
International Journal of Robotics and Automation, Vol. 26, No. 1, 2011

DEVELOPMENT OF A COMPREHENSIVE

SOFTWARE SYSTEM FOR IMPLEMENTING

COOPERATIVE CONTROL OF MULTIPLE

UNMANNED AERIAL VEHICLES

Xiangxu Dong,∗ Ben M. Chen,∗ Guowei Cai,∗ Hai Lin,∗ and Tong H. Lee∗

Abstract

In this work, we focus on establishing a framework and developing

a comprehensive software platform, which is capable of realizing the

cooperative control for multiple unmanned aerial vehicles (UAVs).

An efficient and flexible framework is adopted for cooperative control

law design, on which we build up a software platform consisting of

an onboard real-time software system for UAVs and a ground control

station (GCS). Such a platform employs a distributed architecture

to facilitate task deployment, efficient monitoring and commanding

the UAVs via the ground station. Hardware-in-the-loop simulation

and practical cooperative flight experiments have been conducted to

verify the efficiency of the overall software system.

Key Words

Unmanned aerial vehicle, cooperative control, formation flight, real-

time systems, software systems

1. Introduction

The prevalent military and civilian deployment of un-
manned vehicles has been clearly seen in the last two to
three decades. Unmanned vehicles can outperform hu-
mans in many applications and protect humans efficiently
in various dangerous situations. Working as a group, for
unmanned systems, will greatly enhance their efficiency
and introduce new working paradigms in the unmanned
systems. As such, research in the field of control and
coordination for multiple unmanned autonomous vehicles
has aroused great interest recently. Representative topics
include universal flight control system design [1], local-
ization [2], mapping and exploration [3, 4], surveillance
[5], search and rescue [6], object transportation and
manipulation [7, 8].

With the recent technology boosting in sensor, com-
munication and computation, various components which

∗ Department of Electrical & Computer Engineering, National
University of Singapore, Singapore 117576; e-mail: {dong07,
bmchen, tslcaig, elelh, eleleeth}@nus.edu.sg

Recommended by Prof. Z. Qu
(10.2316/Journal.206.2011.1.206-3417)

are necessary for onboard computer system construction
have become increasingly smaller and more powerful than
before. However, there are still many challenging problems
in the cooperative unmannied aerial vehicle (UAV) control
[29]. As such, many platforms for demonstrations of the
cooperative control of multi-vehicles have been developed
worldwide. For instance, the research group in MIT [10, 11]
has demonstrated the formation flight with the receding
horizon framework. The researchers in Stanford University
[12] have used the quad rotor helicopters as their testbed
STARMAC. At University of Pennsylvania [13], a hybrid
system approach is used for the cooperative control among
multiple fixed-wing UAVs. The work of [23] has man-
aged to exchange information with an aircraft-to-aircraft
ad-hoc wireless network. At Brigham Young University,
the MAGICC UAVs [14] are developed for the multiple-
vehicle research. In all, a reliable, distributed and scalable
multiple-UAV platform is preferred [15].

In this paper, the concentration is on the control and
coordination of a group of UAVs. More specifically, we
focus on the formation flight of multiple UAVs. Taking
our single-UAV-based software system documented in [16]
as the baseline, we in this work aim to establish an ef-
ficient framework for multiple-UAV coordination control
and build up a comprehensive software system to realize
the reliable coordination in practical flight tests, based
on our self-constructed Raptor 90 helicopter platforms,
namely HeLion and SheLion (see Fig. 1).

The outline of this paper is as follows. First, we in-
troduce the framework for coordinate control of multiple
UAVs and explain the approach of performing formation
flight cooperative control under such a framework in Sec-
tion 2. In Section 3, the software system for realizing the
UAV coordination control is presented. Its two key com-
ponents, the onboard software and ground control station,
are both addressed. In Section 4, we present the hardware-
in-the-loop simulation and practical flight test results and
detailed analysis of the coordination flight. Finally, we
draw some conclusion remarks in Section 5.

49

Figure 1. Raptor 90 helicopter, HeLion.

2. Framework of Coordination Control

In this section, we propose a modular framework for co-
operative control of the multiple-UAV system for the for-
mation flight. A typical scenario of formation flight is
shown in Fig. 2, which consists of multiple UAVs and a
solo ground control station. Each UAV is required to
communicate with other UAVs and interact with the GCS
simultaneously. To guarantee the reliability of formation
flight, a simple but efficient cooperative control framework
is compulsory. In what follows, we first introduce the
general UAV coordination control architecture, and then
zoom into the details of one specific implementation, i.e.,
the leader–follower based formation flight.

2.1 General Architecture for Coordination Control

The general architecture of the coordination control for
multiple UAVs is depicted in Fig. 3. It is organized in

Figure 2. Formation flight scenario.

Figure 3. Architecture for coordinated control among mul-
tiple UAVs.

hierarchical layers to accommodate practical requirements.
It consists of three layers and the highest layer coordinates
the dynamic transitions from one state to another in the
overall coordination task. The idea of the adopted ar-
chitecture for our application-oriented project comes from
[17]. The detailed description for these three layers are
presented as follows:
1. The lowest layer focuses on each single UAV unit.

Specifically, S represents the dynamic model of the
individual UAV, with the control input vector ui and
the measurable output vector yi, and K is the repre-
sentation of the local controller for the UAV. It should
be noted that the inputs to K are the coordination
variable ξ and output yi and the outputs of K are the
coordinate performance variable zi. The coordinate
performance may have different definitions according
to the coordinate behaviours, such as formation flight
we address later.

50

2. The middle layer of the overall architecture is the
coordinator C. It receives coordinate performance
input vector from some (or all) UAVs, then processes
and encapsulates the performance evaluation result
vector zC to the top layer according to the coordination
mechanism. It adjusts the coordination mechanism
based on the performance feedback yG from top layer.
The output of coordinator ξi behaves as the interaction
between the local UAV and the global team and can
be broadcasted or multicasted to the UAV team.

3. G, which is a discrete-event system, is located at the
highest level. It acts as a supervisor to regulate
the performance of coordination for the multiple-UAV
system. It receives the performance vector from the
coordinator and generates the inputs yG for the
coordinator.

It is clear to see that such generalized coordination
control architecture is suitable for various control strate-
gies. For example, the lowest layer can hire different flight
control laws to realize automatic control for a single UAV;
the coordinator can choose different coordination mecha-
nism based on the specific coordination behaviours such
as rendezvous, collision avoidance, and dispersion. The
coordination mechanism determines how the subtasks are
correctly transferred from one subtask to another in the
perspective of system overall behaviours. In summary, the
presented coordination architecture proposed in Fig. 3 is a
flexible and modular framework suitable for exploring real-
time cooperative behaviours. Next, we focus on a specific
coordination behaviour, formation flight of multiple UAVs.

2.2 Formation Flight

With the general architecture in hand, we here proceed
to carry out study on a specific case: formation flight for
multiple UAV helicopters. Leader–follower approach is
adopted in our work and its general scheme is illustrated
in Fig. 4. xg, yg, and zg represent the North-East-Down
frame. xw, yw, and zw represent the wind frame associated
with each individual UAV. The position of the leader is
denoted by the point L, while the points D and A denote
the desired position and actual position of the follower,
respectively. The distance vector �RLW , derived from the
difference between �RW and �RL, denotes the distance off-
set between the follower and the leader. We define the
formation requirements such that fc, lc, and hc meet the
distance offset specifications. fc, lc, and hc represent the
longitudinal, lateral and vertical distance offset between
the leader and the follower. In this scenario, the coordina-
tion is achieved through the leader UAV and coordination
data is from the leader, with ξ=xi. For this specific case,
we implement the above mentioned coordination control
architecture as follows.

2.2.1 UAV Helicopters

Two UAV helicopters, namely HeLion and SheLion, are
adopted as the platform. With the onboard computer
stacks equipped, we have successfully realized stable

Figure 4. Leader–follower formation geometry.

automatic flight tasks such as vertical takeoff, hover, path
tracking and landing for each of single UAV helicopter.

The overall control architecture is shown in Fig. 5. It
consists of two parts: the outer-loop controller and the
inner-loop controller. The inner-loop is to realize stable
attitude control and outer-loop is to provide reference sig-
nals for inner-loop to realize trajectory tracking. There-
fore, for the control of formation flight, the outer-loop can
be regarded as a reference path generator. As such, the
outer-loop serves as the interface between the team coor-
dination task and local task. The dispatched task from
the coordinator is executed by the outer-loop. The task
of the inner-loop controller is to follow the output of the
outer-loop controller. Interested readers on the controller
design details are referred to [18].

2.2.2 Coordinator

For the coordinator in formation flight, we define the the
formation state vector of the overall UAV group as

xF = [xF1,xF2, . . . ,xFn]
T (1)

where xFi is the state vector for the ith UAV and given by

xFi = [x, y, z, c]T (2)

Here x, y, z, and c represent the longitudinal position,
lateral position, altitude and heading angle in north-east-
down (NED) frame, respectively.

Performance indices are further defined. Specifically,
we first consider the constraint on collision avoidance,
which is critically important to ensure the safety of the
UAV group. For our UAV helicopter platforms, the Eu-
clidean distance between two adjacent UAV helicopters,
Ea(xFi,xFj), is first adopted. The second important per-
formance index is the heading angle consistency of the UAV
members, which is denoted as A(xFi,xFj). Finally, the
Euclidean distance between the current position and refer-
ence position for the ith UAV, that is, Eb(xFi,xrFi), is also

51

Figure 5. The structure of the UAV control system.

taken into account. We then summarize the performance
triplet for each UAV as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Eai(xFi,xFj) =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

Ebi(xFi,xrFi) =
√

(xi − xri)
2 + (yi − yri)

2 + (zi − zri)
2

Ai(xFi,xFj) = |ci − cj |
(3)

where xrFi is the reference position for the ith UAV. Our
current implementation case involves only two UAV heli-
copters, UAV2 is the leader while UAV1 is the follower. In
this case, the performance indices encapsulated zC for the
coordinator are modified as

zC :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ea = Ea1

Eb = [Eb1, Eb2]
T

A = A1

(4)

After determining the performance vector zC , the coordi-
nator sends it to the supervisor for state transitions.

2.2.3 Supervisor

The supervisor receives the updated performance vector
from the coordinator and conducts state transitions based
on the formation flight requirements such as the tolerable
Euclidean distance, time limitation for reaching certain
reference position(s).

Supervisor is first in the formation initialization state,
in which the supervisor drives the coordinator to send
rendezvous command to each UAV helicopter. Once the
updated formation performance indicates that both leader
and follower have reached their desired positions, the su-
pervisor switches to the next state: dispatching the task
of performing formation flight. In this state, collision
avoidance is periodically examined based on the updated
performance index. If the threshold condition of collision
is satisfied, the supervisor will command all of the UAV
helicopters to hover at their current positions. Once the
collision alarm disappears, the supervisor will send com-
mand to resume the formation flight. The formation flight
task is completed till no performance update (when the fol-
lower receives no more update references) is received from
the coordinator. Fig. 6 illustrates the state transition dia-
gram in the supervisor when performing a leader–follower
formation flight. The conditions are listed in Table 1,

Figure 6. State transition diagram in supervisor G.

Table 1
Performance Evaluations in Supervisor G

Performance True False

G1 Eb > ε1 Otherwise

G2 ε2 < Ea < ε3 and α1 < A < α2 Otherwise

G3 Ea < ε4 Otherwise

G4 zC(t) = zC Otherwise

where ε1 is the tolerable distance difference in hovering
state, ε2 is the tolerance of distance between leader and
follower, ε3 is the tolerance (largest) distance for detecting
the collision avoidance and α1 and α2 are the lower and
upper boundaries of the difference in the heading angle.

The supervisor output yG to the coordinator includes
the tasks for each UAV helicopters. For formation flight,
the leader and follower are both assigned the path tracking
task. If collision avoidance is required, both the leader
and follower UAV helicopters are commanded to perform
hovering. Table 2 lists the output of the supervisor in
different states. The output yG is the coordination vector
consisting of the ID of the UAVs involved in the current
task, assigned task for each UAV and task parameters.
The first row of yG in Table 2 specifies UAV1 and UAV2

52

Table 2
Supervisor Output yG

States(Si) Output(yG)

S1 (i=1, j=2, BEHAVIOR_HEADTO, BEHAVIOR_HEADTO, xrFi, x
r
Fj)

S2 (i=1, j=2, BEHAVIOR_HOLD, BEHAVIOR_HOLD, xrFi, x
r
Fj)

S3 (i=1, j=2, BEHAVIOR_PATH, BEHAVIOR_PATH, xrFi(t), x
r
Fj(t))

S4 (i=1, j=2, BEHAVIOR_HOLD, BEHAVIOR_HOLD, xrFi, x
r
Fj)

S5 (i=1, j=2, BEHAVIOR_HOLD, BEHAVIOR_HOLD, xrFi, x
r
Fj)

to perform “headto” commands, and xrFi and xrFj specifies
the reference position and heading angle that they should
follow.

3. Software System

To realize the coordination control in practical implemen-
tations, a comprehensive software system has been devel-
oped. It mainly consists of two parts: the onboard software
and the ground control station. In what follows of this
section, we address both of them in detail.

3.1 Onboard Software

The onboard software is in charge of collecting information
from the avionic sensors, executing the algorithms of coor-
dination control, driving the servo actuators, exchanging
information with other UAVs and transmitting data to the
GCS for monitoring purpose. We first introduce the tasks
and the overall architecture of the onboard software, and
then present the schemes for task management and control
law implementation.

3.1.1 Tasks and Architecture

For the onboard software, multiple tasks (threads) archi-
tecture is adopted. Among these tasks, one task is par-
ticularly assigned to act as supervisor and coordinator for
coordination control purpose, and the remaining tasks are
related to the single-UAV components such as wireless
serial communication (CMM), WiFi card, inertial mea-
surement unit (IMU), data acquisition (DAQ) board, and
servo actuators. Such architecture is also hierarchical and
consists of five layers, which is shown in Fig. 7.

The communication module realizes the information
exchange among UAVs and data feedback to GCS. In our
onboard software, the information exchange method among
UAVs is selectable: either centralized or decentralized.
Furthermore, the communication block is in charge of
receiving ground user’s commands to perform new flight
missions. The commands received by the communication
block are parsed and dispatched into the corresponding
behaviours and flight control law.

The onboard data flow is contributed by various avionic
sensors such as IMU and DAQ board. The measurable out-
put includes position, velocity, attitude from IMU, main
rotor RPM (rotations per minute), and sonar-measured

Figure 7. Onboard software architecture.

height values. The primary reason for including sonar-
measured height is the relative large altitude error mea-
sured by GPS. It should be noted that, when conducting
the ground simulation, a special simulation block is utilized
to virtually generate the IMU measurement output.

The supervisor and coordinator are employed to com-
bine the data received from the communication block (such
as coordination variable and flight status of other UAVs)
and its own status to derive the coordinate behaviour. For
example, in a centralized form of formation flight, the su-
pervisor in the leader determines the state transition based
on the input from coordinator. For the followers, their
formation flight status data will be sent to the coordinator
in the leader.

With the updated status and dispatched coordinate
behaviour, the control block will be activated to derive the
control signal output for the execution block based on the
well-designed control law.

The execution block refers to the servo actuator driv-
ing. It feeds the output of control block into individual
servo actuators (for helicopter, including aileron, elevator,
auxiliary, and rudder) to drive the surface deflections to
the desired positions.

53

Figure 8. Onboard tasks management.

Figure 9. Onboard class diagram.

In our previous design, ground station communicates
with UAVs via the wireless transceiver with 115.2 Kbps
transmission rate. Such communication throughput is
sufficient for multiple-UAV formation flight. Meanwhile
we hire a new wireless communication protocol, that is,
802.11b, to handle the coordination control scenarios in
which larger data throughput is required. In our current
applications, the low data rate modem link is used for long
range communication (flight data of each helicopter is re-
turned to ground station), while 802.11b is used for relative
short range and high data rate communication, such as
information exchange for cooperation and computing. The
overall working principle of the architecture is as follows:
each UAV periodically transmits its data packet to GCS
via the wireless modem transceiver, the wireless local area
network (WLAN) is dedicated to the coordinate informa-
tion sharing. In cooperative situations where exchange
date rate is not demanding, the wireless serial modem can
also be adopted for the coordinate data exchange.

3.1.2 Onboard Tasks Management

As shown in Fig. 7, the onboard software (for each UAV
member) consists of the following tasks: (1) sen-
sor information retrieval; (2) cooperative information

processing; (3) control algorithms computation; (4) servo
driver execution; (5) server and client for cooperative data
exchange; (6) wireless communication and (7) data log-
ging. To efficiently manage all of the tasks, we define a
simple but reliable executing sequence which is shown in
Fig. 8. Specifically:

1. IMU and DAQ are executed first to collect the inflight
data from the avionic sensors;

2. SVR is executed to receive the coordinate data;

3. CTL algorithms are calculated;

4. The output control signals are dispatched to the servos
(SVO);

5. Data communication and data logging (CLT, CMM,
and DLG) are performed.

The execution of all the task threads are managed
by the onboard main program. The overall tasks are co-
ordinated to run sequentially. The onboard software is
implemented on the QNX Neutrino 6.3.2 real-time operat-
ing system (RTOS), which is well suited to the embedded
real-time applications. It provides multitasking, threads,
priority-driven preemptive scheduling and fast context-
switching [19].

From the software design perspective, after identifica-
tion of the tasks, the corresponding class diagram in UML
is shown in Fig. 9. The clsThread is the parent class for

54

Figure 10. Onboard object sequence diagram.

the six task threads. Details on UML diagrams can be seen
in [20].

In addition, the dynamic behaviours of the system
objects during the execution period is described. The
UML execution sequence diagram is adopted and shown
in Fig. 10. It is clear that the main thread manages
the working thread in a way that each working thread is
activated in a predefined required sequence to accomplish
the onboard control loop. The initiated objects during
the onboard execution of the each thread is _main, _imu,
_daq, _ctl, _svo, _cmm, and _dlg, respectively. All
of the above objects is globally active during the whole
execution period.

3.1.3 Control Implementation

The control block hires a behaviour-based architecture,
which is shown in Fig. 11. The coordinator output yG is
derived from three input sources. One is the user com-
mand from the CMM thread, the second is the coordinate
information exchange from the peer to peer network and
the last one comes from the environment sensing which
is exclusively for precautions in the emergency situation.
In our current implementation, the emergency situation
is identified based on the status data. In such case, the
yG instructs the UAV to perform hovering at the current
position.

The key components of control block are listed in
Table 3. For the inner loop control law, one advanced
approach called composite nonlinear feedback (CNF) is
adopted. The CNF method has a nice feature that both
short settling time and small overshoot can be met. In-
terested readers on CNF are referred to [21]. In ad-
dition, we have implemented the LQR and H∞ for ro-
bust flight control (please see [22] for details). On
the other hand, the outer-loop control laws are realized

Figure 11. Behaviour-based architecture for control
system.

with simple proportional control and CNF control. We
note that u=(δa, δe, δu, δr) contains the control inputs
for aileron, elevator, collective, and rudder, respectively.
x=(u, v, p, q, φ, θ, as, bs, w, r, rfb) is a collection of state
variables of the helicopter identified in modelling process
and controller design. u, v, and w are the velocity of the

55

Table 3
Control Components

ID Function Description Parameter

A1 u=Fx, x=xreal −xref State feedback xref

A2 u=Fx+Gv LQR and H∞ v

A3 u=Fx+Gv+ ρBTP(x−Hv) CNF v

B1 Vg =k(X−Xc), r= kψ(ψ−ψc) Position and direction holding Xc, ψc

B2 w= kz(z− zc) Height keeping zc

B3 Vg =k(X−Xc(t)), r= kψ(ψ−ψc(t)) Trajectory tracking Xc(t), ψc(t)

B4 u=F�x(t)+Gr+ ρFn(�x(t)−Ger) Trajectory tracking x̂(t)

Figure 12. Architecture of ground control station.

helicopter along the three axis in the body frame. Simi-
larly, p, q, and r are the angular rate of roll, pitch and yaw
in the body axis. φ, θ, and ψ are the roll, pitch and heading
angles of the helicopter in the NED frame. Finally, as and
bs represent the longitudinal and lateral flapping angles of
the main rotor, and rfb is an internal state of the yaw chan-
nel. The state variables as, bs, and rfb are estimated by an
observer. v=(u, v, w, r)c contains a number of parameters
representing the target reference (velocity and yaw rate in
the body frame) for the inner-loop components. The de-
tailed descriptions of each control component in the inner-
and outer-loop can be referred to [23].

3.2 Ground Control Station

The GCS is mainly used for updating new flight tasks or
missions to the UAVs, monitoring the status of multiple
UAVs and evaluating the performance of coordination

control. It is realized with Microsoft Foundation Class
(MFC) in a laptop with the Windows XP Professional
operating system. The overall architecture is realized via
the Multiple Document Interface (MDI) approach, which
is shown in Fig. 12. The upward and downward arrows
indicate the commands transmitted from GCS to the UAVs
and the data flow from UAVs to GCS, respectively. We
integrate several visual perspectives for the demonstration
of flight status data from multiple UAVs. The document
class in MFC is for the management of data sending and
receiving, and periodic update of all the views consisting
of Google Map way point view (we will introduce it later in
more detail), status view, command window, gauge view
and curve view.

The UML class diagram of the main view classes is
listed in Fig. 13. All the views accept the global data
received from the receiving thread and displayed with an
update frequency of 1Hz.

56

Figure 13. UML class diagram of the ground control station.

Figure 14. Graphical interface of ground control station.

The GCS consists of two layers: (1) the background
layer which involves data receiving and sending with the
onboard computer and (2) foreground layer which con-
tains various in-flight data views and a command window.
Specifically:

1. The background layer has mainly two tasks, receiving
flight status from and sending commands to multiple
UAVs, both of which interact with the UAV onboard
CMM task. The receiving thread accepts all the data
from the fleet of UAVs and identify each status data
via the telegraph packet header;

2. Consequently, the corresponding multiple display is
executed in the foreground layer. The cooperative
way points of the paths are demonstrated. Similarly,
the upload link can broadcast the commands to all
UAVs, or alternatively send commands to a specific
UAV, both via the sending task. The global status
data from UAVs are dynamically updated from the
background layer. To make the GCS more user-
friendly, we incorporate the Google Map view to better

demonstrate the cooperative behaviours of the fleet of
multiple UAVs. We have captured several maps of the
flying fields where we plan to conduct the flight tests
from Google Earth and record necessary GPS data
on the corners of these maps. In the flight test, the
GPS signal from the onboard system will keep updated
on the global shared data, and the cooperative paths
of multiple UAVs are displayed on the Google Map
way point view. For indoor flight test, since the GPS
signal is not available, we can manually set the position
information to simulate this functionality in the way
point view. Fig. 14 is a snapshot of our ground control
station. If multiple UAVs are connected with the GCS,
we can freely select any UAV helicopter (currently
HeLion or SheLion) to be displayed on all of the views.

3.3 Formation Flight Implementation

Based on the onboard software and GCS, the initial leader–
follower formation flight is implemented in a centralized

57

Figure 15. Message sequence diagram in formation flight.

approach, in which the GCS is configured to be the central
node performing the supervisory and coordinator role.
Specifically, the CMM thread on leader sends its status
data back to GCS with a rate of ten times per second. Once
the GCS receives the update of the leader, the supervisor
derives the next state (task) for each UAV and sends it
to coordinator for task dispatch and transmits the output
to the follower. Then the follower is assigned a task of
performing proper behaviour based on the current status
and reference signal. The overall procedure is illustrated
in Fig. 15.

In each flight experiment, the initial GPS locations
of both leader and follower are required to send to GCS.
Based on these information, GCS then derives the refer-
ence position in the coordinate of the follower and updates
the transformed position to the follower(s). Next, GCS
issues a command to specify the rendezvous position where
the formation flight will start. The leader and follower
then perform “headto” command to hover at the specified
positions to start formation. Once both the leader and fol-
lower hover at the reference rendezvous position, they send
the “ready” information to GCS. Following this step, GCS
broadcasts the “formationtask” command to both UAVs
and the two UAVs start performing trajectory tracking
task to complete the formation flight. In the whole for-
mation flight procedure, GCS is responsible for monitoring
the threshold condition of collision avoidance periodically.

Figure 16. Leader–follower circle formation scenario.

Considering the ±3m CEP accuracy of currently adopted
GPS receiver and necessary redundancy, the boundary set
during formation flight is ±10m to guarantee the overall
safety.

58

Figure 17. Leader–follower formation in the GCS.

Figure 18. Leader–follower in a circle formation.
59

Figure 19. Leader–follower in a line formation.

4. Simulation and Practical Implementation

In this section, we present the simulation and practical im-
plementation results of formation flight based on the pro-
posed framework and developed comprehensive software
system.

4.1 Simulation

Preflight simulation is important for evaluating the overall
behaviours of both onboard software and GCS. With a
built-in UAV model, we carry out the hardware-in-the-
loop simulation (HILS) in which the interactions among
multiple UAVs and GCS and precautions under different
failure situations are tested. Note that the velocities and
positions are generated by a simulation block which is based
on a verified aerodynamic model for our UAV helicopters.

For the case of formation flight, the leader is com-
manded to perform a predefined path tracking, and the
follower is required to follow the leader with a constant
distance offset along both longitudinal and lateral direc-
tions in the coordinate of the leader. HeLion is assigned as
the leader and SheLion performs as the follower. Various
scenarios have been evaluated and here we adopt a circle
path tracking as the example, which is shown in Fig. 16.
Note that L0 and F0 are the initial reference rendezvous
positions for the leader and the follower, respectively.
The points Li (i=1, 2, . . . , N) refer to the predefined

trajectory for the leader, and the points Fi (i=1, 2, . . . , N)
refer to the reference points that the follower receives from
the coordinator of the GCS.

The simulation results are depicted in Fig. 17 and
18. In the simulation, the initial starting point of the
leader and follower can be determined on the Google Map.
The information exchange frequency is set as 5Hz and the
leader is commanded to perform a circle path tracking with
a radius of 10m with an tangential velocity of 1m/s. It is
clear to see that in Fig. 18, the follower tracks the reference
path given from the GCS accurately. The tracking error
between the trajectory of the follower and its reference is
due to the minor inherent delay in tracking control. We
also note that since the distance between the leader and
the follower is less than the required distance at first, the
follower performs a rendezvous task such that two UAVs
are ready for the formation task. Fig. 18 also indicates
that the heading angle tracking is also sufficiently accurate.
Such simulation results provide us with enough confidence
to conduct the formation flight practically.

4.2 Practical Implementation

In practical implementation, we first conduct the line-
path based formation flight considering the safety of the
helicopters. In this formation flight scenario, the leader
performs a line path with the length of 30m and 1m/s
constant forward speed. The lateral distance is set as

60

Figure 20. Leader–follower in a circle path based formation flight.

Figure 21. Leader and follower in formation flight.

15m to ensure the overall safety. Both the leader and
the follower perform a height-keeping flight. The flight
test results are shown in Fig. 19. We note that the basic
line path formation flight is successfully achieved with our
developed system. The small fluctuations in the heading
angle is due to the minor measurement inaccuracy of the
inertial navigation sensors.

After the basic line path based formation is accom-
plished, we performed a circle path based formation, and

the flight tests are listed in the Fig. 20.

1. The concentric-circles formation flight is well com-
pleted. For the follower SheLion, it can closely track
the reference trajectory in the whole formation flight
procedure. In the ending part, the tracking perfor-
mance is degraded, which is mainly caused by the
strong wind gust;

2. Regarding the height, both HeLion and SheLion are
required to maintain a constant value of 10m. From
Fig. 20, it can be noted that the HeLion’s height is well
maintained, with the accuracy of ±1m. The height
control of SheLion is worse than that for HeLion, which
is mainly caused by the following two reasons:

(1) The reference signal of SheLion is the measure-
ment generated by HeLion’s navigation sensor and
with measurement error involved; at time points
329 s and 377 s, She Lion has experienced a height
fluctuation caused by the loose lock of GPS signal.

(2) The small gap in the heading angle measurements
is caused by the improper calibration of the navi-
gation sensors. It is unavoidable for the low-cost
navigation sensors we currently adopt. A cor-
rection function has been used to reduce such a
hardware bias.

Finally, a nice snapshot of the leader and the follower
during the formation flight is captured in Fig. 21.

61

5. Conclusions

In this paper, an efficient framework of coordination con-
trol for multiple UAVs has been presented and explained.
Based on this framework, we have developed a compre-
hensive software for the practical coordination control im-
plementations. For the two key components of the soft-
ware, the onboard software architecture can fulfill the need
of realizing real-time cooperative behaviour among multi-
ple UAVs and the ground control station is also qualified
for monitoring and commanding multiple UAVs. Both
the simulation and practical implementation for formation
flight have been successfully conducted to prove the effi-
ciency of the proposed framework and developed software.
In the next stage, we tend to realize the full-envelope for-
mation flight including automatic takeoff and landing and
other more complicated cooperative flight missions.

References

[1] C.J. John, Automatic formation flight control system (AF-
FCS) – A system for automatic formation flight control of vehi-
cles not limited to aircraft, helicopters, or space platforms,U.S.
Patent 6,926,233, September 8, 2005.

[2] D. Fox, W. Burgard, H. Kruppa, & S. Thrun, A probabilistic ap-
proach to collaborative multi-robot localization, Autonomous
Robots, 8(3), 2000, 325–344.

[3] W. Burgard, M. Moors, D. Fox, R. Simmons, & S. Thrum,
Collaborative multi-robot exploration, Proceedings IEEE In-
ternational Conference Robotics and Automation, 2000, 476–
481.

[4] G. Dedeoglu & G.S. Sukhatme, Landmark-based matching
algorithm for cooperative mapping by autonomous robots,
Proceedings of the 5th International Symposium Distributed
Autonomous Robotics Systems, 2000.

[5] J. Feddema & D. Schoenwald, Decentralized control of cooper-
ative robotic vehicles, Presented at the SPIE, 4364, Aerosense,
Orlando, FL, 2001.

[6] J.S. Jennings, G. Whelan, & W.F. Evans, Cooperative search
and rescue with a team of mobile robots, Proceedings of IEEE
International Conference Advanced Robotics, 1997, 193–200.

[7] D. Rus, B. Donald, & J. Jennings, Moving furniture with teams
of autonomous robots, Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2000, 235–242.

[8] D. Stilwell & J. Bay, Toward the development of a material
transport system using swarms of ant-like robots, Proceedings
of IEEE International Conference Robotics and Automation,
Atlanta, GA, 1993, 766–771.

[9] T. Shima & S. Rasmussen, UAV cooperative decision and con-
trol, challenges and practical approaches, (SIAM: Philadelphia,
2009).

[10] J.P. How, Multi-vehicle flight experiments: Recent results
and future directions, Proceedings of AVT-146 Symposium on
Platform Innovations and System Integration for Unmanned
Air, Land and Sea Vehicles, Florence, Italy, 2007.

[11] J.P. How, E. King, & Y. Kuwata, Flight demonstrations of
cooperative control for UAV teams, Proceedings of the 3rd
AIAA Unmanned Unlimited Technical Conference, Workshop
and Exhibit, Chicago, IL, AIAA-2004-6490, 2004.

[12] G. Hoffmann, D.G. Rajnarayan, S.L. Waslander, et al., The
Stanford testbed of autonomous rotorcraft for multi agent con-
trol (STARMAC), 23rd Digital Avionics Systems Conference,
2, 2004, 12.E.4.1–12.E.4.10.

[13] S. Bayraktar, G.E. Fainekos, & G.J. Pappas, Hybrid modeling
and experimental cooperative control of multiple unmanned
aerial vehicles, 43rd IEEE Conference on Decision and Control,
Atlantis, Bahamas, 4, 2004, 4292–4298.

[14] T.W. McLain & R.W. Beard, Unmanned air vehicle testbed
for cooperative control experiments, Proceedings of American
Control Conference, Boston, MA, 6, 2004, 5327–5331.

[15] A. Attoui, Real-Time and Multi-Agent Systems, (Springer-
Verlag: Berlin, 2000).

[16] M. Dong, B.M. Chen, G. Cai, & K. Peng, Development of a
real-time onboard and ground station software system for a
UAV helicopter, Journal of Aerospace Computing, Information
and Communication, 4, 2007, 933–955.

[17] R.W. Beard, J. Lawton, & F.Y. Hadaegh, A coordination ar-
chitecture for spacecraft formation control, IEEE Transactions
on Control Systems Technology, 9(6), 2001, 777–790.

[18] G. Cai, B.M. Chen, K. Peng, M. Dong, & T.H. Lee, Modeling
and control system design for a UAV helicopter, Proceedings
of the 14th Mediterranean Conference on Control Automation,
Ancona, Italy, 2006, 1–6.

[19] QNXNeutrino RTOS v6.3, SystemArchitecture, Sixth Edition,
QNX Software Systems Corporation.

[20] B.P. Douglass, Real-time UML: Developing efficient objects
for embedded systems, (Addison-Wesley, MA, 1999).

[21] B.M. Chen, T.H. Lee, K. Peng, & V. Venkataramanan, Com-
posite nonlinear feedback control for linear systems with input
saturation: Theory and an application, IEEE Transaction on
Automatic Control, 48(3), 2003, 427–439.

[22] G. Cai, B.M. Chen, & T.H. Lee, Design and implementation of
robust flight control system for a small-scale UAV helicopter,7th
Asian Control Conference, Hong Kong, 2009, 691–697.

[23] A. Ryan, X. Xiao, & S. Rathinam, et al., A modular software
infrastructure for distributed control of collaborating UAVs,
Proceedings of the AIAA Guidance, Navigation, and Control
Conference and Exhibit, Keystone, Colo, 5, 2006, 3248–3256.

Biographies

Mr. Xiangxu Dong received his
B.S. degree from the Department
of Communications Engineering
at Xiamen University in 2006.
Since 2007, he has been a Ph.D.
candidate at National University
of Singapore. His research inter-
ests include real-time software,
cooperative coordination, forma-
tion control and unmanned aerial
vehicles.

Ben M. Chen received his B.S.
degree in mathematics and com-
puter science from Xiamen Uni-
versity, China, in 1983, M.S.
degree in electrical engineering
from Gonzaga University, USA,
in 1988, and Ph.D. degree in elec-
trical and computer engineering
from Washington State Univer-
sity, USA, in 1991. He was an
assistant professor from 1992 to
1993 at the State University of

New York at Stony Brook, USA. Since 1993, he has been
with the Department of Electrical and Computer Engi-
neering, National University of Singapore, where he is
currently a full professor. His current research interests
are in systems theory, robust control, unmanned aerial
systems, and financial market modeling. Dr. Chen is an
IEEE Fellow. He is the author/co-author of 8 research
monographs including Robust and H Control (Springer,
NewYork, 2000), HardDisk Drive Servo Systems (Springer,

62

New York, 1st Ed., 2002; 2nd Ed., 2006), Linear Sys-
tems Theory (Birkhäuser, Boston, 2004), and Unmanned
Rotorcraft Systems (Springer, New York, in press). He
has served on the editorial boards of a number of jour-
nals including IEEE Transactions on Automatic Control,
Systems & Control Letters, Automatica, and Journal of
Control Theory and Applications. He was the recipient of
the Best Poster Paper Award, 2nd Asian Control Confer-
ence, Seoul, Korea (1997); University Researcher Award,
National University of Singapore (2000); IES Prestigious
Engineering Achievement Award, Institution of Engineers,
Singapore (2001); Temasek Young Investigator Award, De-
fence Science & Technology Agency, Singapore (2003); Best
Industrial Control Application Prize, 5th Asian Control
Conference, Melbourne, Australia (2004); Best Application
Paper Award, 7th Asian Control Conference, Hong Kong,
China (2009); and Best Application Paper Award, 8th
World Congress on Intelligent Control and Automation,
Jinan, China (2010).

Dr. Guowei Cai has received
his B.E. degree in electrical and
electronics engineering fromTian-
jin University, Tianjin, China, in
2002 and the Ph.D. degree in elec-
trical and computer engineering
from National University of Sin-
gapore, Singapore, in 2009. From
2008 to 2009, he was a Research
Fellow in the Department of Elec-
trical and Computer Engineering,
National University of Singapore,

Singapore. Since 2009, he has been a Research Scientist in
Temasek Laboratories, National University of Singapore.
His current research interests include construction, mod-
elling identification, control theory application, and forma-
tion control of small-scale fixed-wing and rotorcraft UAV
systems. He was a recipient of the Best Application Paper
Prize at the 7th Asian Control Conference, Hong Kong,
China (2009).

Dr. Hai Lin is currently an
assistant professor in the National
University of Singapore, Electri-
cal and Computer Engineering
Department. He received his
B.S. degree from University of
Science and Technology, Beijing,
China in 1997, the M.Eng. de-
gree from Chinese Academy of
Science, China in 2000, and the
Ph.D. degree from the University
of Notre Dame, USA in 2005. He

is the chair of the IEEE SMC Singapore Chapter since
2009, and serves in several editorial board and conference
organizing committee. His research interests are in the
multidisciplinary study of the problems at the intersection
of control, communication, computation and life sciences.
His current research thrust is on hybrid control systems,
multi-robot coordination and systems biology.

Tong H. Lee received his B.A.
degree with First Class Honours
in the Engineering Tripos from
Cambridge University, England,
in 1980; and the Ph.D. degree
from Yale University in 1987. He
is a Professor in the Department
of Electrical and Computer En-
gineering at the National Univer-
sity of Singapore (NUS); and also
a Professor in the NUS Graduate
School, NUS NGS. He was a Past

Vice-President (Research) of NUS. Dr. Lee’s research inter-
ests are in the areas of adaptive systems, knowledge-based
control, intelligent mechatronics and computational intel-
ligence. He currently holds Associate Editor appointments
in the IEEE Transactions in Systems, Man and Cyber-
netics; IEEE Transactions in Industrial Electronics;
Control Engineering Practice (an IFAC journal) and the
International Journal of Systems Science (Taylor and
Francis, London). In addition, he is the Deputy Editor-in-
Chief of IFAC Mechatronics journal. Dr. Lee was a recip-
ient of the Cambridge University Charles Baker Prize in
Engineering; the 2004 ASCC (Melbourne) Best Industrial
Control Application Paper Prize; the 2009 IEEE ICMA
Best Paper in Automation Prize; and the 2009 ASCC Best
Application Paper Prize. He has also co-authored five re-
search monographs (books), and holds four patents (two
of which are in the technology area of adaptive systems,
and the other two are in the area of intelligent mechatron-
ics). He has published more than 300 international journal
papers. Dr. Lee was an Invited Panelist at the World
Automation Congress, WAC2000 Maui U.S.A.; an Invited
Keynote Speaker for IEEE International Symposium on
Intelligent Control, IEEE ISIC 2003 Houston U.S.A.; an
Invited Keynote Speaker for LSMS 2007, Shanghai China;
an Invited Expert Panelist for IEEE AIM2009; an Invited
Plenary Speaker for IASTED RTA 2009, Beijing China; an
Invited Keynote Speaker for LSMS 2010, Shanghai China
and an Invited Keynote Speaker for IASTED CA 2010,
Banff, Canada.

63

