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This paper studies decentralised formation control of multiple vehicles in the plane when each vehicle can only measure
the local bearings of their neighbours by using bearing-only sensors. Since the inter-vehicle distance cannot be measured,
the target formation involves no distance constraints. More specifically, the target formation considered in this paper is an
angle-constrained cyclic formation, where each vehicle has exactly two neighbours and the angle at each vehicle subtended
by its two neighbours is pre-specified. To stabilise the target formation, we propose a discontinuous control law that only
requires the sign information of the angle errors. Due to the discontinuity of the proposed control law, the stability of the
closed-loop system is analysed by employing a locally Lipschitz Lyapunov function and nonsmooth analysis tools. We prove
that the target formation is locally finite-time stable with collision avoidance guaranteed.
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1. Introduction

In the existing work on multi-vehicle formation control, it
is commonly assumed that each vehicle can obtain the posi-
tions of their neighbours (Dimarogonas & Johansson, 2010;
Hu, Xu, & Xie, 2013; Keller et al., 2013; Kopeikin, Ponda,
Johnson, & How, 2013; Lin, Francis, & Maggiore, 2005;
Ren & Cao, 2011; Tian & Wang, 2013). It is notable that po-
sition information essentially consists of two kinds of partial
information: bearing and distance. In recent years, forma-
tion control using bearing-only (Basiri, Bishop, & Jensfelt,
2010; Eren, 2012; Franchi & Giordano, 2012; Moshtagh,
Michael, Jadbabaie, & Daniilidis, 2008) or distance-only
(Cao, Yu, & Anderson, 2011) measurements has attracted
some attention. In this paper, we will investigate forma-
tion control using bearing-only measurements (or called
bearing-based formation control). We assume that each ve-
hicle can only measure the bearings of their neighbours
and inter-vehicle distances are unavailable. In practical ap-
plications, bearings can be conveniently measured by using
monocular cameras, which are very common sensors nowa-
days. A camera inherently is a bearing-only sensor. As long
as the target can be localised in the image, the bearing of the
target relative to the camera can be easily calculated based
on the pin-hole camera model (Ma, Soatto, Kosecka, &
Sastry, 2004, Section 3.3). Hence vision-based cooperative
control tasks (Das et al., 2002; Mariottini et al., 2009) are
the potential applications of the research on bearing-based
formation control.

∗
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A number of interesting and challenging problems arise
when only bearings are available for formation control. One
key problem is how to utilise the bearing measurements for
formation control. There are generally two approaches. The
first approach is to implement control laws directly using
bearing measurements; the second approach is to estimate
vehicle positions using bearing measurements, and then
implement formation control laws based on the estimated
positions. In this paper, we will adopt the first approach.
The reason we do not use the second approach is that posi-
tion estimation using bearings requires certain observabil-
ity conditions. For example, suppose vehicle A is stationary
and vehicle B can measure the bearings of vehicle A from
two different angles. Then vehicle A can be localised as
the intersection of the two bearings measured by vehicle
B. However if vehicle B is only able to measure vehicle A
from one single angle, the distance between the two vehi-
cles is impossible to be recovered. In other words, relative
motions between vehicles are fundamentally necessary for
position estimation using bearing measurements. However,
in many formation control tasks, the relative positions of
the vehicles in the formation are required to be stationary,
and hence the observability condition is not satisfied.

If each vehicle is controlled based on bearings only,
the inter-vehicle distance in the formation would be uncon-
trollable. As a result, any bearing-based formation control
law can only stabilise bearing-constrained target forma-
tions. The term bearing-constrained as used here refers to
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the bearings of the edges connecting vehicles or the an-
gles at each vehicle subtended by their neighbours are con-
strained. Another challenging problem is collision avoid-
ance, which is important for all kinds of formation control
problems. Collision avoidance is particularly important for
bearing-based formation control as inter-vehicle distances
are unmeasurable and uncontrollable. To make any bearing-
based formation control law practically applicable, we need
to guarantee collision avoidance between any vehicles no
matter they are neighbours or not.

As a relatively new research topic, bearing-based forma-
tion control has not been completely solved yet. Only a few
special cases have been analysed in the literature. Moshtagh
et al. (2008) proposed a distributed control law for balanced
circular formations of unit-speed vehicles. The proposed
control law can globally stabilise balanced circular forma-
tions using bearing-only measurements. Basiri et al. (2010)
studied distributed control of triangular formations of three
vehicles using bearing-only measurements. The global
stability of the proposed formation control law is proved
by employing the Poincare–Bendixson theorem. However,
the Poincare–Bendixson theorem is only applicable to the
scenarios involving only three or four vehicles. Eren (2012)
investigated formation shape control using bearing mea-
surements. Bearing rigidity is proposed to formulate
bearing-based formation control problems. A bearing-
based control law is designed for a formation of three
non-holonomic vehicles. Bishop (2011) proposed a control
law that can stabilise general bearing-constrained forma-
tions. However, the proposed control law in Bishop (2011)
still requires position measurements. Based on the concept
of parallel rigidity, Franchi and Giordano (2012) proposed
a distributed control law to stabilise bearing-constrained
formations using bearing-only measurements. However,
the proposed control law in Franchi and Giordano (2012)
requires communications among the vehicles. That is
different from the problem considered in this paper, where
we assume there are no communications between any
vehicles and each vehicle cannot share their bearing
measurements with their neighbours.

In this paper, we study distributed bearing-based control
of cyclic formations in the plane. The sensing graph of the
formation is an undirected cycle with fixed topology. In the
target formation, the angle at each vehicle subtended by its
two neighbours is constrained. For cyclic formations, the
angle constraints cannot specify a unique formation shape.
To well define a formation shape using angle constraints,
we may assign more complicated underlying graphs such
as rigid graphs to the formation. However, we only consider
cycle graphs in this paper and leave more complicated cases
for future research. The main contributions of this work are
summarised as follows:

(1) To stabilise angle-constrained cyclic formations,
we propose a distributed discontinuous control law

that only requires the sign information of the an-
gle errors. Compared to the existing work in Basiri
et al. (2010), our control law is able to stabilise
cyclic formations with an arbitrary number of ve-
hicles. In addition, this work requires no parallel
rigidity assumptions (Bishop, 2011; Eren, 2012)
on the target formation.

(2) Finite-time control has attracted much attention in
recent years (Chen, Lewis, & Xie, 2011; Hong,
Jiang, & Feng, 2010; Hong, Xu, & Huang, 2002;
Meng & Lin, 2012; Xiao, Wang, Chen, & Gao,
2009). Besides fast convergence, finite-time control
can also bring benefits such as disturbance rejection
and robustness against uncertainties (Bhat & Bern-
stein, 2000). In this paper, we prove the proposed
control law ensures local finite-time convergence
of the angle errors. The finite-time stability of the
nonlinear closed-loop system is proved by using
nonsmooth analysis tools (Bacciotti & Ceragioli,
1999; Clarke, 1983; Cortés, 2008; Cortés & Bullo,
2005; Filippov, 1988; Paden & Sastry, 1987).

(3) Collision avoidance is a particularly important issue
for bearing-based formation control as inter-vehicle
distances are unmeasurable. We prove that the pro-
posed control law guarantees collision avoidance
between any vehicles (no matter they are neigh-
bours or not) given sufficiently small initial angle
errors.

The paper is organised as follows. Preliminaries to
graph theory and nonsmooth analysis are introduced in Sec-
tion 2. Section 3 presents the problem formulation and the
proposed control law. The formation stability by the pro-
posed control law is proved in Section 4. Section 5 shows
simulation results to verify the theoretical analysis. Con-
clusions are drawn in Section 6.

2. Preliminaries to graph theory and nonsmooth
analysis

2.1 Notations

Given a symmetric positive semi-definite matrix A ∈ R
n×n,

the eigenvalues of A are denoted as 0 ≤ λ1(A) ≤ λ2(A) ≤
··· ≤ λn(A). Let 1 = [1, . . . , 1]T ∈ R

n, and I be the iden-
tity matrix with appropriate dimensions. Denote |·| as the
absolute value of a real number, and ‖·‖ as the Euclidean
norm of a vector. Denote Null(·) as the right null space of
a matrix. Let [·]ij be the entry at the ith row and jth column
of a matrix, and [·]i be the ith entry of a vector. Given a set
S, denote S as its closure. For any angle α ∈ R,

R(α) =
[

cos α − sin α

sin α cos α

]
∈ R

2×2 (1)
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is a rotation matrix satisfying R−1(α) = RT(α) = R(−α).
Geometrically, R(α) rotates a vector in R

2 counterclockwise
through an angle α about the origin.

2.2 Graph theory

A graph G = (V, E) consists of a vertex set V = {1, . . . , n}
and an edge set E ⊆ V × V . If (i, j ) ∈ E , then i and j are
called to be adjacent. The set of neighbours of vertex i is
denoted asNi = {j ∈ V | (i, j ) ∈ E}. A graph is undirected,
if each (i, j ) ∈ E implies (j, i) ∈ E , otherwise the graph is
directed. A path from i to j in a graph is a sequence of
distinct nodes starting with i and ending with j such that
consecutive vertices are adjacent. If there is a path between
any two vertices of graph G, then G is said to be connected.
An undirected cycle graph is a connected graph where every
vertex has exactly two neighbours.

An incidence matrix of a directed graph is a matrix
E with rows indexed by edges and columns indexed by
vertices.1 Suppose (j, k) is the ith edge. Then the entry of
E in the ith row and kth column is 1, the one in the ith
row and jth column is −1, and the others in the ith row are
0. By definition, we have E1 = 0. If a graph is connected,
the corresponding E has rank n − 1 (see (Godsil & Royle,
2001, Theorem 8.3.1)). Then Null(E) = span{1}.

2.3 Nonsmooth stability analysis

Next we introduce some useful concepts and facts regard-
ing discontinuous dynamic systems (Bacciotti & Ceragioli,
1999; Clarke, 1983; Cortés, 2008; Cortés & Bullo, 2005;
Filippov, 1988; Paden & Sastry, 1987).

2.3.1 Filippov differential inclusion

Consider the dynamic system,

ẋ(t) = f (x(t)) , (2)

where f : R
n → R

n is a measurable and essentially lo-
cally bounded function. The Filippov differential inclusion
(Filippov, 1988) associated with the system (2) is

ẋ ∈ F[f ](x), (3)

where F[f ] : R
n → 2R

n

is defined by

F[f ](x) =
⋂
r>0

⋂
μ(S)=0

co {f (B(x, r) \ S)} . (4)

In Equation (4), co denotes convex closure, B(x, r) denotes
the open ball centred at x with radius r > 0, and μ(S) = 0
means that the Lebesgue measure of the set S is 0. The set-
valued map F[f ] associates each point x with a set. Note
F[f ](x) is multiple valued only if f (x) is discontinuous at x.

A Filippov solution of Equation (2) on [0, t1] ⊂ R is de-
fined as an absolutely continuous function x : [0, t1] → R

n

that satisfies Equation (3) for almost all t ∈ [0, t1]. If f (x) is
measurable and essentially locally bounded, the existence
of Filippov solutions can be guaranteed (Cortés & Bullo
2005, Lemma 2.5; Cortés 2008, Proposition 3), though
the uniqueness cannot. The interested reader is referred to
(Cortés, 2008, p. 52) for the uniqueness conditions of Filip-
pov solutions. A solution is called maximal, if it cannot be
extended forward in time. A set � is said to be weakly in-
variant (respectively strongly invariant) for Equation (2), if
for each x(0) ∈ �, � contains at least one maximal solution
(respectively all maximal solutions) of Equation (2).

2.3.2 Generalised gradient

Suppose V : R
n → R is a locally Lipschitz function. If

V (x) is differentiable at x, denote ∇V (x) as the gradient of
V (x) with respect to x. Let MV be the set where V (x) fails to
be differentiable. The generalised gradient (Clarke, 1983;
Cortés, 2008; Cortés & Bullo, 2005) of V (x) is defined as

∂V (x) = co

{
lim

i→+∞
∇V (xi) | xi → x, xi /∈ S ∪ MV

}
,

where co denotes convex hull and S is an arbitrary set of
Lebesgue measure zero. The generalised gradient is a set-
valued map. If V (x) is continuously differentiable at x, then
∂V (x) = {∇V (x)}.

Given any set S ⊆ R
n, let Ln : 2R

n → 2R
n

be the set-
valued map that associates S with the set of least-norm
elements of S. If S is convex, Ln(S) is singleton. In this
paper, we only apply Ln to generalised gradients, which
are always convex. For a locally Lipschitz function V (x),
Ln(∂V ) : R

n → R
n is called the generalised gradient vec-

tor field. The following fact (Cortés, 2008, Proposition 8)

F [Ln (∂V (x))] = ∂V (x) (5)

will be very useful in our work. A point x is called a critical
point if 0 ∈ ∂V (x). For a critical point x, it is obvious that
Ln(∂V (x)) = {0}.

2.3.3 Set-valued Lie derivative

The evolution of a locally Lipschitz function V (x) along
the solutions to the differential inclusion ẋ ∈ F[f ](x) can
be characterised by the set-valued Lie derivative (Bacciotti
& Ceragioli, 1999; Cortés, 2008; Cortés & Bullo, 2005),
which is defined by

L̃FV (x) = {
� ∈ R | ∃ξ ∈ F[f ](x),

∀ζ ∈ ∂V (x), ξTζ = �
}
.
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718 S. Zhao et al.

With a slight abuse of notation, we also denote L̃f V (x) =
L̃FV (x). The set-valued Lie derivative may be empty. When
L̃FV (x) = ∅, we take max L̃FV (x) = −∞ (see Bacciotti
& Ceragioli, 1999; Cortés, 2008; Cortés & Bullo, 2005).

A function V : R
n → R is called regular (Cortés, 2008,

p. 57) at x if the right directional derivative of V (x) at x exists
and coincides with the generalised directional derivative
of V (x) at x. Note a locally Lipschitz and convex func-
tion is regular. The following two lemmas are useful for
proving the stability of discontinuous systems using nons-
mooth Lyapunov functions. The next result can be found in
Shevitz and Paden (1994), Bacciotti and Ceragioli (1999)
and Cortés and Bullo (2005).

Lemma 2.1: Let V : R
n → R be a locally Lipschitz and

regular function. Suppose the initial state is x0 and let
�(x0) be the connected component of {x ∈ R

n | V (x) ≤
V (x0)} containing x0. Assume the set �(x0) is bounded. If
max L̃f V (x) ≤ 0 or L̃f V (x) = ∅ for all x ∈ �(x0), then
�(x0) is strongly invariant for Equation (2). Let

Zf,V = {x ∈ R
n | 0 ∈ L̃f V (x)}. (6)

Then any solution of Equation (2) starting from x0 converges
to the largest weakly invariant set M contained in Zf,V ∩
�(x0). Furthermore, if the set M is a finite collection of
points, then the limit of all solutions starting from x0 exists
and equals one of them.

The next result can be found in Paden and Sastry (1987)
and Cortés and Bullo (2005).

Lemma 2.2: Let V : R
n → R be a locally Lipschitz and

regular function. Suppose the initial state is x0 and let S
be a compact and strongly invariant set for Equation (2).
If max L̃f V (x) ≤ −κ < 0 almost everywhere on S\Zf, V,
then any solution of Equation (2) starting at x0 ∈ S
reaches Zf, V∩S in finite time. The convergence time is upper
bounded by (V(x0) − min x ∈ SV(x))/κ .

3. Problem formulation

In this section, we first describe the formation control prob-
lem that we are going to solve. Then we propose a dis-
tributed bearing-based control law and derive the closed-
loop system dynamics.

3.1 Control objective

Consider n (n ≥ 3) vehicles in the plane. Denote the position
of vehicle i as zi ∈ R

2, i ∈ {1, . . . , n}. The dynamics of
each vehicle is modelled as

żi = ui,

where ui ∈ R
2 is the control input to be designed. The target

formation considered in this paper is an angle-constrained
cyclic formation. The underlying information flow among
the vehicles is described by an undirected cycle graph with
fixed topology. By indexing the vehicles properly, we can
have Ni = {i − 1, i + 1} for i ∈ {1, . . . , n}, which means
vehicles i − 1 and i + 1 are the neighbours of vehicle i.
Then vehicle i can obtain the bearings of vehicles i − 1 and
i + 1 by using, for example, a monocular camera. Note
that the indices i − 1 and i + 1 are taken modulo n in this
paper. Let ei � zi + 1 − zi. Then the unit-length vector,

gi � ei

‖ei‖ ,

characterises the relative bearing between vehicles i and i +
1 (see Figure 1). Thus the bearing measurements obtained
by vehicle i consist of −gi−1 and gi, which are the relative
bearings of vehicle i−1 and vehicle i + 1, respectively.

Denote θ i ∈ [0, 2π ) as the angle subtended by vehicles
i − 1 and i + 1 at vehicle i. The angle θ i is specifically de-
fined in the following way: rotating −gi−1 counterclockwise
through an angle θ i about vehicle i yields gi (see Figure 1).
This can be mathematically expressed as

gi = R(θi)(−gi−1), (7)

where R(·) is the rotation matrix given in Equation (1).
By defining θ i in Equation (7), the angles θ i and θ i + 1 are
on the same side of edge ei for all i ∈ {1, . . . , n}. As
a result, the quantity

∑n
i=1 θi is invariant to the positions

of the vehicles because the sum of the interior angles of
a polygon is constant. Hence

∑n
i=1 θi(t) ≡ ∑n

i=1 θi(0) for
all t ∈ [0, + ∞). The angle θ i is specified as a constant

Figure 1. An illustration of cyclic formations.
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value θ∗
i ∈ [0, 2π ) in the target formation. The target angles

{θ∗
i }ni=1 should be feasible such that there exist formations

satisfying the angles constraints.
The problem we investigate in this paper is formally

stated as follows:

Assumption 3.1: In the initial formation, no two vehicles
coincide with each other, i.e. zi(0) �= zj(0) for all i �= j.

Assumption 3.2: In the target formation, θ∗
i �= 0 and θ∗

i �=
π for all i ∈ {1, . . . , n}.

Remark 1: Assumption 3.2 means no three consecutive
vehicles in the target formation are collinear. The collinear
case is a theoretical difficulty in many formation con-
trol problems (see, for example, Dörfler & Francis, 2010;
Huang, Yu, & Wu, 2013; Krick, Broucke, & Francis, 2009).
In practice, bearings are usually measured by optical sen-
sors such as cameras. Hence vehicle i would not be able
to measure the bearings of its two neighbours simultane-
ously when θ i = 0 due to line-of-sight occlusion. On the
other hand, the field-of-view of a monocular camera usu-
ally is less than 180◦. Hence vehicle i would not be able to
measure the bearings of its two neighbours simultaneously
when θ i = π due to limited field-of-view. Thus Assum-
ption 3.2 is reasonable from the practical point of view.

Problem 3.3: Under Assumptions 3.1 and 3.2, design con-
trol input ui for vehicle i, i ∈ {1, . . . , n}, based only on
the bearing measurements {− gi − 1, gi} such that θ i con-
verges to θ∗

i in finite time. During the formation evolution,
collision avoidance between any vehicles (no matter they
are neighbours or not) should be guaranteed.

3.2 Proposed control law

We next propose a control law to solve Problem 3.3. Define
the angle error for vehicle i as

εi = cos θi − cos θ∗
i = −gT

i gi−1 − cos θ∗
i , (8)

where the second equality is due to −gT
i gi−1 =

‖gi‖‖gi−1‖ cos θi = cos θi . The proposed control law for
vehicle i is

ui = sgn(εi)(gi − gi−1), (9)

where

sgn(εi) =
⎧⎨
⎩

1 if εi > 0
0 if εi = 0
−1 if εi < 0

.

For vector arguments, sgn(·) is defined component-wise.
Inspired by the control law in Basiri et al. (2010), the pro-
posed control law (9) has a clear geometric meaning: the
control input vector ui is along the bisector of the angle θ i.

3.3 Error dynamics

We next derive the error dynamics of the closed-loop system
under control law (9).

Denote ε = [ε1, . . . , εn]T ∈ R
n. Recall gi is defined as

gi = ei/‖ei‖. Then the time derivative of gi is

ġi = ėi

‖ei‖ − ei

‖ei‖2

d‖ei‖
dt

= 1

‖ei‖
(

I − ei

‖ei‖
eT
i

‖ei‖
)

ėi

= 1

‖ei‖Piėi , (10)

where Pi = I − gig
T
i . Matrix Pi plays an important role

in the stability analysis in this paper. Geometrically, Pi is
an orthogonal projection matrix which can orthogonally
project any vector onto the orthogonal compliment of gi.
The algebraic properties of Pi are listed as follows:

Lemma 3.4: Matrix Pi satisfies:

(i) P T
i = Pi and P 2

i = Pi .
(ii) Pi is positive semi-definite.

(iii) Null(Pi) = span{gi}.

Proof:

(i) The two properties are trivial to check.
(ii) For any x ∈ R

2, since P 2
i = Pi and P T

i = Pi , we
have xTPix = xTP T

i Pix = ‖Pix‖2 ≥ 0.
(iii) First, it is easy to see Pigi = 0 and hence gi ∈

Null(Pi). Second, for any x ∈ R
2, we have Pix =

x − (gT
i x)gi . Clearly Pix = 0 only if x is parallel to

gi. Thus Null(Pi) = span{gi}.
�

Based on Equation (10), we obtain the dynamics of ε

as follows:

Theorem 3.5: The ε-dynamics under control law (9) is

ε̇ = −A sgn(ε), (11)

where A ∈ R
n×n, and all of the entries of A are zero except

[A]i(i−1) = 1

‖ei−1‖gT
i Pi−1gi−2,

[A]ii = 1

‖ei−1‖gT
i Pi−1gi + 1

‖ei‖gT
i−1Pigi−1,

[A]i(i+1) = 1

‖ei‖gT
i−1Pigi+1, (12)

for all i ∈ {1, . . . , n}.
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720 S. Zhao et al.

Proof: Recall ei = zi + 1 − zi. Then substituting control law
(9) into ėi = żi+1 − żi yields

ėi = żi+1 − żi

= sgn(εi+1)(gi+1 − gi) − sgn(εi)(gi − gi−1)

= sgn(εi+1)gi+1 + sgn(εi)gi−1

− [sgn(εi+1) + sgn(εi)] gi. (13)

Substituting Equation (13) into Equation (10) and using the
fact that Pigi = 0 gives

ġi = 1

‖ei‖Pi [sgn(εi+1)gi+1 + sgn(εi)gi−1] .

Recall εi = −gT
i gi−1 − cos θ∗

i as defined in Equation (8)
and θ∗

i is constant. Then by the above equation, we have

ε̇i = −gT
i ġi−1 − gT

i−1ġi

= − 1

‖ei−1‖gT
i Pi−1 [sgn(εi)gi + sgn(εi−1)gi−2]

− 1

‖ei‖gT
i−1Pi [sgn(εi+1)gi+1 + sgn(εi)gi−1]

= −[A]i(i−1)sgn(εi−1) − [A]iisgn(εi)

− [A]i(i+1)sgn(εi+1), (14)

where [A]i(i−1), [A]ii and [A]i(i + 1) are given in Equa-
tion (12). It is straightforward to see the matrix form of
Equation (14) is Equation (11). �

We next prove that the matrix A in Equation (11) is
symmetric positive semi-definite.

Corollary 3.6: The matrix A in Equation (11) is symmetric
positive semi-definite. For any x = [x1, . . . , xn]T ∈ R

n,

xTAx =
n∑

i=1

1

‖ei‖
(gi+1xi+1 + gi−1xi)

T

×Pi (gi+1xi+1 + gi−1xi) ≥ 0. (15)

Proof: To prove A is symmetric, we only need to prove
[A](i + 1)i = [A]i(i + 1) for all i. By changing the index i in
[A]i(i−1) in Equation (12) to i + 1, we obtain

[A](i+1)i = 1

‖ei‖gT
i+1Pigi−1.

It is clear that [A](i + 1)i = [A]i(i + 1) due to the symmetry of
Pi. For any vector x = [x1, . . . , xn]T ∈ R

n, we have

xTAx =
n∑

i=1

[A]i(i−1)xixi−1 + [A]iix
2
i + [A]i(i+1)xixi+1

=
n∑

i=1

(
1

‖ei−1‖gT
i Pi−1gi−2

)
xixi−1

+
n∑

i=1

(
1

‖ei−1‖gT
i Pi−1gi

)
x2

i

+
n∑

i=1

(
1

‖ei‖gT
i−1Pigi−1

)
x2

i

+
n∑

i=1

(
1

‖ei‖gT
i−1Pigi+1

)
xixi+1

=
n∑

i=1

(
1

‖ei‖gT
i+1Pigi−1

)
xi+1xi

+
n∑

i=1

(
1

‖ei‖gT
i+1Pigi+1

)
x2

i+1

+
n∑

i=1

(
1

‖ei‖gT
i−1Pigi−1

)
x2

i

+
n∑

i=1

(
1

‖ei‖gT
i−1Pigi+1

)
xixi+1

=
n∑

i=1

1

‖ei‖
(gi+1xi+1 + gi−1xi)

T

×Pi (gi+1xi+1 + gi−1xi) ≥ 0,

where the last inequality is due to the fact that Pi is positive
semi-definite. �

4. Formation stability analysis

In this section, we analyse the stability of the error dynamics
(11). By employing a locally Lipschitz Lyapunov function
and the nonsmooth analysis tools introduced in Section
2.3, we prove that the origin ε = 0 is locally finite-time
stable with collision avoidance guaranteed. In addition to
the dynamics of ε, we also analyse the behaviours of the
vehicle positions during formation evolution.

We first consider the problem of collision avoidance. On
one hand, Assumption 3.1 states that no vehicles coincide
with each other in the initial formation, i.e. zi(0) �= zj(0) for
any i �= j. On the other hand, control law (9) implies that
‖żi‖ ≤ ‖gi − gi−1‖ ≤ 2, which means that the maximum
speed of each vehicle is two. Therefore, any two vehicles
are not able to collide with each other (no matter they are
neighbours or not) for all t ∈ [0, T ∗) where

T ∗ � mini �=j ‖zi(0) − zj (0)‖
4

.

In the rest of the paper, we will only consider t ∈ [0, T] with
T < T ∗. We will prove that the system can be stabilised
within the finite time interval [0, T].

Consider the Lyapunov function,

V (ε) =
n∑

i=1

|εi |, (16)
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which is positive definite in ε. Note V (ε) is locally Lipschitz
and convex. Hence V (ε) is also regular.

Theorem 4.1: For the error dynamics (11) and Lya-
punov function (16), the Filippov differential inclusion is
ε̇ ∈ −A∂V (ε). The set-valued Lie derivative is given by

L̃−A∂V V (ε) = {� ∈ R | ∃η ∈ ∂V (ε), ∀ζ ∈ ∂V (ε),

− ζ TAη = �}. (17)

When L̃−A∂V V (ε) �= ∅, for any � ∈ L̃−A∂V V (ε), there exists
η ∈ ∂V(ε) such that

� = −ηTAη ≤ 0. (18)

Proof: Step 1: calculate the generalised gradient. By def-
inition, we have the generalised gradient as

∂V (ε) = {η = [η1, . . . , ηn]T ∈ R
n | ηi = sgn(εi) if εi �= 0

and ηi ∈ [−1, 1] if εi = 0 for i ∈ {1, . . . , n}}.

Because |ηi| = |sgn(εi)| = 1 if εi �= 0, we have the obvious
but important fact that

‖η‖ ≥ 1, ∀η ∈ ∂V (ε), ∀ε �= 0. (19)

Additionally, if εi �= 0, then Ln({sgn(εi)}) = {sgn(εi)}; and
if εi = 0, then Ln([−1, 1]) = {0}= {sgn(0)}. Thus we have
the following useful property:

Ln(∂V (ε)) = {sgn(ε)}. (20)

Step 2: calculate the Filippov differential inclusion.
Since ‖ei(t)‖ �= 0 for all i and all t ∈ [0, T], the matrix
A in Equation (9) is continuous. Then by Paden and Sas-
try (1987, Theorem 1), the Filippov differential inclusion
associated with the system (11) can be calculated as

ε̇ ∈ F[−Asgn(ε)] = −AF[sgn(ε)]. (21)

Substituting Equation (20) into Equation (21) yields

F[sgn(ε)] = F[Ln(∂V (ε))] = ∂V (ε),

where the last equality uses the fact (5). Thus the Filippov
differential inclusion in Equation (21) can be rewritten as

ε̇ ∈ −A∂V (ε). (22)

Step 3: calculate the set-valued Lie derivative. The set-
valued Lie derivative of V(ε) with respect to Equation (22)
is given by

L̃−A∂V V (ε)

= {� ∈ R | ∃ξ ∈ −A∂V (ε), ∀ζ ∈ ∂V (ε), ζ Tξ = �}
= {� ∈ R | ∃η ∈ ∂V (ε), ∀ζ ∈ ∂V (ε), −ζ TAη = �}.

The set L̃−A∂V V (ε) could be empty. When L̃−A∂V V (ε) �=
∅, for any � ∈ L̃−A∂V V (ε), there exists η ∈ ∂V such that �

= −ζ TAη for all ζ ∈ ∂V. In particular, by choosing ζ = η,
we have � = −ηTAη ≤ 0. Note −ηTAη ≤ 0 is due to the
fact that A is a positive semi-definite matrix as shown in
Lemma 3.6. Therefore, we have either L̃−A∂V V (ε) = ∅ or
max L̃−A∂V V (ε) ≤ 0. �

4.1 Main stability result

We first introduce a number of useful results and then prove
the local finite-time formation stability.

Given an angle α ∈ R and a vector x ∈ R
2, the angle

between x and R(α)x is α. Thus for all nonzero x ∈ R
2,

xTR(α)x > 0 when α ∈ (−π /2, π /2) (mod 2π ); xTR(α)x =
0 when α = ±π /2 (mod 2π ) and xTR(α)x < 0 when α ∈
(π /2, 3π /2) (mod 2π ).

Lemma 4.2: Let g⊥
i � R(π/2)gi . The properties of g⊥

i are
listed as follows:

(i) ‖g⊥
i ‖ = 1 and (g⊥

i )Tgi = 0.
(ii) Pi = g⊥

i (g⊥
i )T.

(iii) For i �= j, (g⊥
i )Tgj = −(g⊥

j )Tgi .

(iv) (g⊥
i )Tgi−1 = sin θi , which implies (g⊥

i )Tgi−1 > 0 if
θ i ∈ (0, π ); and (g⊥

i )Tgi−1 < 0 if θ i ∈ (π , 2π ).

Proof: See Appendix. �

Lemma 4.3: Let U � {x ∈ R
n : x �= 0 and nonzero en-

tries of x do not have the same sign}. Suppose B ∈ R
n×n

is a symmetric positive semi-definite matrix with λ1(B) =
0 and λ2(B) > 0. If 1 = [1, . . . , 1]T ∈ R

n is an eigenvector
associated with the zero eigenvalue of B, then

inf
x∈U

xTBx

xTx
= λ2(B)

n
.

Proof: See Appendix.

Remark 2: By the definition of U , any x ∈ U should at
least contain one positive entry and one negative entry. If
the nonzero entries of x are all positive or negative, then
x /∈ U .

With the above preparation, we are ready to prove
the formation stability based on Theorem 4.1. Note if
L̃−A∂V V (ε) = ∅, we have max L̃−A∂V V (ε) = −∞ (see
Section 2.3.3). Hence we need only to focus on the case
of L̃−A∂V V (ε) �= ∅.

Theorem 4.4: Consider the set-valued Lie derivative given
in Equation (17). When L̃−A∂V V (ε) �= ∅, for any � ∈
L̃−A∂V V (ε), there exists η ∈ ∂V(ε) such that

� ≤ − 1∑n
i=1 ‖ei‖ηTDTETEDη, (23)
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where

E =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0
0 1 −1 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

−1 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

n×n,

D =

⎡
⎢⎢⎢⎢⎢⎣

(g⊥
1 )Tgn 0 0 . . . 0

0 (g⊥
2 )Tg1 0 . . . 0

0 0 (g⊥
3 )Tg2 . . . 0

...
...

...
. . .

...
0 0 . . . 0 (g⊥

n )Tgn−1

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

n×n.

(24)

Proof: By Equation (15), we can rewrite � = −ηTAη in
Equation (18) as

� = −
n∑

i=1

1

‖ei‖
(gi+1ηi+1 + gi−1ηi)

T Pi (gi+1ηi+1 + gi−1ηi)

≤ − 1∑n
i=1 ‖ei‖

n∑
i=1

(gi+1ηi+1 + gi−1ηi)
T

×Pi (gi+1ηi+1 + gi−1ηi)

= − 1∑n
i=1 ‖ei‖

n∑
i=1

[
(gi+1ηi+1 + gi−1ηi)

T g⊥
i

]2

(By Lemma 4.2 (ii))

= − 1∑n
i=1 ‖ei‖

n∑
i=1

[
(g⊥

i )Tgi+1ηi+1 + (g⊥
i )Tgi−1ηi

]2

= − 1∑n
i=1 ‖ei‖hTh, (25)

where

h =

⎡
⎢⎣

(g⊥
1 )Tg2η2 + (g⊥

1 )Tgnη1
...

(g⊥
n )Tg1η1 + (g⊥

n )Tgn−1ηn

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

(g⊥
1 )Tgn (g⊥

1 )Tg2 0 . . . 0
0 (g⊥

2 )Tg1 (g⊥
2 )Tg3 . . . 0

0 0 (g⊥
3 )Tg2 . . . 0

...
...

...
. . .

...
(g⊥

n )Tg1 0 . . . 0 (g⊥
n )Tgn−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

η1

η2

η3
...

ηn

⎤
⎥⎥⎥⎥⎥⎦

= EDη, (26)

with E and D given in Equation (24). The last equality of
Equation (26) uses the fact that (g⊥

i )Tgi−1 = −(g⊥
i−1)Tgi as

shown in Lemma 4.2 (iii). Substituting Equation (26) into
Equation (25) gives Equation (23). �

Note that D is a diagonal matrix and E actually is an
incidence matrix of a directed and connected cycle graph.
We now present the main stability result.

Theorem 4.5: Under Assumptions 3.1 and 3.2, the equi-
librium ε = 0 of system (11) is locally finite-time stable.
Collision avoidance between any vehicles (no matter they
are neighbours or not) can be locally guaranteed.

Proof: Consider the time interval [0, T] with T < T ∗. Then
‖ei(t)‖ �= 0 and ‖ei(t)‖ �= + ∞ for all t ∈ [0, T]. We will
prove that ε can converge to zero in the finite time interval
[0, T] if ε(0) is sufficiently small.

Let �(ε(0)) � {ε ∈ R
n | V (ε) ≤ V (ε(0))}. Since

V (ε) = ∑n
i=1 |εi | = ‖ε‖1, the level set �(ε(0)) is

connected and compact. Because L̃−A∂V V (ε) = ∅ or
max L̃−A∂V V (ε) ≤ 0 for any ε ∈ �(ε(0)) as proved in The-
orem 4.1, we have that �(ε(0)) is strongly invariant to Equa-
tion (11) over [0, T] by Lemma 2.1.

Step 1: prove the nonzero entries of Dη do not have the
same sign.

Denote δi = θi − θ∗
i and δ = [δ1, . . . , δn]T ∈ R

n. Con-
sider the case of ε �= 0 and hence δ �= 0. Because

∑n
i=1 θi ≡∑n

i=1 θ∗
i , we have

∑n
i=1 δi ≡ 0. Thus the nonzero entries of

δ do not have the same sign if δ �= 0. Let

wi � cos θi − cos θ∗
i

θi − θ∗
i

.

Then εi = wiδi, and hence

ε = Wδ,

where W = diag{w1, . . . , wn} ∈ R
n×n. Since limθi→θ∗

i

wi = − sin θ∗
i by L’Hôpital’s rule, the equations εi = wiδi

and ε = Wδ are always valid even when θi − θ∗
i = 0.

Suppose V(ε(0)) is sufficiently small such that θ i(0) is
sufficiently close to θ∗

i and hence θi, θ
∗
i ∈ (0, π ) or θi, θ

∗
i ∈

(π, 2π ) for all ε ∈ �(ε(0)). Then it is easy to see that wi

< 0 if θi, θ
∗
i ∈ (0, π ), and wi > 0 if θi, θ

∗
i ∈ (π, 2π ). On

the other hand, recall (g⊥
i )Tgi−1 > 0 when θ i ∈ (0, π ), and

(g⊥
i )Tgi−1 < 0 when θ i ∈ (π , 2π ) as shown in Lemma 4.2

(iv). Thus we have

(g⊥
i )Tgi−1wi < 0,

for all i ∈ {1, . . . , n}. Since [D]ii = (g⊥
i )Tgi−1, the above

inequality implies that the diagonal entries of DW have the
same sign. Thus as the nonzero entries in δ do not have the
same sign, the nonzero entries of DWδ = Dε do not have
the same sign either. Furthermore, because ηi = sgn(εi) if
εi �= 0, the nonzero entry εi has the same sign with ηi. As a
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result, the nonzero entries of Dη do not have the same sign.
Thus we have Dη ∈ U with U defined in Lemma 4.3.

Step 2: determine the negative upper bound of �.
Note E is an incidence matrix of a directed and con-

nected cycle graph. By Godsil and Royle (2001, Theo-
rem 8.3.1), we have rank(E) = n − 1 and Null(ETE) =
Null(E) = span{1}. Thus inequality (23) implies

� ≤ − 1∑n
i=1 ‖ei‖

λ2(ETE)

n
‖Dη‖2 (By Lemma 4.3)

≤ − 1∑n
i=1 ‖ei‖

λ2(ETE)

n
λ1(D2)‖η‖2

≤ − 1∑n
i=1 ‖ei‖

λ2(ETE)

n
λ1(D2), (27)

where the last inequality uses the fact ‖η‖ ≥ 1 if ε �= 0 as
shown in Equation (19).

Now we analyse the two terms,
∑n

i=1 ‖ei‖ and λ1(D2),
in Equation (27). (1) Over the finite time interval [0, T],
the quantity

∑n
i=1 ‖ei‖ cannot go to infinity because the

vehicle speed is finite. Hence there exists a constant γ > 0
such that

∑n
i=1 ‖ei‖ ≤ γ . (2) Since D is diagonal, we have

λ1(D2) = mini[D]2
ii . At the equilibrium point ε = 0 (i.e.

θi = θ∗
i for all i), we have [D]ii = (g⊥

i )Tgi−1 �= 0 because
θ∗
i �= 0 or π as stated in Assumption 3.2. By continuity,

we can still have [D]ii �= 0 for all ε ∈ �(ε(0)) if ε(0) is
sufficiently small. Because �(ε(0)) is compact, there exists
a lower bound β such that λ1(D2) ≥ β for all ε ∈ �(ε(0)).
By (1) and (2), inequality (27) can be rewritten as

� ≤ −βλ2(ETE)

γ n
� −κ < 0, ∀ε ∈ �(ε(0)) \ {0}. (28)

Step 3: draw the stability conclusion.
If ε = 0 we have 0 ∈ L̃−A∂V V (ε) because of Equa-

tion (17) and the fact that 0 ∈ ∂V(0); if ε �= 0 we have
0 /∈ L̃−A∂V V (ε) because max L̃−A∂V V (ε) < 0 by Equation
(28). Thus by the definition (6), we have

Z−Asgn(ε),V (ε) = {0}. (29)

Based on Equations (28) and (29) and Lemma 2.2, any
solution of Equation (11) starting from ε(0) converges to
ε = 0 in finite-time, and the convergence time is upper
bounded by V(ε(0))/κ . Thus if V(ε(0)) satisfies

V (ε(0))

κ
< T < T ∗, (30)

then the system can be stabilised within the time interval
[0, T] during which collision avoidance between any
vehicles can be guaranteed. �

While the local formation stability is proved in Theorem
4.5, the convergence region of the equilibrium ε = 0 is

not given. We next give a sufficient condition on ε(0) to
guarantee the convergence and collision avoidance.

Corollary 4.6: Let �i � min{θ∗
i , |θ∗

i − π |, 2π − θ∗
i }

where i ∈ {1, . . . , n}. There exists ξ such that 0 < ξ <

min i�i. Let ε̄i � min{| cos(θ∗
i + ξ ) − cos θ∗

i |, | cos(θ∗
i −

ξ ) − cos θ∗
i |}, ζ � mini{θ∗

i − ξ, |π − θ∗
i | − ξ, 2π − θ∗

i −
ξ} and γ �

∑n
i=1 ‖ei(0)‖ + 4T . Under Assumptions

3.1 and 3.2, the proposed control law guarantees the
convergence of ε to 0 in [0, T] with collision avoidance
between any vehicles if

V (ε(0)) < min

{
min

i
ε̄i ,

sin2 ζλ2(ETE)

γ n
T

}
. (31)

Proof: The proof of Theorem 4.5 requires ε(0) to be suffi-
ciently small such that the following three conditions hold:
(i) λ1(D2) = min i[D2]ii > 0 for all ε ∈ �(ε(0)); (ii) θ∗

i and
θ (t) for all t ∈ [0, T] are both in (0, π ) or (π , 2π ); and (iii)
V(ε(0))/κ < T. Note condition (iii) ensures the collision
avoidance.

Step 1: analyse condition (i). Recall [D]ii =
(g⊥

i )Tgi−1 = sin θi as proved in Lemma 4.2. Hence
min i[D2]ii > 0 if θ i(t) �= 0 and θ i(t) �= π for all t ∈ [0,
T]. Thus condition (ii) implies condition (i).

Step 2: analyse condition (ii). Denote �i �
min{θ∗

i , |θ∗
i − π |, 2π − θ∗

i }. There exists ξ such that
0 < ξ < min i�i. Let ε̄i � min{| cos(θ∗

i + ξ ) −
cos θ∗

i |, | cos(θ∗
i − ξ ) − cos θ∗

i |}. Then we have the follow-
ing sufficient condition: if ε(0) satisfies

V (ε(0)) < min
i

ε̄i , (32)

then condition (ii) holds. To see that, for any j ∈ {1, . . . ,
n}, we have |εj (t)| ≤ ∑n

i=1 |εi(t)| = V (ε(t)) ≤ V (ε(0)) <

mini ε̄i ≤ ε̄j . Thus |εj (t)| < ε̄j for all t ∈ [0, T]. Since the
cosine function is monotone in (0, π ) or (π , 2π ), we have
|εj (t)| < ε̄j =⇒ |θi(t) − θ∗

i | < ξ and hence condition (ii)
holds. It should be noted ε̄i �= 0 and hence the set of ε(0)
that satisfies Equation (32) is always nonempty.

Further define ζ � mini{θ∗
i − ξ, |π − θ∗

i | − ξ, 2π −
θ∗
i − ξ}. Then |θi(t) − θ∗

i | < ξ implies θ i(t) > ζ , |π − θ i(t)|
> ζ and 2π − θ i(t) > ζ for all t ∈ [0, T]. Thus [D2]ii =
sin 2θ i > sin 2ζ . Hence we have β = sin 2ζ , where β is
the lower bound of λ1(D2) as defined in the proof of Theo-
rem 4.5.

Step 3: analyse condition (iii). We first identify an upper
bound of

∑n
i=1 ‖ei‖. Since the speed of each vehicle is

bounded above by two, it is easy to see
∑n

i=1 ‖ei(t)‖ ≤∑n
i=1 ‖ei(0)‖ + 4nT � γ for all t ∈ [0, T]. Therefore, we

have κ defined in Equation (28) as

κ = sin2 ζλ2(ETE)

γ n
,
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substituting which into Equation (30) yields

V (ε(0)) <
sin2 ζλ2(ETE)

γ n
T .

Therefore, if V(ε(0)) satisfies Equation (31), then the three
conditions are satisfied. By Theorem 4.5, the convergence
of ε and collision avoidance between any vehicles can be
guaranteed. �

Up to this point, the stability of the ε-dynamics has
been proved. From control law (9), it is trivial to see
that żi = 0 if εi = 0. Hence each vehicle will converge
to a finite stationary finial position within finite time. In
addition, suppose the target formation is achieved at time tf
< V(ε(0))/κ . Since ‖żi‖ ≤ ‖gi − gi−1‖ ≤ 2, we have ‖zi(tf)

− zi(0)‖ ≤ 2tf ≤ 2V(ε(0))/κ . Therefore, the final converged
position zi(tf) will be very close to its initial position
zi(0) if the initial angle error ε(0) is sufficiently small. In
other words, the final converged formation will not be far
away from the initial formation given small initial angle
errors.

5. Simulation results

In this section, we present simulation results to illustrate
the preceding theoretical analysis. Figures 2, 3, 4 and 5,
respectively, show the formation control of three, four, five
and eight vehicles. Note the five point star shown in Figure 3
is not a normal polygon. However, these kinds of formations
still have underlying graphs as cycles and hence can be
stabilised by the proposed control law. As shown in the

Figure 2. Control results by the proposed control law with n = 3, θ∗
1 = θ∗

2 = 45deg and θ∗
3 = 90deg.

Figure 3. Control results by the proposed control law with n = 4 and θ∗
1 = · · · = θ∗

4 = 90deg.
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Figure 4. Control results by the proposed control law with n = 5 and θ∗
1 = · · · = θ∗

5 = 36deg.

Figure 5. Control results by the proposed control law with n = 8 and θ∗
1 = · · · = θ∗

8 = 135deg.

simulation, the proposed control law can efficiently reduce
the angle errors and stabilise the formation in finite time.
In our stability proof, we assume that the initial angle error
ε(0) should be sufficiently small such that θ i(0) and θ∗

i are
in either (0, π ) or (π , 2π ). However, as shown in Figures 3
and 5, the formation can still be stabilised even if θ i(0)
and θ∗

i may be, respectively, in the two intervals (0, π ) and
(π , 2π ). Hence the simulation suggests that the attractive
region of the target formation by the proposed control law
is not necessarily small.

6. Conclusions

In this paper, we proposed a distributed control law to sta-
bilise angle-constrained cyclic formations using bearing-
only measurements. Compared to the existing work, the

proposed control law can handle cyclic formations with
an arbitrary number of vehicles and only requires the sign
information of the angle errors. By using nonsmooth sta-
bility analysis tools, we proved that the formation is locally
finite-time stable with collision avoidance guaranteed.

Compared to the conventional position-based forma-
tion control, bearing-based formation control does possess
a number of unique features. For example, the formation
shape and the formation scale are uncontrollable by bearing-
based formation control since the inter-vehicle distances are
uncontrollable. However these limitations of bearing-based
formation control can be all well overcome in the future. For
example, the formation shape can be specified by assign-
ing a rigid underlying graph to a formation. To control the
scale of a formation, we can introduce some leader vehicles
whose inter-vehicle distances are controllable. Then given
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appropriate underlying sensing graph, the formation scale
can be controlled by tuning the distances among the leader
vehicles. These topics are very interesting and challenging
directions for future research.

Here are some other interesting topics for future re-
search on bearing-based formation control. First, this paper
only considers formations with cycle graphs. One of our im-
mediate research plans is to extend the work in this paper
to the cases with more complicated graphs. The extension
will be non-trivial, but the structure of the stability analysis
in this paper is believed to be useful for future research on
more complicated cases. Second, we assume the underlying
graph is undirected in this paper. It may be more practical
for the underlying sensing graphs to be directed. Finally,
the vehicle dynamics is assumed as a single integrator in
this work. More complicated vehicle dynamics and system
uncertainties need to be considered in the future.

Note
1. In some literature such as Godsil and Royle (2001), the

rows of an incidence matrix are indexed by vertices and the
columns are indexed by edges.
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Appendix

Proof [Proof of Lemma 4.2]:

(i) The two equations are obvious.
(ii) Denote Gi = [gi, g

⊥
i ] ∈ R

2×2. It is clear that Gi is an or-
thogonal matrix satisfying GT

i Gi = GiG
T
i = I . Hence we

have

gig
T
i + g⊥

i (g⊥
i )T = GiG

T
i = I.

Thus g⊥
i (g⊥

i )T = I − gig
T
i = Pi .

(iii) (g⊥
i )Tgj = gT

i RT(π/2)gj = gT
i R(−π/2)gj =

gT
i R(−π )R(π/2)gj = gT

i R(−π )g⊥
j = gT

i (−I )g⊥
j =

−(g⊥
j )Tgi .

(iv) By the definition of θ i, we have gi = R(θ i)( − gi − 1) and
hence gi − 1 = −R( − θ i)gi. Then

(g⊥
i )Tgi−1 = −gT

i R
(
−π

2

)
R(−θi)gi

= −gT
i R

(
−π

2
− θi

)
gi

= −‖gi‖
∥∥∥R

(
−π

2
− θi

)
gi

∥∥∥ cos
(
−π

2
− θi

)
= sin θi .

Then it is straightforward to see the rest of the results in
Lemma 4.2 (iv). �

Proof [Proof of Lemma 4.3]: By orthogonally projecting x ∈ U
to 1 and the orthogonal complement of 1, we decompose x as

x = x0 + x1,

where x0 ∈ Null(B) and x1⊥Null(B). Let ϕ be the angle between
1 and x. Then we have

xTBx = xT
1 Bx1

≥ λ2(B)‖x1‖2

= λ2(B) sin2 ϕ‖x‖2. (A.1)

By the definition of U , any x in U would not be in span{1}.
That means ϕ �= 0 or π and hence sin ϕ �= 0. We next identify
the positive infimum of sin ϕ. The open set U is enclosed by the
hyper-planes [x]i = 0 with i ∈ {1, . . . , n}. And 1 is isolated
from any x ∈ U by the hyper-planes. Denote the boundary of U
as ∂U . Then we have inf x∈U ϕ = minx∈∂U ∠(x, 1) and supx∈U ϕ =
maxx∈∂U ∠(x, 1). Denote pi ∈ R

n as the orthogonal projection of
1 on the hyper-plane [x]i = 0. Then minx∈∂U ∠(x, 1) = ∠(pi, 1)
and maxx∈∂U ∠(x, 1) = ∠(−pi, 1). Note the ith entry of pi is zero
and the others are one. It can be calculated that cos ∠(±pi, 1) =
±√

n − 1/
√

n and hence sin ∠(±pi, 1) = 1/
√

n. Thus

inf
x∈U

sin ϕ = 1√
n

,

substituting which into Equation (A.1) yields

inf
x∈U

xTBx

xTx
= λ2(B)

n
.

�
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