
J Intell Robot Syst (2016) 81:531–549
DOI 10.1007/s10846-015-0206-2

Vision-aided Estimation of Attitude, Velocity, and Inertial
Measurement Bias for UAV Stabilization

Shiyu Zhao · Feng Lin ·Kemao Peng ·
Xiangxu Dong ·Ben M. Chen ·Tong H. Lee

Received: 19 April 2014 / Accepted: 20 January 2015 / Published online: 11 February 2015
© Springer Science+Business Media Dordrecht 2015

Abstract This paper studies vision-aided inertial
navigation of small-scale unmanned aerial vehicles
(UAVs) in GPS-denied environments. The objectives
of the navigation system are to firstly online esti-
mate and compensate the unknown inertial measure-
ment biases, secondly provide drift-free velocity and
attitude estimates which are crucial for UAV stabi-
lization control, and thirdly give relatively accurate
position estimation such that the UAV is able to per-
form at least a short-term navigation when the GPS
signal is not available. For the vision system, we do
not presume maps or landmarks of the environment.
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The vision system should be able to work robustly
even given low-resolution images (e.g., 160×120 pix-
els) of near homogeneous visual features. To achieve
these objectives, we propose a novel homography-
based vision-aided navigation system that adopts
four common sensors: a low-cost inertial measure-
ment unit, a downward-looking monocular camera, a
barometer, and a compass. The measurements of the
sensors are fused by an extended Kalman filter. Based
on both analytical and numerical observability analy-
ses of the navigation system, we theoretically verify
that the proposed navigation system is able to achieve
the navigation objectives. We also show comprehen-
sive simulation and real flight experimental results to
verify the effectiveness and robustness of the proposed
navigation system.

Keywords Unmanned aerial vehicle · Vision-based
navigation · Homography · Attitude estimation ·
Observability analysis

1 Introduction

Small-scale unmanned aerial vehicles (UAVs) have
attracted a large amount of interests in both academic
research and industrial applications in recent years [1,
2]. Due to the payload limitations, small-scale UAVs
are widely equipped with light-weight and low-cost
inertial measurement units (IMUs) for navigation pur-
poses. The measurements of low-cost IMUs usually
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are characterized by high noises and large biases. As
a result, pure inertial navigation based on low-cost
IMUs drifts rapidly. In practice, inertial navigation is
usually aided by the global positioning system (GPS)
to achieve drift-free navigation. The GPS signal is,
however, unavailable in indoor and certain outdoor
environments. Vision techniques can be applied to
solve UAV navigation in GPS-denied environments.

Considering there are a large amount of exist-
ing studies on vision-aided navigation of UAVs, we
first clarify the specific problem considered in this
paper. Suppose a small-scale UAV is navigating based
on vision and inertial sensors in an indoor or out-
door GPS-denied environment. For the vision system,
we do not presume maps or landmarks of the envi-
ronment. The vision system should be able to work
robustly even given low-resolution images of near
homogeneous ground scenes such as indoor concrete
floor or outdoor grass field. For the inertial sensors,
the measurement of the low-cost IMU is corrupted
by unknown constant biases. The biases may vary
every time the IMU is initialized. As a result, they
must be estimated online and then compensated in the
navigation algorithm.

The objectives of the navigation system are to esti-
mate and compensate the IMU measurement biases,
and concurrently estimate the attitude, velocity, and
position of the UAV. The attitude and the velocity must
be estimated without drift because they are crucial for
the UAV stabilization control. The position estimation
is, however, not required to be drift-free as neither
known markers nor loop closure of the UAV path is
presumed. But the position estimation should be much
more accurate than that of the pure inertial navigation
such that the UAV is able to perform at least short-term
navigation when the GPS signal is not available.

Vision-based navigation of mobile robots has been
investigated extensively up to now [3–12]. We refer to
[13] for a recent review on this topic. Simultaneous
localization and mapping (SLAM) is a popular tech-
nique for UAV navigation in unknown environments.
SLAM is not employed in our work due to the fol-
lowing reasons. The UAV needs to navigate through
an environment with near homogeneous features such
as indoor concrete floor or outdoor grass field. In the
meantime, the resolution of the image may be very low
(e.g., 160×120 pixels) due to the extremely limited
onboard computational resources. Since the data asso-
ciation and loop closure in SLAM require high-quality

feature tracking and matching, the above two condi-
tions arise critical challenges for SLAM. In addition,
the navigation task considered in this paper requires
drift-free attitude and velocity estimation. In order to
remove the estimation drift, SLAM usually requires
loop closure. But loop closure or any specific path of
the UAV is not presumed in our work.

Compared to SLAM, techniques based optical flow
usually can work robustly under various conditions
such as low-resolution images of near homogeneous
features. When the onboard camera is downward-
looking and the ground is flat, homography matrices
can be calculated from the feature correspondences
between consecutive images. Homography has been
successfully applied to a variety of vision-based UAV
navigation tasks [14–19]. We refer to [20, Section 5.3]
for a good introduction to homography. A homogra-
phy matrix carries certain useful motion information
of the UAV. The motion information can be retrieved
by decomposing the homography matrix [15, 16]. To
avoid homography decomposition, the works in [14,
18] utilized inertial measurements to eliminate the
rotation in the homography and then retrieves the
translational information. The problem setups in [14–
16, 18, 19] are, however, different from ours as the
attitude can be directly measured in their works.

Vision-based attitude estimation for UAVs is also
a hot research topic [21, 22] in recent years. A
recent review on this topic can be found in [22]. The
approaches for vision-based UAV attitude estimation
include horizon detection, vanishing points, and so on.
These approaches, however, are merely designed for
attitude estimation. They are not able to simultane-
ously estimate velocity and IMU measurement biases
as our task requires. The work in [23] analyzed the
observability of visual and inertial data fusion sys-
tems. By assuming multiple point features can be
observed during a time interval, it is shown that the
attitude, velocity, and IMU measurement biases are
observable. The closed-form solutions of these quan-
tities are derived in terms of the visual and inertial
measurements. However, it is assumed that multiple
point features must be observed for at least five times
during the flight. This assumption may not be satis-
fied in practice. For example, consider a UAV flying
forward. If the overlap area between two consecutive
images is less than fifty percent of each image, each
feature can only be observed at most twice during the
flight.
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In this paper, we choose optical flow and homogra-
phy as the fundamental techniques for the vision sys-
tem as they can robustly handle low-resolution images
(e.g., 320×240 or 160×120 pixels) and near homoge-
neous visual features. The two techniques have been
widely applied in vision-aided navigation tasks [14–
19]. However, the existing studies only require veloc-
ity estimation, whereas the navigation task considered
in this paper requires the estimation of velocity, atti-
tude, and IMU measurement biases concurrently. The
velocity estimation can be obtained from optical flow
and homography measurements as in [14–16, 18, 19],
but in order to estimate the attitude and IMU measure-
ment concurrently a new information fusion structure
is demanded. To estimate the attitude (specifically,
pitch and roll), we adopt the assumption that the
ground scene is a level plane and then show that the
attitude information is buried in the homography mea-
surements. The assumption of level ground is valid
for normal indoor rooms [19]. It is also common to
treat the ground as a level plane when the UAV flies
at a relatively high altitude in outdoor [15]. The envi-
ronments that do not satisfy the assumption are not
considered in this work.

Homography decomposition is one popular method
to retrieve the useful information buried in the homog-
raphy measurements. However, the homography mea-
surements are computed from the corresponding fea-
tures between consecutive images. Localization errors
or mismatchings of the features would certainly cause
errors in the homography. In order to well handle
the homography error, we mathematically formulate
it in the system modeling in our navigation system.
More specifically, we design an extended Kalman
filter (EKF) to fuse the measurements from four com-
mon sensors including a low-cost IMU, a downward-
looking monocular camera, a barometer, and a com-
pass. The homography measurement will be directly
input to the EKF without decomposition such that the
homography error can be handled by the EKF in a
proper manner. Compared to the existing studies [14–
19], another contribution of our work is to present
both analytical and numerical observability analyses
of the proposed navigation system. We show that the
attitude, velocity, and IMU biases are all observable
when the UAV speed is nonzero. As a result, it is
theoretically verified that the proposed navigation sys-
tem fulfills all the navigation requirements. Moreover,
simulation results are shown to verify the effectiveness

of the navigation system. Our comprehensive simu-
lation adopts a nonlinear dynamic model of a real
helicopter, a flight control law, and real image process-
ing. Flight experimental results based on a quadrotor
UAV are also presented. Both of the simulation and
experimental results are consistent with the obser-
vability analysis. They successfully verify the effec-
tiveness and robustness of the proposed vision-aided
navigation system.

This paper is organized as follows. The vision-
aided navigation system is designed in Section 2. Then
the observability of the proposed navigation system
is analyzed in Section 3. Simulation and real flight
experimental results are shown in Sections 4 and 5,
respectively. Conclusions are drawn in Section 6.

2 Design of the Vision-aided Navigation System

We first introduce the four types of sensors adopted by
the navigation system. The navigation system contains
two main sensors: an IMU and a monocular cam-
era. The IMU measures the acceleration (also known
as specific force) and angular rate of the UAV. It is
assumed that the IMU measurements are corrupted by
zero-mean Gaussian white noises and constant biases.
Since the biases may vary every time the IMU is
initialized, they must be estimated online and then
compensated in the navigation algorithm. The monoc-
ular camera is directed downward to capture images
of the ground scene during flight. The vision mea-
surements, homography matrices, can be computed
from consecutive images. We assume each entry of
the homography matrix is corrupted by a zero-mean
Gaussian white noise. The noises of different entries
may have different standard deviations. Furthermore,
considering the altitude is crucial for the safety of the
UAV, we assume the altitude can be accurately mea-
sured by a barometer (or any other altitude sensor).
Finally, since it is impossible for vision to estimate
the yaw angle without any global references, the yaw
angle is directly measured using a compass. Note
the yaw angle will generally not affect the stabiliza-
tion of the UAV even if it may not be measured
accurately.

The structure of the navigation system is given in
Fig. 1. The measurements of the four sensors are fused
by a 15th-order EKF. The 15 states of the EKF are:
3-dimensional (3D) position, 3D velocity, 3D attitude
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Fig. 1 The structure of the
proposed vision-aided
navigation system

(roll, pitch, and yaw), 3D acceleration bias, and 3D
angular rate bias. It is worth noting that the IMU mea-
surement enters the EKF through the process model,
whereas the measurements of the vision, barometer,
and compass enter the EKF through the measurement
model. There exist two update rates in the EKF. The
update rate of the process model (i.e., the IMU mea-
surement) is 50 Hz, whereas that of the measurement
model (i.e., the measurements of vision, barometer,
and compass) is 10 Hz. Denote Ts and Tv as the sam-
pling periods of the processing and the measurement
models, respectively. Then Ts = 0.02 sec and Tv =
0.1 sec.

There are three reference frames in the naviga-
tion system: camera frame, body frame, and naviga-
tion frame. For the sake of simplicity, the camera is
installed on the UAV in the way that the axes of the
camera frame are parallel to those of the body frame.
The origins of the two frames are very close. As a
result, it can be assumed that the camera frame coin-
cides with the body frame. The navigation frame is
a local north-east-down frame with its origin located
on the ground plane. As the ground is assumed to be
a level plane, the x-y plane of the navigation frame
coincides with the ground plane. The body and the
navigation frames are denoted by subscripts b and
n, respectively. We use a slash to represent a trans-
formation from one frame to the other. For example,
subscript n/b represents a transformation from the
body frame to the navigation frame.

2.1 Process Model

We next design the process model of the navigation
system.

Let pn = [pn,x, pn,y, pn,z]T ∈ R
3 and vn =

[vn,x, vn,y, vn,z]T ∈ R
3 respectively be the position

and the velocity of the UAV in the navigation frame.
The attitude represented by Euler angles (roll, pitch,
and yaw) is denoted as ρ = [φ, θ, ψ]T ∈ R

3. Denote
ei with i ∈ {1, 2, 3} as the ith column vector of the 3

by 3 identity matrix I3×3. The kinematic model of the
UAV is
⎡
⎣
ṗn
v̇n
ρ̇

⎤
⎦ =

⎡
⎣
vn
Rn/b anb + ge3
Ln/b ωb

b/n

⎤
⎦ , (1)

where anb ∈ R
3 and ωb

b/n ∈ R
3 respectively denote the

acceleration and angular rate of the UAV in the body
frame; and g represents the local gravitational accel-
eration. The transformation matrices Rn/b and Ln/b are
given by

Rn/b =
⎡
⎣

cθ cψ sφsθ cψ − cφsψ cφsθ cψ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ

−sθ sφcθ cφcθ

⎤
⎦ ,

Ln/b =
⎡
⎣
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤
⎦ , (2)

where s∗ = sin(∗), c∗ = cos(∗), and t∗ = tan(∗).
Let anb,IMU and ωb

b/n,IMU be the acceleration and
angular rate measured by the IMU, respectively. Then
we have

anb,IMU = anb − ba − wa, (3)

ωb
b/n, IMU = ωb

b/n − bω − wω, (4)

where wa ∈ R
3 and wω ∈ R

3 are zero-mean Gaus-
sian white noises; and ba = [ba,x, ba,y, ba,z]T ∈ R

3

and bω = [bω,x, bω,y, bω,z]T ∈ R
3 are unknown but

constant measurement biases. Since ba and bω may
change every time the IMU is initialized, they must
be online estimated and compensated. To that end,
the state vector is augmented by adding the unknown
biases. From Eqs. 1, 3 and 4, the nonlinear process
model of the navigation system is obtained as
⎡
⎢⎢⎢⎢⎣

ṗn
v̇n
ρ̇

ḃa

ḃω

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

vn
Rn/b(anb,IMU + ba + wa) + ge3
Ln/b(ω

b
b/n, IMU + bω + wω)

03×1

03×1

⎤
⎥⎥⎥⎥⎦

. (5)
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The process model (5) can be rewritten in a compact
form as

ẋ = f(x, u + b + w), (6)

where

x =

⎡
⎢⎢⎢⎢⎣

pn
vn
ρ

ba

bω

⎤
⎥⎥⎥⎥⎦

, f(x, u + b + w) =

⎡
⎢⎢⎢⎢⎣

fp
fv
fρ
fba

fbω

⎤
⎥⎥⎥⎥⎦

,

u =
[

anb,IMU

ωb
b/n, IMU

]
, b =

[
ba

bω

]
, w =

[
wa

wω

]
. (7)

Let

A = ∂f
∂x

, B = ∂f
∂w

be the Jacobians of f(x, u + b + w) with respect to x
and w, respectively. It can be calculated that

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

03×3 I3×3 03×3 03×3 03×3

03×3 03×3
∂fv
∂ρ

Rn/b 03×3

03×3 03×3
∂fρ
∂ρ

03×3 Ln/b

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎦
15×15

,

B =

⎡
⎢⎢⎢⎢⎣

03×3 03×3

Rn/b 03×3

03×3 Ln/b

03×3 03×3

03×3 03×3

⎤
⎥⎥⎥⎥⎦
15×6

, (8)

where

∂fv
∂ρ

=
[

∂Rn/b

∂φ
anb

∂Rn/b

∂θ
anb

∂Rn/b

∂ψ
anb

]

3×3
,

∂fρ
∂ρ

=
[

∂Ln/b

∂φ
ωb
b/n

∂Ln/b

∂θ
ωb
b/n 03×1

]

3×3
.

2.2 Vision Measurement: Homography

Before giving the measurement model of the naviga-
tion system, we need first analyze the measurement
of the vision system. The onboard camera is directed
downward to capture images of the ground scene dur-
ing flight. The vision measurement, a 3 by 3 homog-
raphy matrix, can be computed from the matching
features of two consecutive images. The detailed algo-
rithm for homography computation can be found in
[20, Section 5.3].

Let t and t0 = t − Tv denote the current and the
last sampling time instances, respectively. Given two
images captured respectively at t0 and t , the corre-
sponding features of the two images are related by a
homography matrix H(t0, t) ∈ R

3×3. Let R(t0, t) ∈
R
3×3 and T(t0, t) ∈ R

3 respectively be the rotation
and translation of the UAV from time t0 to time t .
Denote N(t0) ∈ R

3 as the unit-length normal vector
of the ground plane resolved in the camera frame at
time t0. Let d(t0) > 0 be the distance between the
UAV and the ground plane at time t0. Because the
ground plane is assumed to be horizontal, the ground
plane coincides with the x-y plane of the navigation
frame. Thus, d(t0) is the altitude of the UAV at time
t0. These quantities are all illustrated in Fig. 2. For
ease of presentation, the time variables in H(t0, t),
R(t0, t), T(t0, t),N(t0) and d(t0)will be omitted in the
sequel. Then, the homography H can be expressed as
[20, Section 5.3] [24, Chapter 13]

H = R + 1

d
TNT. (9)

It is notable that the terms R, T, N and d can be
further written in the UAV states as

R = Rb/n(t)RT
b/n(t0), (10)

T = Rb/n(t) [pn(t0) − pn(t)] , (11)

N = Rb/n(t0)e3, (12)

d = −eT3pn(t0), (13)

Fig. 2 An illustration of the quantities R(t0, t), T(t0, t), N(t0)

and d(t0) in H(t0, t)
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where Rb/n denotes the rotation from the navigation
frame to the body frame and Rb/n = RT

n/b. As can be
seen, the homographyH clearly is a nonlinear function
of the UAV states at both time t and time t0. It should
be noted that Eqs. 12 and 13 are valid only if the
ground plane is level. The assumption of level ground
is valid for normal indoor rooms and certain outdoor
environments. It is also common to treat the ground as
a level plane when the UAV flies at a relatively high
altitude in outdoor [15].

Since the navigation system is required to estimate
the attitude and velocity, we next qualitatively ana-
lyze the attitude and velocity information buried in
homography.

1) Attitude Information: Both R and N in Eq. 9
contain certain attitude information of the UAV.
The rotation R represents the incremental atti-
tude of the UAV. It may be useful for estimating
the angular rate but useless for drift-free attitude
estimation. Recall N represents the normal vector
of the level ground plane resolved in the camera
frame. Substituting Eq. 2 into Eq. 12 gives

N =
⎡
⎣

−sθ
sφcθ

cφcθ

⎤
⎦ .

The above expression clearly shows that N con-
tains the roll and pitch angles. As a result, we
will use N instead of R for drift-free attitude esti-
mation in our work. Note the yaw angle is not
contained in the homography. Hence it is impossi-
ble to obtain drift-free estimation of the yaw angle
from the homography. The yaw angle is assumed
to be directly measured by a compass, which is a
commonly used sensor for UAVs. Unlike the pitch
and roll angles, the yaw angle will generally not
affect the stabilization of the UAV even if it may
not be measured accurately.

2) Velocity Information: The term T in Eq. 9 rep-
resents the translation of the UAV from time t0
to t . But it is expressed in the camera frame
according to Eq. 11. We need to transform it
from the camera frame to the navigation frame
in order to obtain the UAV velocity in the nav-
igation frame. Because the transformation relies
on the UAV attitude, drift-free velocity estimation
requires drift-free attitude estimation. Another
issue to note is the altitude d. According to Eq. 9,
the magnitude of T will be inaccurately scaled if

d is inaccurate. Thus drift-free velocity estima-
tion also requires accurate altitude measurements.
Since the altitude is also crucial for the flight
safety of the UAV, we assume it can be directly
measured by a barometer (or any other altitude
sensor).

Up to this point, it is clear that the homography
carries useful information of the UAV attitude and
velocity. The next problem is how to retrieve the infor-
mation. One method is to directly decompose R, T
and N from H [15, 16]. Interested readers may refer
to [20, Section 5.3.3] for homography decomposi-
tion algorithms. The decomposition would give two
physically possible solutions. Prior knowledge of the
UAV motion may be required to disambiguate the two
solutions. Homography decomposition can be avoided
when inertial measurements are available [14, 18].
As will be shown later, the term R can be computed
accurately using the angular rate measurements. The
attitude information in N and the velocity informa-
tion in T can be easily retrieved after eliminating R
from H. But considering that there exist measurement
noises in the homography matrix, the homography
matrix will be converted to a vector and directly input
to the EKF so that the measurement noises can be
handled by the EKF in a proper manner.

2.3 Measurement Model

We next design the measurement model of the vision-
aided navigation system.

Let H and Hvis be the true homography and the
homography estimated by the vision system, respec-
tively. In our navigation system, we convert Hvis ∈
R
3×3 to vecHvis ∈ R

9 and then directly input it into
the EKF. The operator vec converts a matrix to a vector
by stacking its columns below one another. Suppose
each entry of Hvis is corrupted by a zero-mean white
noise. Then the nonlinear measurement model for the
vision system is

yvis = vecHvis = vecH + nvis,

where nvis ∈ R
9 is assumed to be a zero-mean

Gaussian white noise.
It should be noted that vecH is a nonlinear function

of both x(t) and x(t0) according to Eqs. 9–13. Since
the state vector of the process model is x(t), we must

J Intell Robot Syst (2016) 81:531–549
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express vecH as a nonlinear function of x(t) only. Oth-
erwise, the state vector of the EKF must contain both
x(t) and x(t0), and the EKFwill be not only high-order
but also very complicated. To that end, we propose the
following approximations to express vecH as a func-
tion of x(t) only. The approximations may result small
errors in the final state estimates, but they would not
cause drift in these estimates.

1) Approximating R: The term R in Eq. 10 can be
computed from the angular rate measured by the
IMU. To see that, the dynamics of Rb/n is given
as below:

Ṙb/n = −
[
ωb
b/n

]
× Rb/n, (14)

where the operator [·]× converts a 3D vector to
the associated skew-symmetric matrix. The term
R can be obtained by substituting the solution
of Eq. 14 into R = Rb/n(t)RT

b/n(t0) as shown
in Eq. 10. Equation 14, however, has no closed-
form solutions unlessωb

b/n is (piecewise) constant.
Since the sampling period Tv = 0.1 sec is short,
the angular rate can be treated as constant during
the time interval [t0, t]. Then R can be approxi-
mated by

R ≈ exp

{
−

[
ωb
b/n(t)

]
× Tv

}

≈ exp

{
−

[
ωb
b/n, IMU

(t)
]
× Tv

}
. (15)

Remark 1 The approximation error of Eq. 15
is caused by firstly the measurement errors in
ωb
b/n, IMU(t) and secondly the assumption that

ωb
b/n is constant during [t0, t]. But because the

time interval Tv = 0.1 sec is short and the
measurement errors in ωb

b/n, IMU(t) are small, the
approximation given by Eq. 15 can be very accu-
rate. This can be verified by numerical simulation
results.

Remark 2 The matrix exponential on the right
hand side of Eq. 15 can be rigorously com-
puted by Rodrigues’ rotation formula [20, Theo-
rem 2.9, p. 27].

1. Approximating T: Assume that the UAV velocity
is constant during the time interval [t0, t]. Then

we have pn(t) − pn(t0) ≈ vn(t)Tv and hence T in
Eq. 11 can be approximated by

T ≈ −Rb/n(t)vn(t)Tv. (16)

2) Approximating N: Recall N is the normal vector
of the ground plane at time t0. Since Rb/n(t0) =
RTRb/n(t), the vector N in Eq. 12 can be approx-
imated by

N ≈ RTRb/n(t)e3, (17)

where R is given by Eq. 15.
3) Approximating d: Recall d is the altitude of the

UAV at time t0. Since pn(t) − pn(t0) ≈ vn(t)Tv,
we can approximately write d in Eq. 13 as

d ≈ −eT3 [pn(t) − vn(t)Tv] . (18)

Based on the above approximations of R, T, N and
d, we are able to express vecH as a nonlinear function
of x(t) only. With a little abuse of notation, rewrite the
state vector of the EKF as x = [x1, ..., x15]T. Then the
Jacobian of vecH with respect to x is

Cvis = ∂vecH
∂x

=
[
∂vecH
∂x1

, . . . ,
∂vecH
∂x15

]

9×15

=
[
vec

∂H
∂x1

, . . . , vec
∂H
∂x15

]

9×15
, (19)

where ∂H/∂xi for i = 1, . . . , 15 is given by

∂H
∂xi

= − 1

d2

∂d

∂xi

TNT + 1

d

[
∂T
∂xi

NT + T
(

∂N
∂xi

)T
]

.

(20)

The partial derivatives on the right hand side of Eq. 20
can be calculated from Eqs. 16, 17 and 18.

In addition to the vision measurement model, the
measurement models for the compass and the barom-
eter are respectively given by

ycomp = ψ + ncomp = Ccompx + ncomp,

ybaro = pn,z + nbaro = Cbarox + nbaro,

where ncomp ∈ R and nbaro ∈ R are assumed to be
zero-mean Gaussian white noises and

Ccomp = [
01×3 01×3 eT3 01×3 01×3

]
1×15 , (21)

Cbaro = [
eT3 01×3 01×3 01×3 01×3

]
1×15 . (22)
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To sum up, the nonlinear measurement model of the
vision-aided navigation system is

y = h(x) + n, (23)

where

y =
⎡
⎣

yvis
ycomp

ybaro

⎤
⎦ , h(x) =

⎡
⎣
vecH

ψ

pn,z

⎤
⎦ , n =

⎡
⎣

nvis
ncomp

nbaro

⎤
⎦ .

(24)

The Jacobian of h(x) with respect to x is given by

C = ∂h
∂x

=
⎡
⎣

Cvis

Ccomp

Cbaro

⎤
⎦
11×15

. (25)

2.4 Extended Kalman Filtering

We have established the continuous process model (6)
and the measurement model (23). The corresponding
Jacobians have been given in Eqs. 8 and 25. Now it is
ready to apply the EKF to fuse the measurements of
the IMU, vision, compass, and barometer. The details
of the implementation of the EKF are omitted here as
they are standard procedures.

In practice, lighting condition changing or insuffi-
cient features of the ground scene can cause extremely
large homography estimation errors. These inaccurate
homography estimates must be detected and rejected.
Otherwise, they may cause large errors or even insta-
bility of the EKF. Motivated by that, we adopt inno-
vation filtering [25, Section 15.3] in our navigation
system. Innovation filtering is also called spike filter-
ing or measurement gating. Its basic idea is to compare
the real measurement given by sensors with the pre-
dicted one given by EKF. If the discrepancy between
them exceeds a threshold, then the real measurement
for that iteration is rejected. The innovation filter is
straightforward to implement and requires little com-
putational resource. Details of innovation filtering
are omitted here due to space limitations. Interested
readers may refer to [25, Section 15.3].

3 Observability Analysis of the Vision-aided
Navigation System

In this section, we present the observability analysis
of the proposed navigation system. The purpose of
the observability analysis is to identify the observable

quantities and theoretically verify if the proposed nav-
igation system is able to fulfill all the requirements.

Since process model (6) and measurement model
(23) are highly nonlinear, we only consider the observ-
ability of linearized systems. In particularly, we con-
sider two representative linearization conditions: hov-
ering and straight and steady level (SSL) flight. Note
hovering is a flight mode only possible for rotor-
crafts such as quadrotor UAVs. As will be shown later
the observability analysis based on the linearized sys-
tems is consistent with the numerical simulation and
experimental experiments.

When the UAV is in SSL flight or hovering condi-
tion, the UAV states are approximately given by

φ = θ = ψ = 0,

ωb
b/n = 03×1,

anb = −ge3,

vn = κe1, (26)

where κ ≥ 0 represents the UAV speed. When κ = 0,
the UAV is hovering. As will be shown later, the value
of the UAV speed κ can affect the observability of the
system. Due to symmetry, the value of the yaw angle
has no influence on the observability analysis. For the
sake of simplicity, we choose ψ = 0.

Substituting condition Eq. 26 into Eq. 8 gives

A =

⎡
⎢⎢⎢⎢⎢⎣

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 g[e3]× I3×3 03×3

03×3 03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

⎤
⎥⎥⎥⎥⎥⎦

.

Substituting condition Eq. 26 into Eqs. 15, 16 and 17
yields R = I3×3, T = −Tvvn, and N = e3, respec-
tively. Further substituting these values into Eq. 19
gives

Cvis = 1

α

⎡
⎣
03×3 03×3 −κe1eT2 03×3 03×3

03×3 03×3 κe1eT1 03×3 03×3

03×3 I3×3 κ[e1]× 03×3 03×3

⎤
⎦ . (27)

where α = −d/Tv. While calculating (27), we omit
the small terms containing T 2

v /d2 or Tv/d
2 consid-

ering Tv is small. Recall Ccomp and Cbaro are given
in Eqs. 21 and 22. Then C can be obtained by
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substituting Eqs. 21, 22 and 27 into Eq. 25. The
observability matrix is given by

O =
[
CT, (CA)T, · · · , (CA14)T

]T
.

We next analyze the rank of the observability matrix
under condition (26).

3.1 Case 1: SSL Flight

We first consider the SSL flight condition with κ > 0.
It is easy to obtain the observability matrix in this case
as

OSSL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×3 03×3 −κe1eT2 03×3 03×3

03×3 03×3 κe1eT1 03×3 03×3
03×3 I3×3 κ[e1]× 03×3 03×3
01×3 01×3 αeT3 01×3 01×3

αeT3 01×3 01×3 01×3 01×3
− − − − − − − − − − − − − − −
03×3 03×3 03×3 03×3 −κe1eT2
03×3 03×3 03×3 03×3 κe1eT1
03×3 03×3 g[e3]× I3×3 κ[e1]×
01×3 01×3 01×3 01×3 αeT3
01×3 αeT3 01×3 01×3 01×3

− − − − − − − − − − − − − − −
03×3 03×3 03×3 03×3 g[e3]×
01×3 01×3 01×3 αeT3 01×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
26×15

.

(28)

The scale factor 1/α and zero rows of OSSL are omit-
ted as they do not contribute to the rank of OSSL. By
examining the row rank, it is straightforward to see

rank(OSSL) = 13.

Hence there are two unobservable modes. In order
to identify the two unobservable modes, we need to
determine the unobservable subspace (i.e., the null
space of OSSL). By observation, we obtain an orthog-
onal basis of the unobservable subspace as

Null(OSSL) = Range

⎡
⎢⎢⎢⎢⎣

e1 e2
03×1 03×1

03×1 03×1

03×1 03×1

03×1 03×1

⎤
⎥⎥⎥⎥⎦
15×2

.

The above equation suggests that the two unobserv-
able modes are

xunobsSSL = {pn,x, pn,y}.
Based on the above analysis, we have the following
conclusion. In the case of SSL flight, the position (pn,x

and pn,y) is unobservable, but the velocity, attitude,

and IMU biases are all observable. In fact, this is the
best situation we can have because it is impossible
to make the position observable without any global
references such as maps.

3.2 Case 2: Hovering

We now consider the hovering condition with κ = 0.
By substituting κ = 0 into Eq. 28, OSSL degenerates
to

Ohover =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×3 I3×3 03×3 03×3 03×3
01×3 01×3 αeT3 01×3 01×3

αeT3 01×3 01×3 01×3 01×3
− − − − − − − − − − − − − − −
03×3 03×3 g[e3]× I3×3 03×3
01×3 01×3 01×3 01×3 αeT3
01×3 αeT3 01×3 01×3 01×3

− − − − − − − − − − − − − − −
03×3 03×3 03×3 03×3 g[e3]×
01×3 01×3 01×3 αeT3 01×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
14×15

.

Note Ohover is merely a special case of OSSL. By
counting the row rank, it is straightforward to see

rank(Ohover) = 11.

Hence there are four unobservable modes. Clearly
the observability of the system degenerates when the
UAV speed is zero. By observation, we can identify an
orthogonal basis of the null space of Ohover as

Null(Ohover) = Range

⎡
⎢⎢⎢⎢⎣

e1 e2 03×1 03×1

03×1 03×1 03×1 03×1

03×1 03×1 e1 e2
03×1 03×1 −ge2 ge1
03×1 03×1 03×1 03×1

⎤
⎥⎥⎥⎥⎦
15×4

,

from which the unobservable modes can be deter-
mined as

xunboshover = {pn,x, pn,y, φ − gba,y, θ + gba,x}.
Therefore, the position (pn,x and pn,y) is still unob-
servable in the case of hovering. Moreover, φ − gba,y

and θ + gba,x are also unobservable. In other words,
φ and θ as well as ba,x and ba,y become unobserv-
able when the UAV speed is zero. This observation
can be well explained by using the homography for-
mula (9): the attitude information of the pitch and roll
angles originally comes from the normal vector N in
the homography; when the UAV speed is zero, the
translational vector T in Eq. 9 is zero; consequently
the term TNT will vanish and the attitude information
carried by N cannot be retrieved. Additionally, it can
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also be seen from Eq. 27 that the vision measurement
degenerates to the velocity measurement when κ = 0.

3.3 Numerical Rank Analysis

In the preceding subsections, we analytically deter-
mined the rank of the observability matrix. In fact,
we can also numerically analyze the observability
by examining the singular values of the observabil-
ity matrix. The numerical analysis can provide us
new insights into the observability of the navigation
system.

Denote the singular values of OSSL as σ1 ≥ · · · ≥
σ15 ≥ 0. When κ > 0 we have rank(OSSL) = 13
and hence σ12 ≥ σ13 > 0 = σ14 = σ15; when
κ = 0 we have rank(Ohover) = 11 and hence σ12 =
σ13 = σ14 = σ15 = 0. Clearly if κ → 0 we would
have σ12 → 0 and σ13 → 0. Thus it is reasonable to
choose the ratio σ1/σ13 as an indicator to evaluate the
rank of OSSL: if σ1/σ13 is very large, OSSL is on the
verge of rank deficiency, and the rank of OSSL almost
degenerates to that of Ohover. Therefore, if σ1/σ13 is
very large, the observability of θ and φ would become
weak though they are still observable. The term weak
as used here intuitively means that the estimation of
pitch and roll angles may converge slow.

The UAV speed κ is not the only parameter that
affects σ1/σ13. In addition to κ , OSSL is also param-
eterized by the UAV altitude d.1 Figure 3 shows how
κ and d affect σ1/σ13. It is observed from Fig. 3 that
σ1/σ13 is large when κ is small or d is large. In other
words, the observability of θ and φ is weak when
the UAV speed is slow or the altitude is high. This
observation can be well explained by the homography
formula (9): when the speed is slow or the altitude
is large, the term TNT/d would almost vanish, which
will cause difficulty to recover the attitude informa-
tion in N. This observation can also be explained from
a more fundamental point of view, which involves
the bearing-only property of vision systems. Note
monocular cameras are inherently bearing-only sen-
sors because the depth information of the scene is lost
during perspective projection when forming an image.
An image inherently only carries the bearings of the
ground features. A homography is computed from two

1The altitude d is contained in α = −d/Tv. The vision sam-
pling period Tv can also affect σ1/σ13. Here we only consider
Tv = 0.1 sec.

Fig. 3 The ratio σ1/σ13 is large when κ is small or d is large

consecutive images. If the two images are captured
from very different angles relative to the ground fea-
tures, certain useful information (pitch and roll angles
in our case) can be recovered from the bearings car-
ried by the two images. Otherwise, if the UAV speed
is slow or the UAV altitude is large, the two consecu-
tive images are almost captured from the same angle
relative to the ground features. Then the two images
would not provide much new information other than
bearings. Hence the pitch and roll angles become dif-
ficult to estimate. One may refer to [26–29] on the
interesting properties of bearing-only measurements.

4 Numerical Simulation

In this section, we show comprehensive simulation
results to verify the effectiveness of the proposed
vision-aided navigation system.

4.1 Simulation Setup

The structure of our simulation program is shown
in Fig. 4. The simulation adopts a 6-DOF nonlinear
unmanned helicopter model and a flight control law,
the details of which can be found in [1, 30]. Given a
trajectory reference, we are able to compute the true
states of the UAV. Then we add noises and biases to
the true states to generate the simulated measurements
of the sensors. Table 1 shows the values of the biases
and the standard deviations of the noises.

In our simulation, the homography matrices are
computed from partially synthetic images. We have
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Fig. 4 Block diagram of
the simulation

developed a program using Matlab and C++ to gen-
erate these synthetic images. In particular, a satellite
image (3384×2766 pixels) is used to simulate the
ground scene. By setting appropriate intrinsic param-
eters of the downward-looking camera, the small
images (320×240 pixels) of the ground scene are
generated according to the position and attitude of
the UAV. The small images are used to simulate the
images captured by the onboard camera. Samples of
the generated images are given in Fig. 5.

We employ OpenCV 2.3.1 in our work to real-
ize real-time vision processing. The following is
the procedure to compute the homography from
two consecutive images: 1) extracting feature points
in each image (OpenCV function goodFeaturesTo-
Track), 2) matching feature points of the two images
(OpenCV function calcOpticalFlowPyrLK), and 3)
computing homography from feature correspondences
(OpenCV function findHomography). Note the sec-
ond largest singular value of a homography equals
one [20, Lemma 5.18, p. 135]. Hence the homography
given by function findHomography should be normal-
ized before usage. In order to improve the homog-
raphy estimation accuracy, we may utilize a number
of auxiliary functions such as histogram equaliza-
tion (OpenCV function equalizeHist) and sub-pixel

feature location refinement (OpenCV function corner-
SubPix).

4.2 Simulation Results

The trajectory reference of the UAV in the simula-
tion is a sinusoidal wave with constant yaw angle and
altitude. This is a typical maneuvering flight motion
called slalom [1]. Figure 5 shows samples of the gen-
erated images. Homography matrices are computed
from each pair of consecutive images. Since the true
states of the UAV are known in the simulation, true
homography matrices can also be computed. Thus
we can obtain the errors of the homography esti-
mated by vision (see Fig. 6). As can be seen, the
error of each entry of the homography is zero-mean
and can be approximately assumed as a zero-mean
Gaussian white noise. Most of the homography esti-
mates are accurate though there exist a number of
spike measurements whose errors are much larger than
the others. In practice, these spikes can be effectively
eliminated by innovation filtering.

The UAV states are shown in Fig. 7. The true UAV
states are indicated by the green solid lines; the esti-
mated UAV states are indicated by the red dotted lines;
and the ones estimated by pure inertial navigation are

Table 1 Noise standard
deviation and biases in the
simulation

Measurement Noise standard deviation Bias

Acceleration (m/s2) 0.05 (for each entry) 0.03g (for each entry)

Angular rate (rad/s) 0.02 (for each entry) π/180 (for each entry)

Yaw angle (degree) 1 None

Altitude (m) 2 None
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Fig. 5 Samples of the generated images in the simulation. The size of each image is 320×240 pixels. The arrows in the images
represent the detected optical flow

indicated by the cyan dashed lines. From Fig. 7, we
obtain the following important observations.

1) Due to the large biases in the acceleration and
angular rate measurements, the UAV states esti-
mated by pure inertial navigation drift very fast.

2) The attitude and the velocity can be estimated
by the vision-aided navigation system accurately
without drift as shown in Fig. 7c-d.

3) The biases of the IMU measurements can be
estimated accurately as shown in Fig. 7e-f.

4) Vision-aided navigation can significantly reduce
the position drift as shown in Fig. 7a-b though
the position (pn,x and pn,y) estimate still drifts
slowly.

The above observations are consistent with our
observability analysis in Section 3.1. In addition, we
have also conducted simulation under other flight
conditions. These results are omitted here due to
space limitations. It is observed from these simulation
results that the convergence of the estimates of θ , ψ ,

Fig. 6 The homography
error in the simulation

J Intell Robot Syst (2016) 81:531–549



543

Fig. 7 Simulation results
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ba,x and ba,y would be slow when the UAV altitude is
high or the UAV speed is slow. This observation is also
consistent with the numerical observability analysis in
Section 3.3.

5 Flight Experiments

In this section, we present flight experimental results
to verify the effectiveness and robustness of the pro-
posed navigation system.

5.1 Experimental Platform

The flight experimental platform is an autonomous
quadrotor UAV (see Fig. 8) constructed by the NUS
UAS group. The key specifications of the quadro-
tor UAV are listed in Table 2. The structure of
the onboard systems is given in Fig. 9. The main
onboard systems of this platform are introduced as
below.

5.1.1 Navigation Sensors

The quadrotor UAV is equipped with a navigation
sensor, IG-500N, which contains an IMU, a GPS
receiver and a barometer. The navigation sensor can
provide a variety of measurements such as accel-
eration and angular rate. It can also give drift-free

Fig. 8 The quadrotor UAV and the flat grass field for flight
experiments

Table 2 Key specifications of the quadrotor UAV

Specifications Quadrotor UAV

Dimensions 61 × 61 × 35 cm

No-load weight 1 kg

Maximum takeoff weight 3 kg

Power source Lithium polymer battery

Flight endurance 15 mins

measurements of the UAV states in the presence of
GPS. The acceleration, angular rate, yaw angle, and
altitude given by the navigation sensor are treated as
measurements for the vision-aided navigation system.
The update rate of the acceleration and angular rate
is 50 Hz, while that of the yaw angle and altitude
is 10 Hz. The UAV states given by the navigation
sensor are treated as the ground truth in the flight
experiments.

The gyro data used in the experiment has been
filtered by the IMU with temperature and gyro-G
effect compensation. The bias of the gyro used in
our experiment is very small but not zero, and it
is around 0.00175 rad/s according to the manual
of the sensor. The barometer is fully calibrated and
temperature compensated. It is fused with IMU to
obtain smooth and high update rate output. Although
the well calibrated barometer still has bias which
will theoretically cause errors in the velocity esti-
mation, the bias is small compared to the altitude
of the UAV and will not affect the system perfor-
mance significantly. As a result, the small bias in
the barometer measurement is simply ignored in the
experiment.

5.1.2 Flight Control System

The primary tasks of the flight control system include
collecting measurements from various sensors, exe-
cuting the proposed navigation algorithm and per-
forming flight control. The flight control system also
communicates with the ground control station for real-
time monitoring and command issuing. The flight
control computer is a Gumstix Overo Fire embed-
ded computer with a 720 MHz processor. The nav-
igation and control algorithms run at 50 Hz in the
flight control computer. In order to improve the

J Intell Robot Syst (2016) 81:531–549



545

Fig. 9 The structure of the
onboard systems. The
15th-order EKF is executed
in real-time in the control
computer

real-time performance, the original Linux operat-
ing system in the Gumstix is replaced by a QNX
Neutrino real-time operating system. For details of
the onboard software system and the ground con-
trol station, please refer to [31, 32]. The quadrotor
platform is able to perform autonomous hovering
and way point following. For details of the model-
ing and control of the quadrotor UAV, please refer
to [19].

5.1.3 Vision System

The onboard vision system consists of a monocular
camera and an embedded vision computer. The weight
of the entire vision system is about 350 g. The camera
(Pointgrey Firefly) is directed downwards to capture
images of the ground scene during flight. It captures
images of 160×120 pixels at 10 frame per second.
The parameters of the camera such as exposure and
shutter speed can be customized for outdoor applica-
tions. A wide-angle lens is connected to the camera
to enhance the image quality. The intrinsic parame-
ters of the camera have been calibrated before flight
experiments. To process the images captured by the
camera, a light-weight embedded computer (fit-PC2i)

is adopted as the vision computer. The vision com-
puter contains an Intel Atom Z530 1.6 GHz CPU,
a solid-state drive (SSD), 1 GB memory, and four
USB 2.0 high-speed ports. Compared to hard disk
drives, the SSD is less susceptible to physical vibra-
tion during flight. The image and vision processing
algorithms are implemented in a Linux operating sys-
tem. The camera and the vision computer are con-
nected through a USB 2.0 port. Homography matrices
are computed in the vision computer at 10 Hz and sent
to the flight control computer through a RS232 full
UART.

The vision algorithm for computing homography
has already been discussed in the last paragraph
of Section 4.1. But since the onboard computa-
tional resource is very limited, we need to adjust the
vision algorithm to realize real-time onboard vision
processing. For example, the image size in simu-
lations is 320×240 pixels, but we need to reduce
the image size to 160×120 pixels in the flight
experiments. Some time-consuming functions such as
sub-pixel feature location refinement must also be
removed. Doing this can accelerate the vision algo-
rithms but also scarify the accuracy of the estimated
homography.

Fig. 10 Samples of the
images captured by the
onboard camera in the flight
experiment. The size of
each image is 160×120
pixels. The arrows in the
images represent the
detected optical flow
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Fig. 11 The homography
error in the flight
experiment

5.2 Experimental Results

The flight experiments are conducted in a flat grass
field (see Fig. 8). Samples of the images of the
grass field captured by the onboard camera are
shown in Fig. 10. As can be seen, the quality of
the visual features is low. But feature correspon-
dences between each pair of consecutive images
can still be smoothly detected based on optical
flow.

In the flight experiment, the UAV flies autono-
mously to follow the pre-specified way points. The
UAV states estimated by the vision-aided naviga-
tion system are utilized for autonomous flight con-
trol. According to the position and attitude provided
by GPS/IMU, we can compute the true homog-
raphy matrices, based on which the errors of the
onboard estimated homography can be obtained
(see Fig. 11). As can be seen, the error of each
entry of the homography can be approximately
assumed as a zero-mean Gaussian white noise.
The homography errors in the flight experiment
are much larger than those in the simulation. But
the vision-aided navigation system still performs
well.

The closed-loop flight experimental results are
shown in Fig. 12. We obtain the following conclusions
from the experimental results.

1) The vision-aided navigation can provide accu-
rate and drift-free estimation of the velocity and
attitude. The UAV can be successfully stabilized
based on the vision-aided navigation.

2) The ground truth for the IMU biases are not
available. But it can be implied that these biases
are accurately estimated. Note the estimated
biases are compensated in the navigation algo-
rithm. If the estimates of the biases are inac-
curate, the position, velocity, and attitude given
by the vision-aided navigation system will drift
rapidly.

3) The position estimate drifts slowly.

The above observations are consistent with the observ-
ability analysis in Section 3 and the simulation results
in Section 4.

Several remarks on the experimental results are
given here. First, the 2D trajectory is plotted against
the satellite image of the flight experimental field in
Fig. 12a. Note the satellite image is only used for illus-
tration but not used for navigation. Second, the z-axis
velocity vn,z given by the vision-aided navigation is
inconsistent with the GPS data as shown in Fig. 12c.
In fact, the vision-aided navigation correctly estimates
vn,z because the pn,z can be directly measured by
the barometer. The inconsistency is caused by certain
technical problems which will be solved in the future.
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Fig. 12 Closed-loop autonomous flight experimental results
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6 Conclusions

This paper proposed a novel homography-based
vision-aided inertial navigation system to provide
drift-free velocity and attitude estimation for UAV sta-
bilization control. The observability analysis of the
proposed navigation system has shown that the veloc-
ity, attitude, and unknown biases are all observable
when the UAV speed is nonzero. Comprehensive sim-
ulations and flight experiments have verified the effec-
tiveness and robustness of the proposed navigation
system. Since we assume that there is no map of the
environment, the position estimation still drifts though
the drift has been significantly reduced compared to
pure inertial navigation. In practice, the proposed nav-
igation system can be implemented independently. It
can also be integrated with maps or aerial images to
achieve drift-free position estimation.
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