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This article presents an input–output simulation approach to controlling multi-affine systems for linear temporal
logic (LTL) specifications, which consists of the following steps. First, the state space is partitioned into
rectangles, each of which satisfies atomic LTL propositions. Then, we study the control of multi-affine systems
on rectangles, including the control based on the exit sub-region to drive all trajectories starting from a rectangle
to exit through a facet and the control to stabilise the multi-affine system towards a desired point. With the
proposed controllers, a finitely abstracted transition system is constructed which is shown to be input–output
simulated by the rectangular transition system of the multi-affine system. Since the input–output simulation
preserves LTL properties, the controller synthesis of the multi-affine system for LTL specifications is achieved by
designing a nonblocking supervisor for the abstracted transition system and by implementing the resulting
supervisor to the original multi-affine system.
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1. Introduction

Due to the integration of embedded computers and
communications, high-level specifications like sequen-
cing tasks, system synchronisation and network
adaptability naturally emerge in the engineering
applications, which goes beyond the traditional control
tasks such as stabilisation, output regulation and so
on. To address such a challenge, temporal logic,
especially linear temporal logic (LTL), has been
adopted from computer science to the control and
robotics society (Thistle and Wonham 1986; Knight
and Passino 1990; Belta et al. 2007; Ulusoy, Smith, Xu,
and Belta 2012). Temporal logic can be used to form
complicated specifications in a succinct and unambig-
uous manner. In addition, temporal logic is similar to
natural languages and can be easily interpreted by
human operators (Eker et al. 2002). Therefore, recent
years have seen increasing activities in controller design
to satisfy temporal logic specifications.

The basic idea to solve the controller design for
LTL specifications is to abstract finite-state transition
systems from continuous systems. The resulting finite-
state transition systems preserve LTL properties,
therefore enabling the controller synthesis through
discrete algorithm techniques. Fainekos, Kress-Gazit,
and Pappas (2005) studied the control of robots

with second-order linear dynamics in a polygonal

workspace to fulfil LTL specifications, where the

discrete abstraction can be obtained by a triangulation

of polygon and vector fields assigned in each triangles

drive the produced trajectories to satisfy an LTL

formula over the triangles. This work was refined in
Tabuada and Pappas (2006) by approaching arbitrary-

dimensional discrete-time linear system. It was shown

that an equivalent discrete transition system exists for

the controllable system with properly chosen observa-

bles. Specifically, it builds up the framework for

generating the runs of the discrete transition system
satisfying the LTL specifications. As opposed to

discrete-time linear systems in Tabuada and Pappas

(2006) and Kloetzer and Belta (2008) studied the

control problem for the LTL specifications with

respect to continuous-time linear systems. Based on

the results of controlling linear systems on polytopes

(Habets and van Schuppen 2004), a computational
approach was provided to controller design consisting

of polyhedral operator and searches on graphs.

Other related work includes the control of a planar

robot to achieve sensor-based LTL specifications

(Kress-Gazit, Fainekos, and Pappas 2009) and robust

LTL specifications (Fainekos, Girard, Kress-Gazit,
and Pappas 2009). Although many of these works
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provide valuable inspiration, they are only applicable
to linear systems.

In this article, we consider a particular class of
nonlinear systems-multi-affine systems. This kind of
continuous dynamics is widely used for system model-
ling in practice, such as the celebrated Ogawa (1993),
Volterra (1926) and Lotka-Volterra (1925) equations,
the control systems for aircraft and underwater
vehicles (Belta 2004) and the models of genetic
regulatory networks (Sastry 1999). Formal analysis
and control of such systems were investigated in the
literature (Belta and Habets 2006; Habets, Kloetzer,
and Belta 2006; Kloetzer and Belta 2006; Berman,
Halász, and Kumar 2007). Different from their works,
we propose an input–output simulation approach so
that the controlled multi-affine systems fulfil the LTL
specifications. It consists of the following steps. First,
we partition the state space into several rectangles
consistent with the coordinates. Each rectangle satisfies
atomic LTL propositions. Second, we investigate the
control of multi-affine systems on rectangles. A control
method is provided based on the exit sub-region to
drive all trajectories starting from a rectangle to exit
only through a facet. In addition, we investigate the
control of stabilising the system towards a desired
point. Third, by using the proposed control methods, a
finitely abstracted transition system of the multi-affine
system is constructed. Then, we formalise the notion of
input–output simulation as a behaviour inclusion
between transition systems and show that the
abstracted transition system is input–output simulated
by the rectangular transition system of the original
multi-affine system. Since input–output simulation
preserves LTL properties, the controller synthesis for
the original multi-affine system to enforce the linear
temporal specification is achieved by designing a
nonblocking supervisor for the abstracted transition
system and by implementing the resulting supervisor to
the original multi-affine system.

Compared with the literature, the contributions of
this article mainly lie on the following aspects. First, a
novel control method is proposed based on the exit
sub-region to drive the system to exit through a desired
facet. It is shown that this method covers more classes
of systems than those are addressed in Belta and
Habets (2006) and Habets et al. (2006). Furthermore,
we provide a solution for the convergence problem by
stabilising the system towards a fixed point. Second,
we formalise the notion of input–output simulation.
Since this notion requires input equivalence as well as
output equivalence, it is stronger than the conventional
simulations which need either of them (Milner 1989;
Tabuada and Pappas 2006). It is shown that there
exists an input–output simulation between the
abstracted transition system and the rectangular

transition system of the multi-affine system.
Therefore, the multi-affine map of the control input,
enforcing LTL specifications with respect to the
abstracted transition system, is also implementable
for the original multi-affine system. Third, a non-
blocking supervisor is designed for the abstracted
transition system in order to prevent blocking in the
execution and to implement the control strategy
effectively. Moreover, multiple feasible paths can be
automatically chosen by using this nonblocking
supervisor.

The rest of this article is organised as follows.
Section 2 gives the preliminary results. Section 3
presents the control of multi-affine systems on
rectangles. Section 4 investigates the finitely abstracted
transition system of the multi-affine system. The
controller synthesis for LTL specifications is studied
in Section 5. An illustrative example is presented in
Section 6. This article concludes with Section 7.

2. Preliminary results

2.1 Multi-affine systems on rectangles

We start by reviewing the notions of multi-affine
function and multi-affine control system.

Definition 2.1 (Belta and Habets 2006): A function
f¼ ( f1, f2, . . . , fm): R

n!Rm (with n,m2N) is said to be
multi-affine, if every fi(x): R

n!R, where x¼ (x1, x2,
. . . ,xn) and i¼ 1, . . . ,m, is a polynomial in the
indeterminates x1, x2, . . . , xn, with the property that
the degree of fi in any of indeterminates x1, x2, . . . , xn is
less or equal to 1. That is, f has the form

f ðxÞ ¼ f ðx1, x2, . . . ,xnÞ
¼

X
i1,...,in2f0, 1g

ci1i2���inðx1Þi1ðx2Þi2 � � � ðxnÞin

where ci1i2���in 2 Rm for all i1, i2, . . . , in2 {0, 1}.

For example, for n¼ 2 and arbitrary m, all multi-
affine functions have the form f(x1, x2)¼ c00þ c10x1þ
c01x2þ c11x1x2, where cij2Rm for i, j2 {0, 1}.

Definition 2.2: A control system �: _x ¼ f ðx, uÞ ¼
gðxÞ þ Bu with B2Rn�m is said to be multi-affine if
g: Rn!Rn is a multi-affine function.

For a multi-affine control system, we write �x0,uðtÞ
to denote the point reached at time t under the control
input u from initial condition x0. In this article, the
state space of the multi-affine system is assumed to be
bounded and rectangular, which holds in lots of
engineering applications (Belta and Habets 2006;
Berman et al. 2007). Given such a state space, we
would like to rectangularly partition it with respect to
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the coordinates. Then, the following concepts are
provided.

An n-rectangle is described by E ¼Qn
i¼1ðai, biÞ,

where ai, bi2R satisfy ai5 bi for i¼ 1, 2, . . . , n. The
closure of E is defined as E=

Qn
i¼1½ai, bi�. A facet of E is

the intersection of E with one of its supporting
hyperplanes. The set of facets of E is denoted by
F(E ). The set of vertices of E, denoted by V(E ), is
V(E )¼{(x1, x2, . . . , xn) j xi2 {ai, bi}, i¼ 1, 2, . . . , n}.
Given v2V(E ), we denote F(v) the set of all facets
containing v.

The state space can be partitioned into
Qn

i¼1 ni
rectangles as follows. Let xi 2

Sni
j¼1ða j

i , b
j
i Þ, where

a j
i 5 b j

i and a jþ1
i ¼ b j

i . Then, Rk1k2���kn ¼
Qn

i¼1ðakii , bkii Þ
is a rectangle in the partitioned state space, where
1� ki� ni. The facet of Rk1k2���kn is described by

F j,d
k1k2���kn ¼

Rk1k2���kn
T�

x 2 Rn jxj ¼ b
kj
j

�
if d ¼ þ

Rk1k2���kn
T�

x 2 Rn jxj ¼ a
kj
j

�
if d ¼ �

8<
:

where d2 {þ,�} and j¼ 1, . . . , n.
The outer normal of F j,d

k1k2���kn is given by

n j,d ¼
e>j if d ¼ þ
�e>j if d ¼ �

(

where d2 {þ,�}, j¼ 1, . . . , n and ej is the Euclidian
basis of Rn.

Given w ¼ ðw1,w2, . . . ,wnÞ 2 VðRk1k2���kn Þ, the vertex
membership function S: {w1, . . . ,wn}! {0, 1} is
defined as

Sðwj Þ ¼
1 if wj ¼ b

kj
j

0 if wj ¼ a
kj
j

:

8<
:

Denote � as the set of rectangles generated by
rectangularly partitioning the state space. The rectan-
gular projection map �Q: R

n! � is defined as
�QðxÞ ¼ fRk1k2���kn 2 � j x 2 Rk1k2���kng. Subsequently, the
property of the multi-affine function on rectangles is
presented as follows.

Lemma 2.3 (Belta and Habets 2006): Consider a
multi-affine function f and a rectangle Rk1k2���kn . In
every point x 2 Rk1k2���kn , the value f(x) is uniquely
determined by the values of f at vertices of Rk1k2���kn :

f ðxÞ ¼
X

w2VðRk1k2 ���kn Þ
�wðxÞ f ðwÞ ð1Þ

where for any w ¼ ðw1, . . . ,wnÞ 2 VðRk1k2���kn Þ and
x ¼ ðx1, x2, . . . , xnÞ 2 Rk1k2���kn , the coefficient �w(x) is
defined as

�wðxÞ ¼
Yn
j¼1

xj � a
kj
j

b
kj
j � a

kj
j

 !SðwjÞ
b
kj
j � xj

b
kj
j � a

kj
j

 !ð1�Sðwj ÞÞ

ð2Þ

By using this property, we review the results on the
existence of a multi-affine feedback controller for a
multi-affine system to keep the system in a rectangular
invariant (Lemma 2.4) and to drive all initial states in a
rectangle through a desired fact in finite time
(Lemma 2.5).

Lemma 2.4 (Belta and Habets 2006): Given a multi-
affine control system �: _x ¼ gðxÞ þ Bu and a rectangle
Rk1k2���kn , there exists a multi-affine feedback controller
K(x) such that u¼K(x) and all trajectories of the closed-
loop system that start from Rk1k2���kn remain in Rk1k2���kn
for all times if and only if for any w 2 VðRk1k2���kn Þ, the
following set is nonempty:

UIðwÞ ¼
\

F j,d
k1k2 ���kn

2FðwÞ
fv 2 Rm j n j,dð gðwÞ þ BvÞ � 0g: ð3Þ

Lemma 2.5 (Belta and Habets 2006): Given a multi-
affine control system � : _x ¼ gðxÞ þ Bu and a rectangle
Rk1k2���kn , there exists a multi-affine feedback controller
K(x) such that u¼K(x) and all trajectories of the closed-
loop system that start from Rk1k2���kn are driven only
through F j,d

k1k2���kn in finite time if for any w 2 VðRk1k2���kn Þ,
the following set is nonempty:

UEðwÞ ¼
\

F j 0 , d 0
k1k2 ���kn

2FðwÞ, ð j, d Þ6¼ð j 0, d 0Þ
fv 2 Rm j n j,dð gðwÞ þ BvÞ4 0

^ n j 0, d 0 ð gðwÞ þ BvÞ � 0g: ð4Þ

2.2 Transition system and LTL

A transition system is a tuple S¼ (E, E0, U, !, Em, Y,
H ), where E is a set of states, E0�E is a set of initial
states, U is a set of control inputs, !�E�U�E is a
transition relation, Em is a set of marked states, Y is a
set of outputs and H: E!Y is an output function. The
evolution of a system is captured by the transition
relation. A transition (e, u, e0)2! is denoted as e!u e 0.
Let U� be a set of all finite strings over U, including the
empty string �. The transition relation !� E�U�E
can be extended to !� E�U� �E in a natural way:
e!su e 0 if there exists an e00 such that e!s e00 and e00!u e 0,
where s2U� and u2U. For E1�E, the notation
!jE1�U�E1

means! is restricted to a smaller
domain E1. Consider a set of propositions �, the label
function L: Y! 2� assigns each output a set of atomic
propositions satisfied by this output. Consider
e1!u1 e2!u2 � � � en!un enþ1. A finite path generated from e1,
denoted as Pe1 , is a finite alternating sequence of
outputs and inputs: Pe1 ¼ Hðe1Þu1Hðe2Þu2 � � �H(en)
unH(enþ1). A finite run generated from e1, denoted
as Re1 , is a finite sequence of outputs: Re1 ¼
Hðe1ÞHðe2Þ � � �HðenÞ. If the lengths of the above
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sequences are infinite, they are called to be an infinite
path and an infinite run, respectively. Denote P(S ),
Pw(S ), R(S ) and Rw(S ) as the set of all finite paths
generated by S, the set of all infinite paths generated by
S, the set of all finite runs generated by S and the set of
all infinite runs generated by S, respectively. Given
B�Rw(S ), the prefix of B is defined as
B ¼ fs 2 RðSÞ j 9t 2 RwðSÞ : st 2 Bg.

A transition system defines different languages. The
finite language of S is defined as L(S )¼{Re2R(S ) j
e2E0}. The infinite language of S is defined as
Lw(S )¼{Re2Rw(S ) j e2E0}. Let Ym¼ {y j y¼H(e),
e2Em}. The accepted language of S is defined as
Lw
AðSÞ ¼ fr 2 RwðSÞ j inf ðrÞ \ Ym 6¼ ;g, where inf(r)

denotes the set of outputs appearing infinitely often
in run r. The finite path language of S is defined as
LP(S )¼ {Pe2P(S ) j e2E0}. The infinite path language
of S is defined as Lw

PðSÞ¼{Pe2Pw(S ) j e2E0}. Given a
label function L: Y! 2�, an infinite run R¼R(1)�
R(2)R(3) � � � defines a word W¼W(1)W(2)W(3)� � �,
where W(i)¼L(R(i)) for i¼ 1, 2, 3, . . . .

The syntax and semantics of LTL formulas over
the words of the transition system are introduced
(Kloetzer and Belta 2008).

Definition 2.6 (Syntax of LTL formulas): An LTL
formula over � is recursively defined as:

. Every proposition �2� is a formula.

. If ’1 and ’2 are formulas, then ’16 ’2, 1’1, 	’
and ’1U’2 are also formulas.

Definition 2.7 (Semantics of LTL formulas): The
satisfaction of an LTL formula ’ at position i¼ 1, 2,
3, . . . of the word W, denoted by W(i)�’, is recursively
defined as:

. W(i)��, if �2W(i);

. W(i)� 1’, if W(i) 2 ’, where 2 denotes the
negation of �;

. W(i)� 	’ if W(iþ 1)� ’;

. W(i)� ’16 ’2, if W(i)�’1 and W(i)� ’2;

. W(i)� ’1U’2, if there exists a j4 i such
that W( j)� ’2 and for all i� k5 j we have
W(k)� ’1.

If W(1)� ’, we say that the word W satisfies ’,
written as W� ’. The symbols6 and 1 stand for
conjunction and negation, respectively. The other
Boolean connectors _ (disjunction),) (implication),
and, (equivalence) are defined in the usual way. The
temporal operator 	 is called the next operator.
Formula 	’ specifies that ’ will be true in the next
step. The temporal operator U is called the until
operator. Formula ’1U’2 means that ’1 must hold
until ’2 holds. Two additional operators, ‘eventually’
and ‘always’ are defined as 
’¼trueU� and h’¼1
1’.

Formula 
’ means that ’ becomes eventually true
whereas h’ indicates that ’ is true at all positions
of W. This set of operators can be employed to express
many interesting specifications such as system syn-
chronisation (Tabuada and Pappas 2006) and obstacle
avoidance (Example 1).

3. Control of multi-affine systems on rectangles

In the previous section, several rectangles have been
produced by a rectangular partition of the state space.
Now, we investigate the control of multi-affine systems
on rectangles. First, the notion of state-based switch
multi-affine function is introduced.

Definition 3.1: Given multi-affine functions U:
Rn!Rm and U0: Rn!Rm, xf2Rn and "2Rþ, a
function U 
U0: Rn!Rm is said to be a state-based
switch multi-affine function from U to U0 with respect
to xf and " if

U 
U 0ðxÞ ¼ UðxÞ if x =2B"ðxf Þ
U 0ðxÞ if x 2 B"ðxf Þ

�

where B"(xf)¼ {x j kx� xfk� "} with k k denoting the
Euclidean norm.

In this article, the control input for a multi-affine
system _x ¼ gðxÞ þ Bu is in terms of u¼K(x), where K is
multi-affine function or a state-based switch multi-
affine function. Therefore, the feedback law is auto-
matically bounded on Rk1k2���kn . In the rest of this
section, we propose a control method based on the exit
sub-region to drive all trajectories of the closed-loop
system starting from Rk1k2���kn to exit through a desired
facet of Rk1k2���kn , where the exit sub-region is defined as
follows.

Definition 3.2: Let � : _x ¼ gðxÞ þ Bu be a multi-
affine control system, K(x) be a multi-affine feedback
controller, Rk1k2���kn be a rectangle and F j,d

k1k2���kn be a
facet of Rk1k2���kn . A sub-region of Rk1k2���kn is called to
an exit sub-region with respect to F j,d

k1k2���kn and K(x),
denoted as ½K� j,dk1k2���kn , if for any x0 2 ½K� j,dk1k2���kn , there
exists a � 2Rþ such that

(1) �x0,KðxÞðt1Þ 2 Rk1k2���kn for t12 [0, �);
(2) �x0,KðxÞðt2Þ 2 F j,d

k1k2���kn for t2¼ �;
(3) �x0,KðxÞðt3Þ =2Rk1k2���kn

S
F j,d
k1k2���kn for t32 (�, �þ ")

and "2Rþ.

We can see that all trajectories of the closed-loop
system _x ¼ gðxÞ þ BKðxÞ originating in the sub-region
½K� j,dk1k2���kn will leave Rk1k2���kn only through F j,d

k1k2���kn . It
implies that if we can find a controller K0(x) such that
all trajectories of the closed-loop system
_x ¼ gðxÞ þ BK 0ðxÞ starting from Rk1k2���kn can reach
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the exit sub-region ½K� j,dk1k2���kn in finite time, then the
control of multi-affine systems with respect to the exit
facet F j,d

k1k2���kn can be realised by using K(x) together
with K0(x). That is, we can first apply the controller
K0(x) to the multi-affine system and then update the
controller to K(x) once the trajectories arrive in
½K� j,dk1k2���kn . To implement this idea, the following
problems should be addressed. Problem 1: how to
find a controller K(x) to guarantee the existence of an
exit sub-region ½K� j,dk1k2���kn? Problem 2: if there exists an
exit sub-region ½K� j,dk1k2���kn , how to compute it? Problem
3: how to design a controller K0(x) to drive all
trajectories of the closed-loop system starting from
Rk1k2���kn towards ½K� j,dk1k2���kn? For Problem 1, we provide
the following proposition.

Proposition 3.3: Given a multi-affine control system
� : _x ¼ gðxÞ þ Bu, a multi-affine feedback controller
K(x), a rectangle Rk1k2���kn and a facet F j,d

k1k2���kn of

Rk1k2���kn , there exists an exit sub-region ½K� j,dk1k2���kn with
respect to F j,d

k1k2���kn and K(x) if

(1) 9w 2 VðF j,d
k1k2���kn Þ:

n j,d½ gðwÞ þ BKðwÞ�4 0; ð5Þ
(2) 8v 2 VðRk1k2���kn ÞnVðF j,d

k1k2���kn Þ, 8F
j 0, d 0
k1k2���kn 2 FðvÞ:

n j 0, d 0 ½ gðvÞ þ BKðvÞ� � 0; ð6Þ
(3) 8x 2 Rk1k2���kn :

gðxÞ þ BKðxÞ 6¼ 0: ð7Þ

Proof: We have n j,d[g(w)þBK(w)]4 0 at the vertex
w 2 VðF j,d

k1k2���kn Þ. Because the vector field is continuous,
there exist some points at the neighbourhood of w that
have strictly positive vector field outwards Rk1k2���kn
through F j,d

k1k2���kn . Moreover, (6) implies that the
trajectories of the closed-loop system cannot leave
through the facets whose vertices all satisfy the
condition (6), and (7) implies there does not exist an
equilibrium point inside Rk1k2���kn . We conclude that
some trajectories of the closed-loop system starting
from Rk1k2���kn will leave through F j,d

k1k2���kn . That is, there
is an exit sub-region ½K� j,dk1k2���kn of Rk1k2���kn with respect
to F j,d

k1k2���kn and K(x). œ

It intuitively states that there exists an exit
sub-region ½K� j,dk1k2���kn with respect to F j,d

k1k2���kn and K(x)
if the multi-affine feedback controller K(x) is such that:
(1) there exists a vertex w on the exit facet such that the
velocity of the closed-loop system g(w)þBK(w) at w
has a strictly positive projection along the outer
normal of the exit facet; (2) for any vertex v which is
not on the exit facet, the velocity of the closed-loop
system g(v)þBK(v) at v has a negative projection along
the outer normal of the facet containing v; (3) there

does not exist an equilibrium point inside Rk1k2���kn .
Thus, Problem 1 is solved. Then, we consider

Problem 2, i.e. the computation of the exit sub-

region. Before presenting the calculation algorithm,

we need the concept of time-elapse cone.

Definition 3.4 (Berman et al. 2007): Given a multi-

affine control system �: _x ¼ gðxÞ þ Bu, a multi-affine

feedback controller K(x) and a rectangle Rk1k2���kn , the
time-elapse cone for Rk1k2���kn with respect to K(x),

denoted by CRk1k2 ���kn ,KðxÞ, is defined as

CRk1k2 ���kn ,KðxÞ

¼
� X

w2VðRk1k2 ���kn Þ
	w ½ gðwÞ þ BKðwÞ� j	w � 0

�
: ð8Þ

The following lemma shows that the reachability of

multi-affine systems can be estimated by the time-

elapse cone.

Lemma 3.5 (Berman et al. 2007): Given a multi-affine

control system �: _x ¼ gðxÞ þ Bu, a multi-affine feed-

back controller K(x), a rectangle Rk1k2���kn , a state set

B � Rk1k2���kn and a reachable set of trajectories

XRk1k2 ���kn ,KðxÞðBÞ ¼ f�x0,KðxÞðtÞ j x0 2 B ^ t 2 ½0, ��g for

� 2Rþ with respect to K(x), then XRk1k2 ���kn ,KðxÞðBÞ �
B CRk1k2 ���kn ,KðxÞ, where is the Minkowski sum.

Similarly, the exit sub-region can be calculated, as it

is illustrated in Algorithm 3.6.

Algorithm 3.6 (Computation of exit sub-regions)

Input: a multi-affine control system �: _x ¼ gðxÞ þ Bu,

a multi-affine feedback controller K(x), a rectangle

Rk1k2���kn , a facet F j,d
k1k2���kn of Rk1k2���kn and an accuracy

limitation ".
Output: an exit sub-region ½K� j,dk1k2���kn with respect to

F j,d
k1k2���kn and K(x).

For any Rk 0
1
k 0
2
���k 0

n
¼Qn

i¼1ða
k 0
i

i , b
k 0
i

i Þ, we define the follow-
ing functions:

LðRk 0
1
k 0
2
���k 0

n
Þ :¼ max

i2f1,2,...,ng

�
b
k 0
i

i � a
k 0
i

i

�
;

PðRk 0
1
k 0
2
���k 0

n
Þ :¼

[
m,p,���l2f1,2g

Rk 0
1m

k 0
2p
���k 0

nl

¼
[

m,p,���l2f1,2g

�
a
k 0
im

1 , a
k 0
imþ1

1

�
�
�
a
k 0
ip

2 , a
k 0
ipþ1

2

�

� � � � �
�
a
k 0
il

n , a
k 0
ilþ1

n

�
,

where a
k 0
i1

i ¼ a
k 0
i

i , a
k 0
i2

i ¼ a
k 0
i

i
þb

k 0
i

i

2 , and a
ki3
i ¼ b

k 0
i

i .
Let pRexit¼�;
if ð9w 2 VðF j,d

k1k2���kn Þ : n j,d½ gðwÞ þ BKðwÞ�4 0 and

8v 2 VðRk1k2���knÞ n VðF j,d
k1k2���knÞ, 8F

j 0, d 0
k1k2���kn 2 FðvÞ :

n j 0, d 0 ½ gðvÞ þ BKðvÞ� � 0)
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if (8v 2 VðRk1k2���knÞ n VðF j,d
k1k2���kn Þ : n j,d½ gðvÞþ

BKðvÞ�4 0 and 8w 2 VðF j,d
k1k2���knÞ, 8F

j 0, d 0
k1k2���kn 2

FðwÞ with ( j, d) 6¼ ( j0, d0): n j,d[g(w)þBK(w)]4 0

6 n j0,d0[g(w)þBK(w)]� 0)

pRExit ¼ fRk1k2���kng;
else if (g(x)þK(x) 6¼ 0 for any x 2 Rk1k2���kn )

Let Rect={Rk1k2���kn};
if (L(R)4 " for any R2Rect)

Rect ¼ S
R2Rect

PðRÞ;
end if

for all R0 2Rect, do S ¼ R 0  CRk1k2 ���kn ,KðxÞ
if (S \ F j,d

k1k2���kn 6¼ ;6S \ ðFðRk1k2���knÞn
F j,d
k1k2���kn Þ ¼ ;Þ
pRExit ¼ pRExit

S
R 0;

end if

end for

end if

pRExit ¼ ½K� j,dk1k2���kn is an exit sub-region with

respect to F j,d
k1k2���kn and K(x).

end if

Proposition 3.7: Algorithm 3.6 is correct.

Proof: Since (5)–(7) are satisfied, there exists an exit
sub-region with respect to F j,d

k1k2���kn and K(x) from
Proposition 3.3. Let R0 be a rectangle obtained
by dividing Rk1k2���kn , i.e. R 0 2 PðRk1k2���knÞ and
XRk1k2 ���kn ,KðxÞðR 0Þ be all trajectories of the closed-loop
system _x ¼ gðxÞ þ BKðxÞ starting from R0. We have
XRk1k2 ���kn ,KðxÞðR 0Þ � R 0  CRk1k2 ���kn ,KðxÞ according to
Lemma 3.5. Here we use the facts: (1) ðR 0
CRk1k2 ���kn ,KðxÞÞ \ F j,d

k1k2���kn 6¼ ;; (2) ðR 0  CRk1k2 ���kn ,KðxÞÞ\ðFðRk1k2���kn ÞnF j,d
k1k2���knÞ ¼ ;; (3) there does not exist an

equilibrium point inside Rk1k2���kn . It follows that all
trajectories of the closed-loop system starting from R0

exit only through F j,d
k1k2���kn . Therefore, pRExit ¼

½K� j,dk1k2���kn is an exit sub-region with respect to F j,d
k1k2���kn

and K(x). œ

Next, we present the result for Problem 3.

Proposition 3.8 (Control to a fixed point): Given a
multi-affine control system �: _x ¼ gðxÞ þ Bu, a rectan-
gle Rk1k2���kn and a desired point xf 2 Rk1k2���kn , there
exists a multi-affine feedback controller K0(x) such that
u¼K0(x) and all trajectories of the closed-loop system
starting from Rk1k2���kn remain in Rk1k2���kn for all times
and converge to xf if for any w 2 VðRk1k2���kn Þ, UI(w) 6¼ ;
holds and there exists an u0(w)2UI(w) such that xf is a
unique point in Rk1k2���kn :

gðxf Þ þ B
X

w2VðRk1k2 ���kn Þ
�wðxfÞu 0ðwÞ ¼ 0: ð9Þ

Proof: Because UI(w) 6¼ ; for any w 2 VðRk1k2���kn Þ,
there exists a multi-affine feedback controller such that
all trajectories of the closed-loop system starting from

Rk1k2���kn remain in Rk1k2���kn for all times by Lemma 2.4.
Let u0(w)2UI(w) be the control input at w such that xf
is a unique point in Rk1k2���kn satisfying (9). Then, we
design K 0ðxÞ ¼P

w2VðRk1k2 ���kn Þ �wðxÞu
0ðwÞ. For all rec-

tangle 
Rk1k2���kn , where 
2 [0, 1], the vertex set
Vð
Rk1k2���kn Þ ¼ f
wþ ð1� 
Þxfg. It can be seen that

Rk1k2���kn is just a shrunken version of Rk1k2���kn by
multiplying Rk1k2���kn from xf by the factor 
. Thus, the
velocity vector of the closed-loop system at the vertex
of 
Rk1k2���kn is just 
-multiple the velocity vector at the
corresponding vertex of Rk1k2���kn . Since the vector field
of the closed-loop system in all vertices of 
Rk1k2���kn is
pointing inside to 
Rk1k2���kn , there exist t04 0 and

0 2 [0, 1) such that �w,K 0ðxÞðt0Þ 2 
 0Rk1k2���kn . Then,
�x0,K 0ðxÞðtÞ 2 
 0Rk1k2���kn for all x0 2 Rk1k2���kn and t� t0.
Similarly, we obtain �x0,K 0ðxÞðtÞ 2 ð
 0ÞnRk1k2���kn for
t� nt0. Therefore, limt!1 �x0,K 0ðxÞðtÞ ¼ xf. œ

It indicates that if we can construct a controller of
the form u ¼ K 0ðxÞ ¼P

w2VðRk1k2 ���kn Þ �wðxÞu
0ðwÞ, where

u0(w)2UI(w) 6¼ ;, such that xf is a unique equilibrium
point inside Rk1k2���kn , then all trajectories of the closed-
loop system starting from Rk1k2���kn are driven towards
xf. This kind of multi-affine function K0 is called a fixed
point controller with respect to xf. By putting xf inside
the exit sub-region ½K� j,dk1k2���kn , the fixed point controller
yields a solution for Problem 3. Now, we are ready to
present the result on the control with respect to a
desired exit facet.

Proposition 3.9 (Control to an exit facet): Given a
multi-affine control system �: _x ¼ gðxÞ þ Bu, a rectan-
gle Rk1k2���kn and a facet F j,d

k1k2���kn of Rk1k2���kn , there exists
a feedback controller such that all trajectories of the
closed-loop system starting from Rk1k2���kn are driven only
through F j,d

k1k2���kn in finite time if any of the following two
conditions is satisfied:

(1) UE(w) 6¼ ; holds for any w 2 VðRk1k2���kn Þ;
(2) UE(w) 6¼ ; does not hold for any w 2 VðRk1k2���knÞ

and there exist xf 2 Rk1k2���kn , "2Rþ and multi-
affine functions U and U0 such that
B"ðxf Þ � ½U� j,dk1k2���kn and U0 is a fixed point
controller with respect to xf.

Proof: As for condition (1), it obviously guarantees
the existence of a controller with respect to an exit facet
according to Lemma 2.5. As for condition (2), because
U0 is a fixed point controller with respect to xf,
all trajectories of the closed-loop system _x ¼
gðxÞ þ BU 0ðxÞ starting from Rk1k2���kn will converge
towards xf. Moreover, there is an "2Rþ such
that B"ðxf Þ � ½U� j,dk1k2���kn , where ½U� j,dk1k2���kn is an exit
sub-region with respect to F j,d

k1k2���kn and U(x). By using
the state-based switch multi-affine feedback
controller U0 
U(x) (w.r.t. xf and "), all trajectories of
the corresponding closed-loop system starting
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from Rk1k2���kn will exit only through F j,d
k1k2���kn in finite

time. œ

Proposition 3.9 provides two different ways to
drive the trajectories of the corresponding closed-loop
system starting from Rk1k2���kn to exit only through a
desired facet. One (condition (1)) is based on the result
of Lemma 2.5 and the other (condition (2)) is based on
the exit sub-region. Thus, the proposed control method
for an exit facet covers more classes of systems than

those and addressed in Belta and Habets (2006) and
Habets et al. (2006). We call the multi-affine function
or the state-based switch multi-affine function U,
which drives all trajectories of the closed-loop system
starting from Rk1k2���kn to exit only through F j,d

k1k2���kn as
an exit controller with respect to F j,d

k1k2���kn . Such an exit
controller can be obtained by the following algorithm.

Algorithm 3.10 (Synthesis of exit controllers)

Input: a multi-affine control system �: _x ¼ gðxÞ þ Bu,
a rectangle Rk1k2���kn , a facet F j,d

k1k2���kn of Rk1k2���kn and
juj � �.
Output: an exit controller with respect to F j,d

k1k2���kn .
Let VðRk1k2���knÞ ¼ fwj j j ¼ 1, 2, . . . , 2ng.
if (UE(wj) 6¼ ; for any wj 2 VðRk1k2���kn Þ n VðF j,d

k1k2���kn Þ)
Let V1 :¼ fj 2 f1, 2, . . . , 2ng jUEðwjÞ ¼ ;,wj 2
VðRk1k2���kn Þg.
if (V1¼;)

U1 :¼
�
fU1

Rk1k2 ���kn
ðwj Þ j j¼ 1,2, . . . ,2ng��

wj 2VðRk1k2���kn Þ^U1
Rk1k2 ���kn

ðwj Þ 2UEðwj Þ

^
���� X
j¼1,2,...,2n

�wj
ðxÞU1

Rk1k2 ���kn
ðwj Þ

����� �,x2Rk1k2���kn

�
,

if (U1 6¼ ;)
U1

Rk1k2 ���kn
ðxÞ ¼

X
j¼1,2,...,2n

�wj
ðxÞU1

Rk1k2 ���kn
ðwj Þ,

where fU1
Rk1k2 ���kn

ðwj Þ j j ¼ 1, 2, . . . , 2ng 2 U1:
The multi-affine function U1

Rk1k2 ���kn
is an exit

controller with respect to F j,d
k1k2���kn

end if

else if (V1� {1, 2, . . . , 2n})
if (UI(wj) 6¼ ; for any wj 2 VðRk1k2���kn ÞÞ

U3 :¼
�
fU3

Rk1k2 ���kn
ðwj Þ j j¼ 1,2, . . . ,2ng��

wj 2VðRk1k2���kn Þ^U3
Rk1k2 ���kn

ðwj Þ 2UIðwj Þ

^
���� X
j¼1,2,...,2n

�wj
ðxÞU3

Rk1k2 ���kn
ðwj Þ

����� �, x2Rk1k2���kn

�
;

if (U3 6¼ ;)
U2 :¼

�
fU2

Rk1k2 ���kn
ðwj Þ j j¼ 1,2, . . . ,2ng��

nj,d½gðwmÞþBU2
Rk1k2 ���kn

ðwmÞ�40

^wj 2VðRk1k2���knÞ^U2
Rk1k2 ���kn

ðwl Þ 2UEðwl Þ^���� X
j¼1,2,...,2n

�wj
ðxÞU2

Rk1k2 ���kn
ðwj Þ

����� �,m2V1,

l2 f1,2, . . . ,2ngnV1 and x2Rk1k2���kn

�
,

if (U2 6¼ ;)
for all fU2

Rk1k2 ���kn
ðwj Þ j j ¼ 1, 2, . . . , 2ng 2 U2

do

U2
Rk1k2 ���kn

ðxÞ ¼
X

j¼1,2,...,2n

�wj
ðxÞU2

Rk1k2 ���kn
ðwj Þ;

Obtain the exit sub-region ½U2
Rk1k2 ���kn

� j,d
w.r.t. F j,d

k1k2���kn and U2
Rk1k2 ���kn

ðxÞ;
for all fU3

Rk1k2 ���kn
ðwj Þ j j ¼ 1, 2, . . . , 2ng 2 U3

do

U3
Rk1k2 ���kn

ðxÞ ¼
X

j¼1,2,...,2n

�wj
ðxÞU3

Rk1k2 ���kn
ðwj Þ;

if (9 "2Rþ and a unique point
x 0 2 Rk1k2���kn s.t. gðx 0Þ þ BU3

Rk1k2 ���kn
ðx 0Þ ¼

0 and B"ðx 0Þ � ½U2
Rk1k2 ���kn

� j,d);
The state-based switch multi-affine
function U3

Rk1k2 ���kn

U2

Rk1k2 ���kn
w.r.t. xf

and " is an exit controller for F j,d
k1k2���kn .

end if

end for

end for

end if

end if

end if

end if

end if

Proposition 3.11: Algorithm 3.10 is correct.

Proof: The proof is obvious according to
Proposition 3.9. œ

4. Finitely abstracted transition systems of multi-

affine systems

The control of multi-affine systems on rectangles
enables the construction of a finitely abstracted
transition system for the multi-affine system, as
illustrated in Definition 4.1. Here we assume that any
initial state of the multi-affine system is inside the
rectangles and the duration of the trajectories staying
on the boundary of the rectangle is ignored.
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These assumptions result in no loss of generality since
they always hold in the implementation.

Definition 4.1: Given a multi-affine control system
�: _x ¼ gðxÞ þ Bu and a rectangle set � generated by
rectangularly partitioning the state space, the
abstracted transition system of � associated with �,
denoted as S�,�, is a tuple

S�,� ¼ ðX�,X�0,U�, !� ,Xm�,Y�,H�Þ

. X�¼ �¼Xm�;

. X�0¼ {Rk1k2���kn 2 � j Rk1k2���kn contains an
initial state of the multi-affine control system};

. U� ¼ fURk1k2 ���kn
jURk1k2 ���kn

is a multi-affine func-
tion or a state-based switch multi-affine
function, Rk1k2���kn 2 �};

. Rk1k2���kn !
URk1k2 ���kn

�Rk 0
1
k 0
2
���k 0

n
if any of the following

two conditions is satisfied:

(1) Rk1k2���kn ¼ Rk 0
1
k 0
2
���k 0

n
holds and for

any w 2 VðRk1k2���kn Þ, UI(w) 6¼ ; and
URk1k2 ���kn

ðwÞ 2 UIðwÞ.
(2) Rk1k2���kn 6¼ Rk 0

1
k 0
2
���k 0

n
with Rk1k2���kn\

Rk 0
1
k 0
2
���k 0

n
¼ F j,d

k1k2���kn holds and URk1k2 ���kn
is

an exit controller with respect to F j,d
k1k2���kn .

. Y�¼ �;

. H�ðRk1k2���knÞ ¼ Rk1k2���kn .

An abstracted transition system is a finite-state
system, therefore it facilitates the synthesis of the
controller for finite-state requirements while accom-
modating to infinite-state dynamics. Next, a rectan-
gular transition system of the multi-affine control
system is established, and it can be understood as a
transition system form of the multi-affine control
system over a rectangularly partitioned state space.

Definition 4.2: Given a multi-affine control system
� : _x ¼ gðxÞ þ Bu, a rectangle set � generated by
rectangularly partitioning the state space and a
rectangular project map �Q defined by �, the rectan-
gular transition system of � associated with �, denoted
as S�,Q, is a tuple

S�,Q ¼ ðXQ,XQ0,UQ, !Q ,XmQ,YQ,HQÞ
. XQ¼Rn¼XmQ;
. XQ0¼ {x jx is an initial state of the multi-

affine control system};
. UQ¼ {k j k(x) is a feedback control law};

. x!k Qx
0 if any of the following two conditions

is satisfied:

(1) �Q(x)¼�Q(x
0) holds and there exists � 2Rþ

such that �x,k(x)(�)¼ x0 and �Q(�x,k(x)(t))¼
�Q(x), where t2 [0, þ1).

(2) �Q(x) 6¼�Q(x
0) holds and there exist �, �2Rþ

such that �x,k(x)(�)¼ x0, �Q(�x,k(x)(t1))¼�Q(x)
and �Q(�x,k(x)(t2))¼�Q(x

0), where t12 [0, �) and
t22 [�, �].

. YQ¼ �;

. HQ¼�Q.

It can be seen that the construction of S�,Q relies on

�Q to define both the transitions and the outputs. To

describe the relationship between the rectangular

transition system and the abstracted transition

system, we provide the notion of input–output simula-

tion relation.

Definition 4.3: Given transition systems Sa¼ (Xa,

Xa0, Ua, !a, Xma, Ya, Ha) and Sb¼ (Xb, Xb0, Ub, !b,

Xmb, Yb, Hb), an input–output simulation relation is a

binary relation ��Xa�Xb such that (xa, xb)2�
implies

(1) Ha(xa)¼Hb(xb);
(2) ð8u 2 UaÞ½xa!u ax

0
a ) 9x 0

b s:t: xb!u bx
0
b and

ðx 0
a, x

0
bÞ 2 ��.

A transition system Sa is said to be input–output

simulated by Sb, denoted as Sa aIo(�) Sb, if there is an

input–output simulation relation � from Sa to Sb such

that for any xa2Xa0, there exists an xb2Xb0 with

(xa, xb)2�. The subscript (�) is sometimes omitted

from aIo(�) when it is clear from the context. The

introduced input–output simulation relation requires

input equivalence as well as output equivalence, which

is stronger than the simulation relations requiring

either of them (Milner 1989; Tabuada and Pappas

2006). However, it has the following advantages. First,

it is natural since the observation of the system

depends on the output. Second, it suggests that the

control input, enforcing a desired behaviour with

respect to the transition system Sa, is also applicable

to its input–output similar transition system Sb. When

Sa is input–output simulated by Sb, the behaviours of

Sa such as finite/infinite language, accepted language

and finite/infinite path language are included in the

respective behaviours of Sb, which is shown in the

following lemma.

Lemma 4.4: If there exists an input–output simulation

relation � such that Sa aIo(�) Sb, then L(Sa)�L(Sb),

Lw(Sa)�Lw(Sb), L
w
AðSaÞ � Lw

AðSbÞ, LP(Sa)�LP(Sb) and

Lw
PðSaÞ � Lw

PðSbÞ.
Besides language inclusion, input–output simula-

tion preserves properties expressed in LTL, which will

be discussed in Section 5. Next, we illustrate that the

abstracted transition system is input–output simulated

by the rectangular transition system.
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Theorem 4.5: Given a multi-affine control system
� : _x ¼ gðxÞ þ Bu, a rectangle set � generated by
rectangularly partitioning the state space and a rectan-
gular project map �Q defined by �, the relation �
defined as

� ¼ fðRk1k2���kn , xÞ 2 � � Rn j x 2 Rk1k2���kng
is an input–output simulation relation from S�,� to S�,Q.

Proof: For any ðRk1k2���kn , xÞ 2 �, we have
H�ðRk1k2���knÞ ¼ Rk1k2���kn ¼ HQðxÞ ¼ �QðxÞ. Further, if

there is a transition Rk1k2���kn !
URk1k2 ���kn

�Rk 0
1
k 0
2
���k 0

n
, we have

the following two cases: (a) Rk1k2���kn 6¼ Rk 0
1
k 0
2
���k 0

n
with

F j,d
k1k2���kn ¼ Rk1k2���kn \ Rk 0

1
k 0
2
���k 0

n
. According to the con-

struction of S�,�, there exists a controller URk1k2 ���kn
such

that all trajectories of the closed-loop system
_x ¼ gðxÞ þ BURk1k2 ���kn

ðxÞ starting from Rk1k2���kn are
driven only through F j,d

k1k2���kn . Then, for any
x 2 Rk1k2���kn , there is x 0 2 Rk 0

1
k 0
2
���k 0

n
such that

x !
URk1k2 ���kn

Qx
0 and ðRk 0

1
k 0
2
���k 0

n
, x 0Þ 2 �. (b)

Rk1k2���kn ¼ Rk 0
1
k 0
2
���k 0

n
. The controller URk1k2 ���kn

satisfying
URk1k2 ���kn

ðwÞ 2 UIðwÞ 6¼ ; for any w 2 VðRk1k2���kn Þ drives
all trajectories of the closed-loop system
_x ¼ gðxÞ þ BURk1k2 ���xn

ðxÞ starting from Rk1k2���kn to
remain in Rk1k2���kn for all times (Belta and Habets
2006). Therefore, there exists an x 0 2 Rk1k2���kn such that

x !
URk1k2 ���kn

Qx
0 and ðRk 0

1
k 0
2
���k 0

n
, x 0Þ 2 �. Moreover, the

definition of X�0 indicates that for any Rk1k2���kn 2 X�0,
there exists an x2XQ0 such that ðRk1k2���kn , xÞ 2 �. As a
result, S�,� aIo(�) S�,Q. œ

5. Controller synthesis for LTL specifications

This section studies the controller synthesis for LTL
specifications. It is well known that an LTL formula ’
over a proposition set � can be effectively converted
into a Büchi automaton which accepts every infinite
string over � satisfying ’ (Wolper, Vardi, and Sistla
1983). This kind of Büchi automaton is described as
follows.

Definition 5.1: Given an LTL formula ’ over a
proposition set �, the Büchi automaton with respect
to ’, denoted as B’, is a tuple

B’ ¼ ðB,B0, 2
�, !B ,BmÞ

. B, B0�B and Bm�B are finite sets of states,
initial states and marked states, respectively;

. 2� is an input alphabet;

. !B�B� 2�� 2B is a transition relation.

Since the abstracted transition system S�,� is
input–output simulated by the rectangular
transition system S�,Q, if there exists a supervisor

(discrete controller) Sc for S�,� enforcing the LTL

specifications, then such a supervisor also works for

S�,Q, i.e. the implementation of Sc drives the multi-

affine system to fulfil the LTL specifications. Thus, we

first focus on the synthesis of Sc. Here a supervisor

conducts the control through restricting the behaviours

of the transition system, which is captured by the

following notion.

Definition 5.2: Given transition systems Sa¼ (Xa,

Xa0, Ua, !a, Xma, Ya, Ha) and Sb¼ (Xb, Xb0, Ub, !b,

Xmb, Yb, Hb), the input–output parallel composition of

Sa and Sb, denoted as SakIoSb, is a transition system

SajjIoSb ¼ ðXab,Xab0,Uab, !ab ,Xmab,Yab,HabÞ

. Xab¼ {(xa, xb)2Xa�Xb jHa(xa)¼Hb(xb)};

. Xab0¼ (Xa0�Xb0)\Xab;

. Uab¼Ua\Ub;

. ðxa, xbÞ!u abðx 0
a, x

0
bÞ iff xa!

u
ax

0
a and xb!u bx

0
b;

. Xmab¼ (Xma�Xmb)\Xab;

. Yab¼Ya\Yb;

. Hab(xa, xb)¼Ha(xa)¼Hb(xb).

The presented input–output parallel composition is

different from the usual synchronisation operator in

the supervisory control literature, as besides a same

control symbol !u between the synchronised transi-

tions !u a and !u b, it also requires identical output

values Ha(xa)¼Hb(xb) between the state pairs. Thus,

the behaviours (finite/infinite language, accepted lan-

guage and finite/infinite path language) of SakIoSb are

contained in those of Sb. It follows that the supervisor

Sc can restrict the behaviours of S�,� which do not

satisfy the LTL specifications. This observation

motivates us to construct the supervisor Sc by working

with S�,� and B’. Hence, we introduce the notion of

product automaton.

Definition 5.3: Given an abstracted transition system

S�,�¼ (X�, X�0, U�, !�, Xm�, Y�, H�), a Büchi

automaton B’¼ (B, B0, 2�, !B, Bm) and a label

function L: Y�! 2�, the product automaton of S�,�

and B’, denoted as S�,��A B’, is a transition system

S�,� �A B’ ¼ ðA,A0,UA, !A ,Am,YA,HAÞ

. A¼X��B;

. A0¼ {(x�, b)2X�0�B j 9 b02B0: b0 !LðH�ðx�ÞÞ
Bbg;

. UA¼U�;

. ðx�, bÞ!u Aðx 0
�, b

0Þ iff x�!u �x
0
� and b !

LðH�ðx 0
�ÞÞ

Bb
0;

. Am¼Xm��Bm;

. YA¼Y�;

. HA(x�, b)¼H�(x�)¼ x�.

The result provided by de Giacomo and Vardi

(2000) indicates that a string r satisfies the LTL

1472 Y. Sun et al.
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formula ’ iff r 2 Lw
AðS�,� �A B’Þ. In other words, if the

supervised system is an accepted language equivalent
to the product automaton, then it satisfies the LTL
formula ’. Let S�,��A B’ be the supervisor for S�,� (it
also works for S�,Q). Then, L

w
AððS�,� �A B’ÞjjIoS�,�Þ ¼

Lw
AðS�,� �A B’Þ � Lw

AðS�,�Þ, implying the supervised
system (S�,��A B’)kIoS�,� satisfies ’. However, there
might exist some strings in the language of the
supervised system that cannot be the prefixes of the
accepted langauge of the product automaton, i.e.
LððS�,� �A B’ÞjjIoS�Þ 6¼ Lw

AðS�,� �A B’Þ. It will cause
blocking in the execution. To prevent the blocking,
we need the following operator.

Definition 5.4: Given a transition system S¼ (E, E0,
U, !, Em, Y, H ), the coaccessible operator on S,
denoted as CoAc(S ), is a transition system

CoAcðSÞ ¼ ðEco,Eco0,U, !co ,Emco,Yco,HcoÞ,
where Eco¼ {y2E j 9s2U� and y 0 2 Em : y!s y 0},
Eco0¼E0\Eco, Emco¼Em\Eco, !co¼! jEco���Eco

,
Yco¼ {H( y) j y2Eco} and Hco ¼ HjEco

.

It can be seen that Lw
AðCoAcðSÞÞ ¼ Lw

AðSÞ and
LðCoAcðSÞÞ ¼ Lw

AðSÞ. Thus, when CoAc(S�,��AB’)
is chosen to be the supervisor Sc, it guarantees the
accepted language equivalence while preventing the
blocking, as stated in the following theorem.

Theorem 5.5: Given a rectangular transition system
S�,Q and a product automaton S�,��A B’, there exists a
supervisor Sc for S�,Q such that Lw

AðScjjIoS�,QÞ ¼
Lw
AðS�,� �A B’Þ and LðScjjIoS�,QÞ ¼ Lw

AðS�,� �A B’Þ if
Lw
AðS�,� �A B’Þ 6¼ ;.

Proof: Since Lw
AðS�,� �A B’Þ 6¼ ;, let Sc¼

CoAc(S�,��A B’). We use the facts: (1)
Lw
AðS�,� �A B’Þ � Lw

AðS�,�Þ and Lw
PðS�,� �A B’Þ �

Lw
PðS�,�Þ; (2) S�,�aIoS�,Q implies Lw

AðS�,�Þ �
Lw
AðS�,QÞ and Lw

PðS�,�Þ � Lw
PðS�,QÞ and (3) Lw

AðCoAc�
ðS�,��AB’ÞÞ¼Lw

AðS�,��AB’Þ. Thus, Lw
AðScjjIoS�,QÞ¼

Lw
AðS�,��AB’Þ \Lw

AðS�,QÞ¼Lw
AðS�,��AB’Þ. Moreover,

we have LðCoAcðS�,� �A B’ÞÞ ¼ Lw
AðS�,� �A B’Þ,

L(CoAc(S�,��AB’))�L(S�,Q) and LP(CoAc�
(S�,��A B’))�LP(S�,Q), it follows that

LðScjjIoS�,QÞ
¼ LðCoAcðS�,� �A B’ÞÞ \ LðS�,QÞ
¼ LðCoAcðS�,� �A B’ÞÞ ¼ Lw

AðS�,� �A B’Þ:
œ

Remark 5.6: The proof of Theorem 5.5 is constructive
as if Lw

AðS�,� �A B’Þ 6¼ ;, Sc¼CoAc(S�,��A B’)
provides a supervisor to achieve the LTL formula ’
ðLw

AðScjjIoS�,QÞ ¼ Lw
AðS�,� �A B’ÞÞ in a non-

blocking manner ðLðScjjIoS�,QÞ ¼ Lw
AðS�,� �A B’ÞÞ.

In this article, we call the supervisor obtained in
Theorem 5.5 as a nonblocking supervisor.

5.1 Implementation of discrete controllers to
multi-affine systems

We have already outlined how the nonblocking super-
visor Sc, where Sc¼CoAc(S�,��A B’)), enforces the
satisfaction of LTL specifications with respect to S�,Q.
Then, we discuss the implementation of Sc to the multi-
affine system. Since any string in Lw

AðScjjIoS�,QÞ
satisfies the LTL formula ’, let Rk1k2���knRk 0

1
k 0
2
���k 0

n
� � � be

a string in Lw
AðScjjIoS�,QÞ and Rk1k2���knURk1k2 ���kn

�
Rk 0

1
k 0
2
���k 0

n
URk 0

1
k 0
2
���k 0n

� � � be the corresponding infinite

path. To realise Rk1k2���knRk 0
1
k 0
2
���k 0

n
� � �, we can apply the

controller URk1k2 ���kn
ðxÞ to the multi-affine system as long

as x 2 Rk1k2���kn . When and if x =2Rk1k2���kn , the string is

updated to Rk 0
1
k 0
2
���k 0

n
, then the process continues.

Therefore, the implementation of Sc drives the multi-

affine system to satisfy the LTL formula ’.

6. Example

Consider a path-planning example adopted from Belta
and Habets (2006), where a robot with detection and
positioning capabilities moves inside a rectangular
region [0, 3]� [1, 4]. In particular, the robot system
takes the form of the following differential equation:

_x ¼ _x1
_x2

	 

¼ �6x1 þ x2 þ x1x2

3x1 � 2x2 þ x1x2

	 

þ 1

4

	 

u ð10Þ

where x is the position of the robot and u is the control
input. The rectangular region is partitioned into nine
small rectangular sub-regions with respect to the
coordinates (Figure 1 (left)). Let R23 be a dangerous
sub-region and R13 be a goal sub-region. Thus, for
each sub-region we define the label function L:
L(R23)¼ {Danger, 1Goal}, L(R13)¼ {1Danger, Goal}
and L(Ri)¼ {1Danger, 1Goal} (i¼ 11, 12, 21, 22, 31, 32,
33), where Danger represents the dangerous sub-region
and Goal represents the goal sub-region. In this
example, the specification is to eventually go to the
goal sub-region (
Goal) while avoiding the dangerous
sub-region (h1Danger). Such an obstacle avoidance
specification can be naturally expressed by the LTL
formula ’: h1Danger6 
Goal.

To achieve the specification, we first explore the
control of the robot on sub-regions. Take R12 as an
example. If we would like to control the robot to exit
from R12 to R13 through the facet F2,þ

R12
,

thenUE(1, 3)¼{v j [0, 1][�6þ 3þ 3þ v, 3� 6þ 3þ 4v]>4
06[1, 0][�6þ 3þ 3þ v, 3� 6þ 3þ 4v]>� 0}¼{v4 06
v� 0}¼;. Obviously, such a controller does not exist

International Journal of Control 1473
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according to Lemma 2.5 (Belta and Habets 2006;

Habets et al. 2006). However, by using the proposed

method in this article, we can obtain a controller for the

exit problem. Here we assume the accuracy limitation

"¼ 10�4 and the control limitation juj � 107. By

Algorithm 3.10, we can design a state-based switch

multi-affine controller in terms of

IR12

UR12

ðxÞ

¼

�30x1 � 12x2 þ 10x1x2 þ 34

if x =2B0:01ð0:767, 2:494Þ
�11x1 þ x1x2 þ 10

if x 2 B0:01ð0:767, 2:494Þ

8>>><
>>>:

to drive the robot to exit only through F2,þ
R12

. Similarly,

for each sub-region Rmn(m, n¼ 1, 2, 3) we can establish

the controllers that steer the robot from Rmn to its

neighbourhood sub-region (Algorithm 3.10) or to be

invariant (Lemma 2.4) in Rmn, respectively. Thus, an

abstracted transition system S�,� can be constructed

(Figure 1 (right)).
On the other side, we convert the LTL formula ’ to

a Büchi automaton (Figure 2 (left)) and then establish

the product automaton S�,��A B’ (Figure 2 (right)).

According to Theorem 5.5, we design

CoAc(S�,��AB’) (Figure 3 (left)) to be the

nonblocking supervisor for S�,�. After the implemen-
tation of CoAc(S�,��A B’) to the robot system, the
controlled system achieves the LTL formula ’.
Moreover, the simulation results of two feasible
paths initialising from R31 and satisfying ’ are shown
in Figure 3 (right).

7. Conclusion

This article provided an input–output simulation
approach to controlling the multi-affine system for
LTL specifications in a rectangularly partitioned state
space. Two novel methods were derived to control the
multi-affine system on rectangles. One is based on the
exit sub-region to drive all trajectories starting from a
rectangle to exit only through a facet, which enlarges
the classes of control systems in the context of existing
literature (Belta and Habets 2006). The other provides
a solution for the convergence problem by stabilising
the multi-affine system towards a desired point. With
the proposed control methods, a finitely abstracted
transition system was constructed and it was shown to
be input–output simulated by the rectangular transi-
tion system of the multi-affine system. Therefore, the
controller synthesis for the multi-affine system to
enforce the LTL specification can be achieved by

Figure 2. Büchi automaton B’ (left) and the product automaton S�,��A B’ (right).

Figure 1. Rectangularly partitioned state space (left) and abstracted transition system S�,� (right).
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designing a nonblocking supervisor for the abstracted
transition system and then mapped into continuous
control signals. From the application point of view,
this input–output simulation approach not only
enables automatic and effective implementation, but
also prevents blocking in the execution.

However, the result on the existence of a non-

blocking supervisor enforcing LTL, i.e. Theorem 5.5, is
sufficient only in the sense that if the condition of
Theorem 5.5 does not satisfy, there is no conclusion on
the existence of a controller for the original multi-
affine system. To address this issue, our future work
will investigate the necessary and sufficient condition
by strengthening the input–output simulation to an
input–output bisimulation. Other interesting directions
are extensions of this approach to branching time
logical specifications, such as computation tree logic
specifications (Clarke 1997), and to more complicated
dynamics, such as polynomial dynamics (Benedetto
2002).
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