge of these existing

theoretical works, this paper, however, focuses on the

overall system design, integration and implementation.

Moreover, a lot of the existing algorithms in literature

have not been realized onboard the UAV in real time. In

most cases, only simulations, off-line processing, or part

of the whole system have been tested. This largely limits

the possible real-life applications of the indoor UAVs,

especially when the control or path planning algorithms

highly relies on some remote and immobile sensors or

computers. As such, this paper selects and customizes

the existing algorithms and methods and aims to realize

a robust indoor UAV system with real-time processing
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capability solely onboard. In addition, there are also new

ideas about system design, control law implementation,

UAV state estimation, and path planning which can dis-

tinguish this paper from other complete indoor navigation

solutions, such as [10−11].

The content of this paper is organized as follows: Section

1 gives an overall structure of the proposed indoor naviga-

tion strategy, followed by Sections 2∼ 5, which respectively

expand the UAV modeling and control, state estimation,

path plan, and SLAM. Section 6 will provide actual im-

plementation results to verify the overall system. Lastly,

concluding remarks will be made in Section 7.

1 Platform and system structure

Being mechanically simple and robust, quadrotor heli-

copters have been widely used as UAV platforms for re-

search purposes these days. There are ready products, such

as AscTec′s Pelican, Parrot′s ARDrone, and MikroKopter′s
Quadro, which are all capable of performing stable semi-

autonomous flight. However, the quadrotor platform used

for the work described in this paper is completely self-

customized with special considerations about weight reduc-

tion and power efficiency (see Fig. 1). Its frame is made

of carbon fiber plates and rods with a durable acryloni-

trile butadiene styrene (ABS) landing gear. Its dimensions

are 35 cm in height and 86 cm in diagonal width (tip-to-

tip). This custom-made quadrotor has a maximum take-off

weight of 2.9 kg (conservatively tested) and can fly at 8m/s

for about 10 to 15 mins, depending on sensor configuration

and environmental factors. The platform onboard system

is also fully customizable in terms of sensor arrangement

and scalability, meaning that additional electronic boards

can be added with a stack-based design.

For the onboard avionics, the IG-500N inertial measure-

ment unit (IMU) from SBG systems is used to provide the
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UAV linear accelerations, angular rates and Euler angles.

There is also a built-in barometer which can provide air

pressure measurement for UAV height estimation. URG-

30LX scanning laser range finder from Hokuyo is used to

measure the distance from the surrounding objects in a

frontal 270◦ and 30 m′s range. The vision sensor used on

this platform is a PointGrey FireFly camera. Two separate

onboard processors are used; one is the Gumstix Overo Fire

for control and navigation purposes, while the other one,

Fit-PC2, is dedicated to vision processing. Fig. 2 shows the

full onboard configuration and how the signals flow among

all the components.

Fig. 1 The custom-made quadrotor platform

Fig. 2 Onboard avionics configuration of the

quadrotor platform

Zooming out, Fig. 3 shows the top-level structure of the

proposed indoor navigation solution. As the UAV moves,

the IMU sensor and vision sensor′s measurements will be

fed to the “State estimator” block to obtain an estimation

of all UAV state variables, and then acquired by the “Con-

trol law” block for feedback control. The other input to the

“Control law” block is the UAV trajectory reference gener-

ated by the “Path plan” block. For path planning, the main

sensor used is the scanning laser range finder. For the fol-

lowing sections, the “Control law”, “State estimator” and

“Path plan” blocks will be expanded and detailed, respec-

tively.

2 Modeling and control

The model structure of the quadrotor platform being

used is illustrated in Fig. 4. The four-channel control in-

puts δlat, δlon, δcol, δped are fed to the onboard NAZA con-

troller (NAZA is an off-the-shelf all-in-one stability con-

troller specially designed for multi-rotor flying platforms).

NAZA controller outputs PWM signals to drive the four

motors to generate the thrust forces, which not only lift

the platform but also maintain its attitude stability. From

the perspective of NAZA, the four inputs from the remote

transmitter correspond to the control references for the roll

angle (φ), pitch angle (θ), yaw angular rate (r), and aver-

age motor speed (Ω), respectively. There exists a dynamic

process which maps the roll and pitch angles to the lateral

and longitudinal velocities (u, v). It is mainly caused by

rigid body kinematics with air resistance damping effect.

Fig. 3 Overall structure of the indoor navigation system

Fig. 4 Overview of quadrotor model structure

The platform operates in the so-called “X” mode as

shown in Fig. 5, where there are two frontal rotors and two

rear rotors. The UAV body frame is defined as x pointing

forward, y pointing rightward, and z pointing downwards,

following the right-hand rule. Since the structure configu-

ration of the platform and the design of the onboard sys-

tem are highly symmetric, it is reasonable to assume that

the longitudinal and lateral dynamics of this platform are

exactly the same. We also assume that the model is com-

pletely decoupled among all four channels. That means the

dynamic model of each channel can be identified indepen-

dently.

Fig. 5 Quadrotor body frame definition

The model identification process is done with a software

toolbox called CIFER. It was developed by the NASA Ames

Research Center for military-based rotorcraft systems. It
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converts the collected input-output data to frequency-

domain responses and then fit to a low-order transfer func-

tion using advanced numerical optimization.

Due to the symmetric structure of the quadrotor plat-

form, the roll and pitch dynamics share the same model

structure as well as parameters. When the platform is per-

turbed in the roll (or pitch) direction, the onboard avionics

system logs the roll (or pitch) angle and linear velocity′s
responses with the corresponding synchronized control in-

put, δlat (or δlon). The ultimate goal is to identify the model

from the control input δlon (or δlat) to the linear velocity u

(or v). However, we can divide this task into two sub-tasks,

i.e., identify the model from control input to attitude angle

and identify the model from angle to velocity. Then the two

models can be cascaded to produce an overall longitudinal

(or lateral) model.

Using CIFER, the dynamics from the longitudinal (or

lateral) control input to the pitch (or roll) angle can be

well fitted by the following 4th-order transfer function:

H1 =
9688

s4 + 27.68 s3 + 485.9 s2 + 5691 s + 15 750
(1)

The frequency response comparison between the identified

model and the real data is shown in Fig. 6. The third sub-

plot in the figure shows the coherence value of the frequency

domain matching. At frequencies below 20 rad/s, the co-

herence value remains above 0.8, indicating the system can

be well characterized by a linear process.

Fig. 6 Input-angle frequency response matching

Similarly, the transfer function from roll (or pitch) angle

to the lateral (or longitudinal) velocity can be identified as

a first-order transfer function shown below:

H2 =
8.661

s + 0.09508
(2)

As a result, the cascaded dynamics from the control

input to the UAV′s linear velocity is a 5th-order system

whose transfer function is the product of H1 and H2. It

is observed that H1 has its poles at −4.0977 + 15.8272 i,

−4.0977 − 15.8272 i, −15.7414, −3.7433, while H2 has its

pole at −0.0958. Obviously, the pole of H2 is much closer

to the imaginary axis than any poles of H1. Hence, the

dynamics of the cascaded system from input to velocity is

dominated by the pole of H2. To simplify the control law

design, we remove the poles from H1 and keep the over-

all steady state gain the same. As a result, the simplified

model from the control input to the linear velocity is

H3 =
5.3275

s + 0.09508
(3)

Note that this simplified model will only be used for control

law design purpose. The full 5th-order complete model will

still be used for flight simulation and control law verifica-

tion.

For the yaw channel, since the inner-loop dynamics con-

trolled by NAZA is very fast, we can safely assume that

the control input directly corresponds to the yaw angular

rate with a proportional gain. Thus, the transfer function

from yaw control input to the yaw angle is an integration

of a constant, shown as below:

H4 =
3.37025

s
(4)

The transfer function from the collective input δcol to the

z-axis velocity w is identified to be

H5 =
13.3506

s + 2.32033
(5)

The negative coefficient on the numerator of H5 is due to

the opposite definition of the positive control direction and

the positive z-axis velocity direction.

The above sub-system models are identified with the

presence of the inner-loop NAZA controller. The next

step is to design a model based outer-loop control law to

track a 3D position and heading reference. Again, since all

channels′ dynamics are assumed to be decoupled, the outer-

loop control laws can be designed separately. The control

structure for each channel can be found in Figs. 7∼ 9. Ex-

cept for the conventional state feedback and reference feed-

forward components, one special component of this control

structure is that the derivative of the reference is also used.

In this way, the UAV responds faster to reference changes

and the time factor is emphasized. This is obviously an ad-

vantage for flying vehicle′s mission of trajectory tracking,

but the position reference needs to be generated smooth

enough for pragmatic implementation.

Fig. 7 x, y channel control structure
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Fig. 8 z channel control structure

Fig. 9 Yaw channel control structure

3 State estimation with sensor fusion

While angle and angular rate measurements can be di-

rectly provided by the onboard IMU, the UAV′s position

and velocity need to be estimated indirectly. Since dead

reckoning using IMU acceleration will face severe drifting

problems, information from other sensors must be fused

in to cure the divergence and at the same time, to re-

duce noises. The solution goes to the onboard camera and

barometer. Moreover, a Kalman filter is formulated to fuse

the information from all sensors and provide a smooth UAV

state estimation for control purposes.

3.1 Velocity estimation by visual optical flow

For many times, optical flow based vision algorithms

have been proposed by researchers to solve UAV GPS-

denied navigation problems. Some researchers mount the

UAV onboard camera pointing forward for obstacle avoid-

ance, while some others mount the camera(s) sideward to

navigate in indoor corridors or outdoor canyons. For our

case, since there is already information from the onboard

laser scanner which can detect frontal and sideward obsta-

cles, it is preferable to mount the camera facing downward,

so that both the x-axis and y-axis components of the UAV

body frame velocity can be better estimated. This con-

figuration also takes great advantage of the fact that the

floor of an indoor environment is usually flat and vision

algorithms involving feature points on the same plane can

be largely simplified. In the computer vision society, there

is the so-called structure from motion (SFM) problem, in

which the camera translation and rotation can be calcu-

lated by given consecutive views of a scene. There are two

fundamental sub-problems from SFM:

1) Correspondence (2D motion in the image);

2) Reconstruction (3D motion of the camera).

The first problem is commonly known as the 2D opti-

cal flow problem. It requires the knowledge of spatial and

temporal image intensity derivatives. Let the grey-level in-

tensity of a pixel on the image be E(x, y, t). It is a continu-

ous and differentiable function of space and time. Suppose

the brightness pattern is locally displaced by a distance dx,

dy over time period dt, the intensity of the displaced pixel

should be the same as the original pixel:

E(x, y, t) = E(x + dx, y + dy, t + dt) (6)

In other words, the total derivative of E w.r.t. time is zero.

δE

δx

dx

dt
+

δE

δy

dy

dt
+

δE

δt
= 0 (7)

If we denote

Ex =
δE

δx
, Ey =

δE

δy
, Et =

δE

δt
, vx =

dx

dt
, vy =

dy

dt

then the equation can be rewritten as

Exvx + Eyvy + Et = 0 (8)

The above is known as the brightness constancy equation

(BCE). In BCE, Ex, Ey and Et are measurable, while vx

and vy are the unknown 2D flows. One individual BCE is

not enough to estimate the 2D flows. Solutions to this nor-

mally involve considering a small window of adjacent pixels.

Among all these solutions, the Lucas & Kanade algorithm

is the most classical and elegant one. It assumes that the

motion field at a given time is constant over a block of pix-

els. For that particular block of n number of pixels, there

are n BCEs. They form a linear over-determined equation

set. Least square estimation can be used to obtain reliable

vx and vy over that region.

To implement this 2D optical flow algorithm, the well-

known OpenCV library from Intel can be used. OpenCV

library also provides the “goodFeaturesToTrack” function

which is able to find predefined number of feature points on

an image and these feature points are selected particularly

suitable for the later “calcOpticalFlowPyrLK” function,

which calculates the optical flow for a sparse feature set us-

ing the iterative Lucas-Kanade method with pyramids. The

implementation result can be found in Figs. 10 (a)∼ 10 (d).

Fig. 10 The 2D optical flow implementation results

The next problem is to estimate the camera 3D motion

from the 2D optical flow mentioned above. One of the most
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elegant methods relies on an important concept called “ho-

mography”. “Homography” is a well-known term in the

computer vision society in describing the linear position

relationship between feature points on two different (im-

age) planes. Suppose a downward-looking camera on the

UAV takes images of the ground during flight. Given two

consecutive images taken at time t1 and t2, the correspond-

ing visual features′ pixel positions in the 1st and 2nd im-

ages are related by a 3 by 3 matrix H, provided that the

ground scene is within a level plane[12]. This H is called

the “homography” matrix. The level plane assumption is

quite reasonable for any indoor environment as the floor

is usually manmade, thus flat. H carries useful informa-

tion about the UAV motion from t1 to t2. If R and T are

the inter-frame rotation and translation of the UAV from

t1 to t2, N is the unit-length normal vector of the ground

plane resolved in the camera frame at t1, and d is the UAV

altitude with respect to the ground plane, then the homog-

raphy matrix H can be expressed as[13]

H = R +
1

d
TNT (9)

The decomposition of H into R, T and N is possible but

very complicated and it usually results in large numerical

errors in practice. Fortunately, R and N are known in our

case since the IMU will give Euler angle information at ev-

ery moment. If we have UAV attitude angles φ1, θ1, ψ1 at

t1 and φ2, θ2, ψ2 at t2, then

N =




− sin θ1

sin φ1 cos θ1

cos φ1 cos θ1


 (10)

and

R = Rb/n(t2)Rn/b(t1) (11)

where Rb/n is the rotational matrix to convert 3D points

from the inertia frame to the UAV body frame and Rn/b

is vice versa and they are transpose of each other. Hence,

with H, R, d and N known, the translational motion, T

can be calculated as

T = d(H −R)N (12)

3.2 Height measurement from barometer

As mentioned previously, indoor UAV height measure-

ment can be from various sensors. Using range sensor is one

of the most direct ways to measure the distance from the

UAV body to the ground. However, to obtain the UAV ab-

solute height with respect to its initial position, this range

sensor approach has to assume that the ground is without

any altitude variations. Moreover, if the UAV is required to

go through windows, this measurement will be inaccurate

when the UAV is directly above the windowsill. In view

of this, a more robust choice would be to use the barome-

ter, as its measurement is independent of the environment′s
physical shape. If a reference pressure (usually the pressure

right before taking off), P0, is selected, then the z direction

position of the UAV at any later moment can be calculated

by the following equation:

zg = −44 307

[
1−

(
P

P0

)0.1902
]

(13)

with P being the present pressure sensor output in Pascal.

3.3 Data fusion by Kalman filter

The Kalman filter framework describes a discrete-time

linear system as follows

xxx(k + 1) = Axxx(k) + B(uuu(k) + www(k))

yyy(k) = Cxxx(k) + vvv(k) (14)

where xxx, uuu and yyy are the state, input and measurement

vectors, respectively. A, B, C are system matrices with

appropriate dimensions. www and vvv are input and measure-

ment noises, which are assumed to be Gaussian with zero

means. The main objective of Kalman filter is to estimate

x̂xx(k|k) at the time step k with the measurement yyy(k), in-

put uuu(k− 1) and the previously estimated state x̂xx(k|k− 1).

If system 14 is observable, then the statistically optimal

estimator is given as follows.

1) Time update:

x̂xx(k|k − 1) = Ax̂xx(k − 1) + Buuu(k − 1)

P (k|k − 1) = AP (k − 1)AT + BQBT

2) Measurement update:

H(k) = P (k|k − 1)CT(CP (k|k − 1)CT + R)−1

x̂xx(k) = x̂xx(k|k − 1) + H(k)(yyy(k)− Cx̂xx(k|k − 1)

P (k) = (I −H(k)C)P (k|k − 1)

To apply Kalman filter to this indoor UAV state esti-

mation problem, the motion model and the measurement

model need to be first defined. For the motion model, the

simple point mass kinematics model can be used, that is, in

the NED frame, position is integral of velocity and velocity

is the integral of acceleration. The discrete representation

of this motion model with a sampling frequency of 50Hz is

shown below:

xxx =
(
xg yg zg ug vg wg

)T

uuu =
(
axg ayg azg

)T

yyy =
(
zg ug vg

)T
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A =




1 0 0 0.02 0 0

0 1 0 0 0.02 0

0 0 1 0 0 0.02

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




B =




0.0002 0 0

0 0.0002 0

0 0 0.0002

0.02 0 0

0 0.02 0

0 0 0.02




C =




0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0




While the above system matrices have been numerically

defined, the input noise and measurement noise matrices

Q and R, being both diagonal, can be selected by logging

real flight test data; the non-zero elements in Q represent

the acceleration measurement noises and the non-zero ele-

ments in R represent the noise of z direction position mea-

surement from barometer and velocity measurements from

vision optical flow.

4 Wall following path plan

Most UAV path planning algorithms require the UAV to

know the global map, i.e., its own position, the target′s lo-

cation, and all obstacles′ positions presented in the global

frame. However, the environment is usually unknown in

practice and the exploration mission may not involve a well

defined target. In these cases, two approaches are usually

used. One is to build the unknown map through SLAM, so

that all the conventional path planning algorithms can be

applied afterwards. However, this kind of methods suffer

from the problem of large computational burden, and it is

very difficult to be implemented onboard and executed in

real time on miniature indoor UAVs. The second approach

is to use UAV local information only and dynamically calcu-

late the tracking reference of the UAV, that means the ref-

erence generation is contemporary and only one step ahead.

In this paper, the path planning strategy proposed follows

the second approach, i.e., no global map or self-location

information is needed. It is a universal strategy for any

indoor enclosed environment with regular walls. First of

all, this algorithm utilizes the concept of artificial potential

field. All measurements from the laser scanner are treated

as obstacles and they exert repulsive forces on the UAV

body. Besides, to let the UAV keep moving forward, there

is a constant attractive force coming from a virtual target

two meters ahead from the UAV body. If the UAV is or-

dered to follow the left-side wall, then this virtual target is

placed at the left-front of the UAV heading. If the UAV is

order to follow the right-side wall, then the target is placed

at the right-front of the UAV heading. The following for-

mulation describes the aforementioned logic:

F = Fatt − Frep (15)

where

Fatt = e
− |T |

2

2σ2
1 T (16)

and

Frep =

n2∑

k=n1

e
− |W (k)|2

2σ2
2

W (k)

σ2K
(17)

where F is the resultant force of the artificial potential field,

Fatt is the attractive force coming from the virtual target

and Frep is the repulsive force generated by the wall ob-

stacles. T and W (k) are the vectors pointing towards the

virtual target and the points measured by the laser scan-

ner. σ1 and σ2 represent the stiffness of the Gaussian-like

potential fields which can be tuned for different indoor sit-

uations. In (17), all laser scanner measurements indexed

from n1 to n2 will be examined one by one. Invalid mea-

surements (in case of out of range) will be dropped, and K

is the total number of valid measurements being used.

Although we call F a “force”, it can be interpreted as

other physical entities in practice. In this implementation,

we let the UAV 2D velocity reference be proportional to

F , and by integration, it also forms the 2D position refer-

ence. For the z direction, the UAV is ordered to maintain

a predefined height with respect to the flat indoor floor.

In addition, to determine the UAV heading reference, an-

other algorithm is running at the same time to determine

the UAV yaw angle reference at every scan moment, and it

runs as follows:

1) If the UAV is to fly along the wall on its left, then

omit the scanned points on the right side. If the UAV is to

fly along the right side wall, then omit the scanned points

on the left side.

2) For all remaining scanned points, calculate the best

straight line fit using the least square optimization method.

3) The UAV heading reference deviates from the UAV

current heading direction by a fraction (a%) of the differ-

ence between the fitted line gradient and the current UAV

heading (a can be tuned for different indoor environments).

By combining the potential field algorithm with the line

fitting algorithm, the UAV outer-loop references can be

completely set up.

5 Customized FastSLAM algorithm

Many UAV indoor navigation applications need the un-

known environment around the UAV path to be mapped.

This makes the SLAM technology indispensable as a key

component of the whole navigation system. Moreover, if

detailed map information can be obtained, more intelligent

path planning algorithm can be implemented. The domi-

nant approach to the SLAM problem in literature uses the
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extended Kalman filter (EKF) framework. However, EKF

SLAM has disadvantages such as its quadratic complexity

and sensitivity to data association failures. To overcome

these problems, a lot of SLAM variants have been proposed

by researchers. Some of them tried to exploit the spar-

sity of the matrix updating step in EKF[14−15]. Some have

proposed more robust methods of data association[16−17].

Among them, the FastSLAM[9] is one of the most promis-

ing methods to improve both the robustness and efficiency

of the algorithm. Unlike many other methods which factor-

ize the SLAM problem spatially, FastSLAM factorizes the

SLAM posterior over time using the path of the robot. The

resulting algorithm scales logarithmically with the number

of features in the map. In addition, FastSLAM originates

from the particle filter, retaining different data association

hypotheses to different particle solutions. The particles

with wrong data associations can be completely forgotten

in the long run.

In this work, the FastSLAM framework is adopted while

the type of map features has been extended from the clas-

sical corner-only features to both corner and line features.

The detailed algorithm can be found in [18]. The proba-

bility distribution of the UAV′s pose at time t is denoted

as st. The covariance of the UAV pose is represented by a

distribution of M particles, and it is assumed that the mth

particle P [m] knows exactly where the vehicle′s position

and orientation are, without uncertainty. Hence, instead of

maintaining a single huge covariance matrix, such as that of

the EKF SLAM, this algorithm has many small covariance

matrices for each combination of the map features and pos-

sible UAV poses. This avoids the large matrix inversions,

which is typically the most computationally expensive step

in those conventional SLAM algorithms. Each particle car-

ries its own map. Similar to the EKF SLAM approaches,

each feature in the map is assumed to have a Gaussian

distribution, which can be described by its mean µ
[m]
n,t and

variance Σ
[m]
n,t , where n is the associated index of the map

features. The following context will expand the customized

FastSLAM algorithm by sequencing its main steps.

5.1 Feature extraction

The objective of this step is to convert a frame of raw

laser scanner measurement points into a set of measurement

features, {z1,t, z2,t, · · · , zn,t} ∈ zt, and at the same time,

to establish the probability distribution of the extracted

features, P (zi,t). As mentioned before, the features to be

extracted are line segments and corners, and each of them

can be represented by a vector mean and a square matrix

covariance with the following notations with Fig. 11 provid-

ing a graphical illustration to all the parameter variables:

1) Lines:

zl = N (r, θ; µz
l , Σz

l ) (18)

µz
l = {µr, µθ} (19)

Σz
l =

[
σrr σrθ

σθr σθθ

]
(20)

2) Corners:

zc = N (x, y, α, β; µz
c , Σz

c) (21)

µz
c = {µx, µy, µα, µβ} (22)

σz
c =




σxx σxy σxα σxβ

σyx σyy σyα σyβ

σαx σαy σαα σαβ

σβx σβy σβα σββ


 (23)

Fig. 11 Parameters to describe line and corner features

The process of converting a frame of raw scan points

into a set of corners and line segments involves three steps,

namely point clustering, line fitting and corner extraction.

The clustering task is to group the raw data points in such

a way that points within the same group belong to the same

line segment as reasonable as possible. A recent review of

line extraction algorithm[19] concludes that the split-and-

merge and the Incremental are the two preferred methods,

with split-and-merge being faster and Incremental being

more robust. The split-and-merge method is more than

sufficient for a clean indoor environment such as our test

case and is therefore used. It is a recursive algorithm with

the following steps:

Step 1. Start with all input points.

Step 2. Connect the first point and the last point with

a line.

Step 3. Calculate the perpendicular distances of all

other intermediate points with respect to the line segment

obtained in the previous step.

Step 4. Search for the point that has the largest dis-

tance and compare this distance with a defined threshold.

Step 5. If the maximum distance is less than the thresh-

old, all points between the first point and the last point

belong to the same line; else, recursively call Step 1 with

(first point, max point) and (max point, last point).

The next step, line fitting, aims to extract accurate line

parameters and covariances. For this step, since the uncer-

tainties of the points belong to the same line are different,
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as a result of projecting elliptical shaped uncertainty (as

the radial and angular components are different) of var-

ied magnitude (measurements are more noisy for points at

longer distance from the sensor), points have to be weighted

when fitting to the line. Furthermore, as the weight of the

point is dependent on the heading of the line, no close form

formula has been found so far. Instead, an iterative method

that maximizes the likelihood of the line has been derived

in [20] and it is adopted in our work:

Step 1. Assume an initial heading of the line by con-

necting the first and the last points.

Step 2. Find the radial position and its variance based

on the weight obtained by projecting uncertainties of the

point onto the perpendicular direction of the line.

Step 3. Calculate the iterative incensement for heading.

Step 4. Repeat Step 1 to Step 3 until heading converges.

Step 5. Calculate the remaining terms in the covariance

matrix for line parameters.

The detailed formulation of the iterative line parameter

extraction and covariance estimation can be found in [20]

and it will not be repeated here. However, the results can

be appreciated in Figs. 12 and 13, where the extracted lines

have dotted boundaries at both sides of the line, represent-

ing the 3-sigma uncertainty region.

Fig. 12 Lines and corners extracted from laser scanner data

Fig. 13 Line and corner features with 3-sigma uncertainty

For corner extraction, adjacent lines are extended and

their intersecting point is taken to be the position of the

corners. Direction (β) and angle (α) of all corners are also

computed from the line parameters. Covariance of the cor-

ner can be obtained from line covariances. Similar to line

extraction, formulas to calculate the covariance of the cor-

ner from the information of the lines have been well derived

in [21] and again will not be repeated here.

5.2 Motion estimation and proposal generation

This step gives a rough prediction about the UAV mo-

tion from the previous frame to the current frame. Con-

currently, the uncertainty caused by this motion is propa-

gated. The predicted body-frame displacement of the UAV

position (∆xt, ∆yt) and heading (∆ct) are assumed to be

random variables on their own and distributed normally

around their expected values. So,

∆ct = N (∆c̄t, σ∆c) (24)

∆xt = N (∆x̄t, σ∆x) (25)

∆yt = N (∆ȳt, σ∆y) (26)

where ∆x̄t, ∆ȳt, ∆c̄t are the expected values and σ∆x, σ∆y,

σ∆c are their respective standard deviations which can be

defined by the following equations:

σ∆c = α1|∆c̄t|+ α2 (27)

σ∆x = α3|∆x̄t|+ α4 (28)

σ∆y = α3|∆ȳt|+ α4 (29)

where α1, α2, α3, α4 denote proportional and additive noise

parameters that can be tuned for practical implementa-

tions.

There are various ways to obtain the average motion es-

timation, i.e., to calculate ∆x̄t, ∆ȳt, ∆c̄t. Our solution is

to use scan matching to estimate the displacement of the

UAV by comparing position of corner features extracted

in two adjacent scans. This rigid motion involves a rota-

tion R and a translation T and they can be obtained via a

closed-form solution as follows:

Step 1. Check corner feature correspondences based on

their pair-wise Mahalanobis distances.

Step 2. Organize corner features in such a way that

pi or [pxi pyi]
T in the previous frame corresponds to qi or

[qxi qyi]
T in the current frame.

Step 3. Calculate the centroid of the feature points for

both frames, denoted by p̄ and q̄.

Step 4. Form matrix P = [p1−p̄, p2−p̄, . . . , pmax−
p̄].

Step 5. Form matrix Q = [q1− q̄, q2− q̄, . . . , qmax−
q̄].

Step 6. Let [U, S, V ] = SVD(PQT) and d =

sgn(det(PQT)).

Step 7. Then R = V [1 0; 0 d]UT and T = Rp̄ − q̄,

leads to ∆c̄t = −atan2(R(1), R(2)), ∆x̄t = T (1), ∆ȳt =

T (2).
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The motion estimation result will be applied to all par-

ticles with random additive and multiplicative noises. So

for particle P [m],

∆c
[m]
t = ∆c̄t(1 + α1randN(1)) + α2randN(1) (30)

∆x
[m]
t = ∆x̄t(1 + α3randN(1)) + α4randN(1) (31)

∆y
[m]
t = ∆ȳt(1 + α3randN(1)) + α4randN(1) (32)

where randN(1) represents a function that can generate a

random value from a standard normal distribution, and the

updating equations are as follows:

P
[m]
t .c = P

[m]
t .c + ∆c

[m]
t (33)

P
[m]
t .x = P

[m]
t .x + cos(P

[m]
t .c)∆x

[m]
t −

sin(P
[m]
t .c)∆y

[m]
t (34)

P
[m]
t .y = P

[m]
t .y + sin(P

[m]
t .c)∆x

[m]
t +

cos(P
[m]
t .c)∆y

[m]
t (35)

5.3 Per-particle data association

The objective of this step is to find data pairs that asso-

ciate contemporary measurement features with the existing

features in the map. There is a wide range of data associa-

tion algorithms available, among which the following three

classes are the most popular.

The first class considers each feature independently. It

aims to maximize the probability of associating map fea-

tures with measured features without excluding repeated

matches. The individual compatibility nearest neighbor

(ICNN) algorithm is one of the famous examples. On the

other hand, the second class makes sure the associations

are consistent in a sense that no duplicated associations

can be possibly made for the same feature. Such algorithms

include sequential compatibility nearest neighbor (SCNN)

and joint compatibility branch and bound (JCBB). The

third class of data association algorithms takes one step

further. It considers data associations in the previous it-

eration. In other words, it tries to maximize the whole

probability history. When making data associations, previ-

ous decisions are examined and modified. Examples of such

algorithms include the tree-structured searching algorithm

developed in [22].

Not surprisingly, algorithms of lower complexity do not

produce as robust results as compared to that by complex

algorithms. Hence, choosing an algorithm that balances

well between computational load and robustness is a crit-

ical task in the entire implementation of the SLAM algo-

rithm. At the moment, the JCBB method is used for data

association in this work, as it provides a robust yet efficient

solution.

5.4 Per-particle measurement update

Since every particle has its own map and the estima-

tions of landmark features in each map are conditioned on

the corresponding particle′s path, there are (Nc + Nl) low-

dimensional EKFs attached to each particle, where Nc and

Nl are the number of corner features and number of line

features in the map, respectively. Moreover, we need to do

map update for all M particles, that means there are in to-

tal (Nc+Nl)×M EKFs, and for each of them, the updating

rule runs as follows (line segment features and corner fea-

tures are updated with the same formula but with different

dimensions):

Zn,t = Σ
[m]
n,t−1 + Σz

n,t (36)

K
[m]
n,t = Σ

[m]
n,t−1Z

−1
n,t (37)

µ
[m]
n,t = µ

[m]
n,t−1 + K

[m]
n,t (zn,t − ẑn,t) (38)

Σ
[m]
n,t = (I −K

[m]
n,t )Σn,t−1 (39)

5.5 Importance weighting and resampling

Samples from the proposal distribution, i.e., particles af-

ter motion update, are distributed according to p(st|zt−1,

ut), where xt means all the time history of x: {x1, x2, · · · ,
xt}. This distribution most likely does not match the pos-

terior probability p(st|zt, ut). Importance weighting is to

correct this difference by giving each particle a weight ac-

cording to its probability of observing zt at the time step

t. So in a Gaussian distribution case,

w
[m]
t = (2πZn,t)

− 1
2 e−

1
2 (zn,t−ẑn,t)

T[Zn,t]
−1(zn,t−ẑn,t) (40)

After the particles have been assigned with their corre-

sponding weights, a new set of samples can be drawn from

the original set with probabilities in proportion to their

weights.

6 Implementation results

Actual flight tests have been carried out to verify the

complete UAV indoor navigation strategy. The quadrotor

platform, equipped with IG500N IMU, PointGrey FireFly

camera and UTM-30LX laser scanner, performed an au-

tonomous wall following flight in an indoor hall successfully.

Fig. 14 sequentially shows the eight instances of the flight,

with the left photo showing the actual flying condition and

the right sub-figure showing the laser scanner data at that

particular moment.

Another flight test was carried out in the same indoor

hall, but remotely controlled by a human pilot. After

one complete flight, the onboard laser scanner logged data

were ported to a desktop computer and off-line processing

was done to verify the customized FastSLAM algorithm.

Fig. 15 (a)∼ 15 (f) show six moments of the whole journey.

For each moment, the left sub-figure shows the UAV body-

frame laser scanner raw data and the extracted line and

corner features. The right sub-figure shows the UAV pose

and the map built in progress. The UAV pose is indicated

by a cloud of crosses, representing the particles. It can

be seen that the line segments and corners naturally form

a map of the indoor environment with straight walls and

sparsely distributed pillars. The result is accurate as com-

pared to the real environment.
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Fig. 14 Instances of the wall following flight test

Fig. 15 Customized FastSLAM result in the indoor

hall with pillars
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7 Conclusions

In conclusion, this paper has proposed a complete nav-

igation scheme for an indoor quadrotor UAV system by

selecting, customizing, and combining suitable existing al-

gorithms. Innovations have been focussing on improving

algorithm efficiency and system integration. Real-life flight

tests have been carried out to verify the fidelity and per-

formance of the overall system. The greatest advantage

of this scheme is its minimal requirement on the onboard

computational power. The UAV, after being issued with

the main navigation command, does not need to maintain

any wireless link to the ground control station. Further-

more, although the testbed platform is a quadrotor UAV,

the proposed scheme is also applicable to other miniature

UAV platforms as long as they have IMU, mono-camera

and scanning laser range finder mounted onboard.
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