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Abstract: Many aerial applications require unmanned aerial systems operate in safe zones because of the presence
of obstacles or security regulations. It is a non-trivial task to generate a smooth trajectory satisfying both dynamic
constraints and motion limits of the unmanned vehicles while being inside the safe zones. Then the task becomes
even more challenging for real-time applications, for which computational efficiency is crucial. In this study, we
present a safe flying corridor navigation method, which combines jerk limited trajectories with an efficient testing
method to update the position setpoints in real time. Trajectories are generated online and incrementally with
a cycle time smaller than 10 µs, which is exceptionally suitable for vehicles with limited onboard computational
capability. Safe zones are represented with multiple interconnected bounding boxes which can be arbitrarily oriented.
The jerk limited trajectory generation algorithm has been extended to cover the cases with asymmetrical motion
limits. The proposed method has been successfully tested and verified in flight simulations and actual experiments.
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1 Introduction

Recently, thanks to the advancement in sen-
sors, controllers, and onboard electronics, unmanned
aerial vehicles (UAVs) have increasingly become pop-
ular in applications, such as industrial inspection,
surveillance, environment mapping, and agriculture.
Among all types of UAVs, the quadrotor platform
is the most popular because of its agility and low
maintenance cost. Moreover, with the development
of multiple vehicle scheduling systems (Peng et al.,
2017), it is possible to accomplish complex missions
with multiple low-cost quadrotors. For many appli-
cations, it is normal to have the presence of geometric
obstacles or regulations that constrain the vehicle to
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fly within a specific safe volume. For example, in a
site inspection task, a UAV may not be allowed to
fly above any residential area because of regulations
imposed by the government authority. A common
practice is to formulate the problem into a trajectory
generation problem, which would consist of reference
signals for lower-level controllers to satisfy dynamic
constraints of the vehicle and avoid obstacles. How-
ever, with all these constraints, it usually leads to
a nonlinear and non-convex optimization problem
that is difficult to solve in general. For example, ob-
stacles are modeled as soft constraints (Gao et al.,
2017) whereas the trajectory is parameterized as a
multi-segment polynomial. The resulting optimiza-
tion problem is solved by a two-layer non-convex op-
timization process, which does not always guaran-
tee a feasible solution. Florence et al. (2016) pro-
posed a method to limit the size of the optimization

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com


108 Lai et al. / Front Inform Technol Electron Eng 2019 20(1):107-119

problem by restricting the input to a finite set of
linearly changed accelerations. The resulting opti-
mization problem can be efficiently solved by enu-
merating through all acceleration changes. However,
this technique limits the complexity of possible ma-
neuvers and is restricted to local trajectory planning.

A safe flying corridor (SFC) based approach is
commonly adopted to reformulate the non-convex
optimization problem into a convex one. It assumes
a pre-existing line-segment based nominal plan (red
line-segments in Fig. 1) defined by multiple way-
points (red triangles in Fig. 1) which can either be
given by a user or automatically generated through
methods such as A* pathfinders. The line-segments
are enclosed by an SFC (green cuboid in Fig. 1) and
a convex optimization problem can be formulated to
constrain the trajectory inside the SFC. Chen and
Shen (2017) proposed to represent the SFC using
multiple axis-aligned rectangles. Then an iterative
quadratic programming (QP) problem was formu-
lated to constrain the trajectories. SFC is extended
to arbitrarily shaped convex polygons (Liu et al.,
2017), but the safety and motion limitations are sat-
isfied with only sampled time points of the trajec-
tory. B-splines are used to enforce the safety and
motion limitations over the entire trajectory (Lai
et al., 2018). The SFC problems are generally solved
as a QP problem, which could be computationally
expensive for low-cost vehicles with limited onboard
computational power, especially when a rapid re-
planning is needed. Moreover, to obtain the convex
formulation, these methods adopt the time interval
segmentation technique that requires the estimation
of the time spent in each polyhedron. An inaccurate
estimation usually leads to an inadequate or infeasi-
ble solution.

However, the jerk limited trajectory can be used
as a reference for quadrotors in an obstacle-free en-
vironment. It is first used in robotic arms which
require a smooth transition in the torque of mo-
tors. Haschke et al. (2008) proposed an efficient
decision tree based method to generate the veloc-
ity, acceleration, and jerk limited trajectory. Kröger
(2011) suggested a similar approach with enhanced
numerical stability and non-zero end velocity. The
jerk limited trajectory is an effective motion prim-
itive for quadrotors to meet their motion limita-
tions (Hehn and D’Andrea, 2015). Lai et al. (2016)
used a receding horizon control (RHC) fashion to

locally generate obstacle avoidance trajectories.
Lopez and How (2017) used the relaxed version with
no end-position specification to parameterize its pol-
icy space. Furthermore, Ren and Huo (2010) com-
bined these local trajectories with a global planner.
Wang et al. (2017) successfully applied the jerk lim-
ited trajectories on a vertical-take-off-and-landing
(VTOL) vehicle to guide the flight among transi-
tions. It is worth noting that all the aforementioned
techniques are developed to handle only symmetrical
limitations on velocity, acceleration, and jerk of the
trajectory. This is quite inconvenient for quadrotor
systems.

Start

Waypoint

Goal

Fig. 1 Line-segments and safe flying corridor
References to color refer to the online version of this
figure

In this study, we present a jerk limited trajec-
tory generation method that avoids the complex de-
cision tree and accepts asymmetrical constraints. It
performs a bisection search over the switching time
directly instead of the achieved velocity as proposed
by Ezair et al. (2014). Then the jerk limited trajec-
tory is adopted as motion primitives to guide the
quadrotor to fly inside the SFC with guaranteed
safety. To the best of our knowledge, it is the first
time that the jerk limited trajectory has been used
to solve SFC problems.

2 Quadrotor dynamics

A quadrotor is controlled by varying the rotat-
ing speeds of its four propellers. Its dynamic model
is usually expressed in a body frame B for the rota-
tional movement and a global frame G for its transla-
tional movement (Fig. 2). In this study, we focus on
the translational model of the vehicle, which can be
expressed as
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ÿ

z̈

⎤
⎦ = RG

B

⎡
⎣
0

0

a

⎤
⎦+

⎡
⎣

0

0

−g

⎤
⎦ , (1)



Lai et al. / Front Inform Technol Electron Eng 2019 20(1):107-119 109

YB

Body center

ZB

ZL

XLXB

ZG/ZL

YL

YL

YG

XLXG

Ψ

Ψ

Fig. 2 Coordinate systems
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where x, y, and z denote the vehicle’s positions and
g is the gravity. The attitude of the vehicle is rep-
resented by the rotational matrix RG

B between its
body frame and global frame. The translational
acceleration is controlled by vehicle’s attitude and
normalized collective thrust a. The vehicle’s atti-
tude is controlled by its body rates ωx, ωy, and ωz.
This simplified model is effective and sufficient for
quadrotors in practice. Due to the actuator and
sensor limitations, it is commonly assumed that the
quadrotor offers limited total thrust and body rates.
These limitations can be expressed as constraints on
the acceleration and jerk of the vehicle (Hehn and
D’Andrea, 2015). Assume the mass of the vehicle is
m. Then we can obtain the limitations on the total
thrust f as

‖f‖ =
√
ẍ2 + ÿ2 + (z̈ + g)2 ≤ fmax

m
,

z̈ ≥ z̈min ≥ fmin

m
− g, (3)

where fmin and fmax are the minimum and maximum
available thrusts, respectively. The maximum body
rate ωmax around the body x- and y-axis shall satisfy

√...
x 2 +

...
y 2 +

...
z 2 ≤ (z̈min + g)ωmax. (4)

Let Ga denote the space spanned by accelera-
tion in the global frame, and Gj denote the space
spanned by jerk in the global frame. Problem (3)
spans a dome shaped constraint volume (CV) in Ga

(Fig. 3), while problem (4) spans a sphere in Gj . In
practice, cylindrical CVs are frequently used for ex-
ternal restrictions, such as safety regulations (Ang
et al., 2018). CVs are intuitive and adjustable for
on-site operators and can be made to respect the dy-
namical differences on the quadrotor’s horizontal (h)

and vertical (v) axes. For example, an acceleration
cylindrical CV can be expressed as

√
ẍ2 + ÿ2 ≤ ahmax,

avmin ≤ z̈ ≤ avmax.
(5)
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Fig. 3 Constraint volume on acceleration
References to color refer to the online version of this
figure

On the horizontal axis, we limit the norm of
the acceleration by ahmax. On the vertical axis, an
asymmetrical constraint can be set by tuning avmin

and avmax to account for different acceleration limi-
tations for descending and ascending (the red cylin-
der in Fig. 3). It is fully contained by the dome
in Fig. 3 to guarantee the feasibility of the gener-
ated trajectory. In theory, any arbitrarily shaped
CV can be used as long as it satisfies problems (3)
and (4), including the acceleration dome and jerk
sphere themselves.

3 Jerk limited trajectory generation

Basic elements in mobile robot application bring
the vehicle to the desired location. In this section,
we first present a technique to generate jerk, accel-
eration, and velocity limited trajectory on a single
axis. Then we adopt this technique to generate a
three-dimensional (3D) trajectory which satisfies the
constraints presented in Section 2. The trajectory
is used as a reference for a feed-forward and feed-
back controller. Therefore, properties of the trajec-
tory can be examined before its execution. Because
of the limited onboard computational power of the
quadrotor and its tight requirement on real-time ca-
pability, the trajectory generation algorithm needs
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to be as efficient as possible. Unlike previous works
(Haschke et al., 2008; Kröger and Wahl, 2010), our
algorithm does not require a decision tree. It allows
asymmetrical constraints to be applied to the veloc-
ity, acceleration, and jerk of the trajectory. Similar
to the work of Ezair et al. (2014), our algorithm re-
lies on a bisection search procedure. However, we
choose to search for desired switching time instead
of reached cruise velocity. It allows our algorithm
to achieve a more time-efficient double deceleration
profile (Haschke et al., 2008) when necessary.

3.1 Single-axis problem

Given a triple integrator system as

ṗ = v, v̇ = a, ȧ = j, (6)

where p is the position, v the velocity, a the acceler-
ation, and j the jerk which serves as the input. We
aim to solve a two-point boundary value problem
(TPBVP) with state and input constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(0) = p0, p(tf) = pf ,

v(0) = v0, v(tf) = 0,

a(0) = a0, a(tf) = 0,

vmin ≤ v(t) ≤ vmax, ∀t ∈ [0, tf ],

amin ≤ a(t) ≤ amax, ∀t ∈ [0, tf ],

jmin ≤ j(t) ≤ jmax, ∀t ∈ [0, tf ].

(7)

To guarantee the existence of a solution, it is
assumed that vmin < 0 < vmax, amin < 0 < amax,
and jmin < 0 < jmax.

3.1.1 Second-order system

To illustrate our algorithm, we first present the
solution to the second-order problem, which is equiv-
alent of bringing system (6) from an arbitrary initial
state to a velocity setpoint vref in the minimum time:

min tend

s.t. v(0) = v0, v(tend) = vref ,

a(0) = a0, a(tend) = 0,

v̇(t) = a(t),

ȧ(t) = j(t),

amin ≤ a(t) ≤ amax, ∀t ∈ [0, tend],

jmin ≤ j(t) ≤ jmax, ∀t ∈ [0, tend].

(8)

Algorithm 1 extends the work of Haschke et al.
(2008) to make it possible to include the asym-
metrical limitations. In Algorithm 1, we focus on

Algorithm 1 Velocity target solver
1: Input: v0, a0, amax, amin, jmax, jmin, and vd
2: Output: P

3: if a0 ≥ 0 then
4: ve = v0 + a0 |a0/jmin| /2
5: else
6: ve = v0 + a0 |a0/jmax| /2
7: end if
8: da = sign(vd − ve)

9: if da == 1 then
10: ac = amax

11: else if da == −1 then
12: ac = amin

13: else
14: ac = 0

15: end if
16: if ac − a0 ≥ 0 then
17: t1 = (ac − a0)/jmax

18: j1 = jmax

19: else
20: t1 = (ac − a0)/jmin

21: j1 = jmin

22: end if
23: v1 = v0 + a0t1 + t21j1/2

24: if −ac ≥ 0 then
25: t3 = −ac/jmax

26: j3 = jmax

27: else
28: t3 = −ac/jmin

29: j3 = jmin

30: end if
31: v̄3 = act3 + t23j3/2

32: v̄2 = vd − v1 − v̄3
33: if da == 0 then
34: t2 = 0

35: else
36: t2 = v̄2/ac
37: end if
38: if t2 < 0 then
39: if da == 1 then

40: an =

√(
2(vd − v0) +

a2
0

jmax

)
/
(

1
jmax

− 1
jmin

)
41: t1 = (an − a0)/jmax

42: t2 = 0

43: t3 = −an/jmin

44: else if da == −1 then

45: an = −
√(

2(vd − v0) +
a2
0

jmin

)
/
(

1
jmin

− 1
jmax

)
46: t1 = (an − a0)/jmin

47: t2 = 0

48: t3 = −an/jmax

49: end if
50: end if
51: P · T1 = t1
52: P · T2 = t2 + t1
53: P · T3 = t3 + t2 + t1
54: P · j1 = j1
55: P · j2 = 0

56: P · j3 = j3

determination of the acceleration profile covering the
amount of area that equals the desired change in
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velocity. The acceleration is brought to zero in-
stantly, and the resulting end velocity ve is com-
pared with the desired velocity vd. If ve is smaller
than vd, we need a positive cruise direction for ac-
celeration; otherwise, a negative cruise direction is
needed (lines 3–8). Haschke et al. (2008) proposed
that, to achieve a time-optimal trajectory, the jerk
input can be only maximum, minimum, or zero, and
there are at most three segments of acceleration pro-
file. Therefore, we determine whether the accelera-
tion profile is triangular- or trapezoidal-shaped, de-
pending on whether it has reached its maximum or
minimum. It is tested by bringing the acceleration
to either maximum or minimum and immediately
to zero, and checking whether the resultant velocity
overshoots or undershoots vd (lines 9–37). The re-
sulting trajectory is called “zero acceleration cruise
profile (ZACP).” If there is an undershoot, a non-
negative time cruise phase will be necessary, giving a
trapezoidal-shaped acceleration profile (line 36); oth-
erwise, if acceleration reduces to zero before reaching
maximum or minimum, a triangularly shaped profile
(line 38) will be used. For both shapes, we can find
closed-form solutions to determine the jerk inputs
(j1, j2, and j3) and their corresponding durations
(t1, t2, and t3). Finally, we store these parameters
in a parameter structure P . The procedure to deter-
mine the shape of the acceleration profile is shown in
Fig. 4. For ease of reference, we denote the process
in Algorithm 1 as

P =solveVelocity(v0, a0, amax, amin, jmax, jmin, vd).

Given the initial states p0, v0, a0, and P , we can
reconstruct the entire trajectory by forward simulat-
ing the system (6). We denote the reconstruction
process as

(ps, vs, as) = getState(v0, a0, p0, P, ts),

which gives a point (ps, vs, as) on the trajectory at a
specific time point ts.

3.1.2 Third-order system

With the capability to solve the second-order
problem, we extend the solution to cover problem
(7). The details of the proposed method can be found
in Algorithm 2. Similar to the second-order case, we
first determine the sign of the cruising velocity by
solving a trajectory that immediately brings the sys-
tem to a stop (line 3). Cruise velocity is determined

Determining cruise 
acceleration

Is the cruise 
acceleration 0? 

Is the end velocity 
overshooting 
the desired 

value?

Calculating end
velocity of 
the ZACP

Trapezoidal 
acceleration 

profile

No

Yes

No

Triangular 
  acceleration 
  profile

Fig. 4 Shape determination of the acceleration profile

by comparing the stop point psp to the desired set
point pd (lines 3–12). Then we try to create the zero
velocity cruise profile (ZVCP) by steering the sys-
tem to the cruise velocity and immediately to the
full stop (lines 13–16). Depending on whether the
resulting stop point overshoots or undershoots the
setpoint pd, we could determine whether the cruise
velocity vc can be reached. If it can be reached, we
need to determine the duration by which the veloc-
ity stays at vc (line 19); if it cannot be reached, the
velocity must start to reduce to zero earlier. That is
to say, there exists a switching time tpb, after which
the velocity shall decrease to zero. tpb is determined
by a bisection search process (lines 22–38). The out-
put of Algorithm 2 consists of three parts: (1) the
parameter Pa for guiding the system from its initial
state towards the cruise velocity vc; (2) the switch-
ing time tpb and the cruise time tc; (3) the parameter
Pb to guide the system to a stop. The procedure to
determine the existence of the cruise phase is shown
in Fig. 5. To reconstruct the trajectory from these
outputs, it is necessary to determine the states at the
switching time as

(ppb, vpb, apb) = getState(v0, a0, p0, Pa, tpb).

If 0 ≤ t < tpb, the trajectory can be recon-
structed by getState(v0, a0, p0, Pa, tpb); otherwise, if
tpb ≤ t < tc + tpb, the trajectory is at the cruis-
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Algorithm 2 Position target solver
1: Input: p0, v0, a0, vmax, amax, jmax, vmin, amin, jmin,

and pf
2: Output: Pa, Pb, tpb, vc, and tc
3: P = solveVelocity(v0, a0, amax, amin, jmax, jmin, 0)

4: (psp, vsp, asp) = getState(v0, a0, p0, P, P · T3)

5: dp = sign(pf − psp)

6: if dp == 1 then
7: vc = vmax

8: else if dp == −1 then
9: vc = vmin

10: else
11: vc = 0

12: end if
13: Pa = solveVelocity(v0, a0, amax, amin, jmax, jmin, vc)

14: (pfa, v, a) = getState(v0, a0, p0, Pa, Pa · T3)

15: Pb = solveVelocity(vc, 0, amax, amin, jmax, jmin, 0)

16: (pfb, v, a) = getState(vc, 0, pfa, Pb, Pb · T3)

17: tc = 0

18: if sign(pfb − pf) · dp ≤ 0 then
19: tc = (pf − pfb)/vc
20: tpb = Pa · T3

21: else
22: tc = 0

23: tH = Pa · T3

24: tL = 0

25: for counter = 1 : N do
26: tpb = (tH + tL)/2

27: (ppb, vpb, apb) = getState(v0, a0, p0, Pa, tpb)

28: Pb = solveVelocity(vpb, apb, amax,

amin, jmax, jmin, 0)

29: (pfb, v, a) = getState(vpb, apb, ppb, Pb, Pb · T3)

30: if sign(pfb − pf) · dp < 0 then
31: tL = tpb
32: else
33: tH = tpb
34: end if
35: if |pfb − pf | < ε then
36: break
37: end if
38: end for
39: end if

ing stage with constant velocity vc. If tc + tpb ≤ t,
the evolution of the trajectory depends on whether a
cruise phase has been presented. If tc > 0, the cruise
velocity has been reached, and the trajectory can be
evaluated by

getState(vc, 0, pc, Pb, t− (tc + tpb)),

pc = ppb + vctc.

On the other hand, if tc = 0, the trajectory is
described as

getState(vpb, apb, ppb, Pb, t− (tc + tpb)).

An example of a jerk limited trajectory with
asymmetrical constraints is shown in Fig. 6, where
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Fig. 5 Shape determination of the velocity profile
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Fig. 6 Jerk limited trajectory with asymmetrical
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p0 = 2, v0 = 1, a0 = 0.2, amin = −0.5, amax = 2,
vmin = −0.8, vmax = 3, jmin = −0.5, jmax = 3, and
the position set-point is 0.

3.2 Multi-axis problem

For the vehicle moving in a 3D space, the easiest
method is to use Algorithm 2 along with each axis
of the global frame G. However, we need the trajec-
tory to follow a line-segment based mission, as shown
in Fig. 7. Therefore, a synchronization mechanism
is needed. Previous methods obtain the time or
phase synchronization through post-processing on
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each axis. In this study, as the trajectory to be gener-
ated is as efficient as possible, an axis rotation tech-
nique is considered. We create a local frame Li along
with each individual line-segment defined by way-
points wi and wi+1. Its origin is at wi, and the x-axis
is aligned with the line-segment and the y-axis is per-
pendicular to the gravity. Then we project the cur-
rent state onto Li and generate three jerk limited tra-
jectories on each axis, separately. On the x-axis, the
position set-point is chosen as ‖wi+1 − wi‖, whereas
on the y- and z-axis, the set-point is zero. There-
fore, the lateral error along with the line-segment
‖wi+1 − wi‖ will be reduced to zero while the trajec-
tory marches to wi+1.

Liz

Liy

Lix

wi

wi+1

wi−1

Fig. 7 Line-segment based on a nominal plan

Since the trajectory on each individual axis is
individually solved using Algorithm 2, we need to
determine the corresponding limitations on velocity,
acceleration, and jerk to satisfy the CVs. Taking
the acceleration as an example, the constraints it
should satisfy when generating the trajectory in the
Li frame can be expressed as

⎧
⎪⎪⎨
⎪⎪⎩

aLi

minx
≤ aLi

x ≤ aLi
maxx

,

aLi

miny
≤ aLi

y ≤ aLi
maxy

,

aLi

minz
≤ aLi

z ≤ aLi
maxz

,

(9)

where Li denotes the frame of the acceleration, and
x, y, and z indicate the axes in Li. Let La

i denote
the space spanned by aLi

x , aLi
y , and aLi

z . The con-
straints in problem (9) span an axis-aligned cuboid
in La

i . Without any loss of generality, we consider a
cylindrical CV defined in Ga as an example. Since
frames Li and G are not aligned, we need to choose
the limitations in problem (9), and thus the cylindri-
cal CV fully contains the spanned cuboid (Fig. 8).
Therefore, for any trajectory that satisfies problem

(9), it fulfills the corresponding CV. Moreover, the
same principle can be adopted for the velocity and
jerk trajectories.

ay
Li

az
Li

ax
Li

ahmax

avmax

avmin
y
..

x..

z..

Fig. 8 Cylindrical constraint volume and the selection
of axis-decoupled limitations

4 Safe corridor navigation

Assuming that there are N waypoints in total,
the aim of the SFC is to enclose N − 1 line-segments
with safety space. In this study, it consists of series
of inter-connected bounding boxes (Fig. 9). Unlike
the work of Chen and Shen (2017), the bounding
boxes used in this study are not required to be axis-
aligned in frame G. We denote the oriented bounding
box (OBB) that encloses the line-segment wiwi+1

as Oi. It is aligned to frame Li with six positive
scalars, wi

x+, w
i
x−, w

i
y+, w

i
y−, w

i
z+, and wi

z−, defining
the width in each direction (Fig. 10). It requires
wi

x+ > ‖wi+1 − wi‖; thus, the OBB fully encloses
the line-segment. A trivial solution that guarantees
the safety of the vehicle is to move along with each
line-segment and stop at every waypoint. The result-
ing trajectory will exactly match the line-segments,
thus staying inside the SFC. However, due to the fre-
quent stops, it will be less efficient especially in the
case where there are multiple short line-segments.
In this study, we present a method to reduce the
unnecessary stops to achieve a smoother and faster
flight.

4.1 Trajectory switching

Let us denote the trajectory generated in frame
Li towards wi+1 as Ti. Then Ṫi, T̈i, and

...
T i denote

the trajectory’s velocity, acceleration, and jerk, re-
spectively. The aim of the proposed method is to
perform a trajectory switching from Ti to Ti+1 before
the vehicle reaches the end of Ti and performs a full
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stop. Assuming that the vehicle is currently tracking
Ti, it needs to constantly generate a trajectory Ti+1

in frame Li+1 towards the waypoint wi+2 from its
current state. If the newly generated Ti+1 stays in-
side the SFC and Ṫi+1, T̈i+1, and

...
T i+1 are contained

by their corresponding CVs, Ti+1 becomes a feasible
trajectory and the vehicle immediately switches to it.
If Ti+1 does not pass the checking, the vehicle contin-
ues to track the old trajectory Ti. In the worst case,
if all Ti+1’s fail checking, the vehicle would perform
a full stop at the end of Ti. In this case, the proposed
algorithm would perform the same as the trivial so-
lution. The details of this process are illustrated
in Algorithm 3. For each iteration, we transform
the current reference state in frame Li+1. Specifi-
cally, the function getCurrentReference returns the
current reference state s in the global frame; i.e.,
the reference position, velocity, and acceleration are
tracked by the vehicle. Then we transform the re-
turned state s into the desired frame using the func-
tion transform(s, l), which handles both rotation and
translation transformation. It is worth noting that
the velocity, acceleration, and jerk are all transla-
tionally invariant and only rotation is performed.
We generate the new trajectory Ti+1 from the trans-
formed state s̄ to the next waypoint in frame Li+1.
The function genTrajectory(s̄, l, t) is responsible for
generating the new trajectory Ti+1 and takes in three
input parameters: transformed current state s̄, frame
to generate the trajectory l, and target t expressed
in frame Li. The generation process is built upon
Algorithm 2, which generates a three-axis-decoupled
trajectory. That is to say, for each x-, y-, and z-axis
of frame Li, Algorithm 2 is executed once. Finally,
we use the function check(T ) to check whether the
generated trajectory T satisfies the safety and feasi-
bility. These will be described in detail later in Al-
gorithms 4 and 5. If the checking criteria have been
successfully met, i.e., the trajectory stays inside the
safe corridor, we adopt the trajectory and move to
the next target. We assume that the first trajec-
tory T1 is always feasible and safe; however, such an
assumption may not be held in real situations. To
address this issue, we adopt a method proposed by
Lai et al. (2016) to quickly generate a temporal safe
trajectory to avoid any possible obstacle nearby. If
the initial trajectory T1 fails in the checking process,
we trigger the high-level path planner to re-calculate
a nominal plan from the current vehicle state.

wi

wi−1

wi+1

Liz Liy

Lix

wi+2

Fig. 9 Safe flying corridor consisting of bounding
boxes

w i
x−

w i
x+

w i
z−

w i
z+

Liz Liy

wi
w i

y+

w i
y−

wi+1
Lix

Fig. 10 Dimensions of the bounding box

Algorithm 3 Smooth navigation
1: i = 0

2: while Not reaching wN do
3: if i < N − 1 then
4: s = getCurrentReference()
5: s̄ = transform(s, Li+1)
6: Ti+1 = genTrajectory(s̄, Li+1,

[‖wi+2 − wi+1‖ , 0, 0])
7: if check(Ti+1) then
8: i = i+ 1

9: switch to Ti+1

10: end if
11: end if
12: end while

4.2 Trajectory checking

Given a trajectory Ti+1, the goal is to check
whether Ti+1 is fully inside the SFC, and Ṫi+1, T̈i+1,

and
...
T i+1 are contained by the corresponding CVs.
SFC consists of multiple inter-connected OBBs.

One possible approach is to densely sample vari-
ous points on trajectory and check whether they are
all inside the SFC. However, there is no guarantee
among these discrete samples. To address this issue,
we propose an efficient method to check the trajec-
tory at a continuous time interval by taking a suffi-
cient but not necessary assumption that the trajec-
tory Ti+1 varies from Oi to Oi+1.
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Given a single specific OBB Oi, we can check
whether a given global-frame trajectory T is inside
Oi:

1. Transform T into the frame where Oi is de-
fined, i.e., Li, and denote the transformed trajectory
as TLi.

2. Find the maximum and minimum along with
each individual x-, y-, and z-axis of Li as TLi

maxx
,

TLi

minx
, TLi

maxy
, TLi

miny
, TLi

maxz
, and TLi

minz
.

3. Construct two points in Li where their coor-
dinates are

[
TLi
maxx

, TLi
maxy

, TLi
maxz

]
and

[
T i

minx
, TLi

miny
,

TLi

minz

]
.

4. Check whether these two points are fully
contained by Oi.

Since the bounding box Oi is axis-aligned in Li,
the above processes check if the trajectory is fully
contained by Oi by finding its extreme values in Li.
It is clear that the trajectory of the double integrator
problems consists of at most three segments of the
third-order polynomials (Haschke et al., 2008). From
Algorithm 2, the trajectory of the triple integrator
problem consists of at most two double integrator
problems and a cruising phase. Therefore, it has
at most seven segments of third-order polynomials.
For the three-axis problem, the trajectory possibly
has a maximum of 21 segments. Therefore, we could
find the maximum and minimum of a trajectory by
solving a finite number of second-order polynomial
equations, which can be efficiently done because of
the existence of the closed-form solution.

For convenience, we denote the above processes
with boxCheck(T,O), where T is the trajectory and
O is the bounding box. It returns true only if T

is fully inside O. To check whether the trajectory
is contained by two adjacent OBBs Oi and Oi+1,
a divide-and-conquer approach is adopted in Algo-
rithm 4. We try to find a split point that resides
in both Oi and Oi+1 to split the trajectory into two
parts Ta and Tb (line 3). If no such point exists, the
trajectory must not be fully contained by Oi and
Oi+1 (lines 4–7). Then the split trajectories Ta and
Tb are checked against their corresponding OBBs
(line 8). If both split parts are fully contained by
OBBs, the original trajectory T must stay inside the
SFC. We adopt a bisection search process to find
the split point Pmid in Algorithm 5. For a trajec-
tory T , let T (τ) denote the corresponding point at
time τ and T (τa : τb) the partial trajectory between

time τa and τb. getTotalTime(T ) gives the total time
required for trajectory T . We bisect the time on tra-
jectory to find the split point Pmid. The bisection
search region is initialized to cover the entire trajec-
tory (lines 4–6). Then we start the bisection search
process by splitting the trajectory at the medium
time τmid (lines 8–12). If the medium time point p

is already contained by both OBBs, the search stops
(lines 13–15). However, if p is contained by only the
first OBB (Oi), the search is continued on Tb (lines
16–17). If p is contained in onlyOi+1, the search con-
tinues on the first half of trajectory Ta; otherwise, if
it is contained by neither Oi nor Oi+1, there exists
a point which is outside the SFC and the algorithm
returns an empty Pmid.

Algorithm 4 Safe flying corridor check
1: Input: T , Oi, and Oi+1

2: Output: isInCorridor
3: [Pmid, Ta, Tb] = splitTrajectory(T , Oi, Oi+1)
4: if Pmid = ∅ then
5: isInCorridor = false
6: return
7: end if
8: if boxcheck(Ta , Oi) && boxcheck(Tb , Oi+1) then
9: isInCorridor = true

10: else
11: isInCorridor = false
12: end if

Algorithm 5 SplitTrajectory
1: Input: T , Oi, and Oi+1

2: Output: Pmid, Ta, and Tb

3: Pmid = ∅

4: τa = 0

5: τend = getTotalTime(T )
6: τb = τend
7: for i < Ne do
8: i = i+ 1

9: τmid = (τa + τb)/2

10: p = T (τmid)

11: Ta = T (0 : τmid)

12: Tb = T (τmid : τend)

13: if p ∈ Oi && p ∈ Oi+1 then
14: Pmid = p

15: return
16: else if p ∈ Oi && p /∈ Oi+1 then
17: τa = τmid

18: else if p /∈ Oi && p ∈ Oi+1 then
19: τb = τmid

20: else
21: return
22: end if
23: end for
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With trajectory Ti+1 fully inside the SFC, we
need to check whether its derivatives satisfy CVs. In
Section 2, the maximum and minimum of the ve-
locity, acceleration, and jerk have already been se-
lected to be fully contained by the corresponding
CVs. However, Ti is generated in Li and satisfies
the limitations defined in Li, but Ti+1 and its limita-
tions are generated in Li+1. Therefore, it is possible
that the initial condition of Ti+1 does not satisfy the
decoupled velocity, acceleration, and jerk limitations
defined in Li+1. In this case, we need to check the
feasibility of the derivative trajectories Ṫi+1, T̈i+1,

and
...
T i+1. Similar to the SFC checking case, we

propose a method to check whether the trajectory is
inside a given cylindrical CV on a continuous time
interval. Taking acceleration trajectory T̈ as an ex-
ample, its feasibility regarding a cylindrical CV can
be checked by the following procedure:

1. Construct the horizontal acceleration trajec-
tory T̈H from x- and y-axis components of T̈ ; i.e., T̈x

and T̈y can be expressed as

T̈H =
√
T̈ 2
x + T̈ 2

y .

2. Find the maximum of T̈H as hmax and check
whether it satisfies problem (5):

hmax ≤ ahmax. (10)

3. Find the maximum and minimum of T̈z as
ηmax and ηmin, and check whether they satisfy prob-
lem (5):

avmin ≤ ηmin ≤ avmax, avmin ≤ ηmax ≤ avmax. (11)

If T̈ satisfies both problems (10) and (11), we
argue that the acceleration trajectory satisfies its
corresponding cylindrical CV. Similarly, the pro-
cess mentioned above can be applied to velocity and
jerk trajectory. Only when trajectory Ti+1 passes
through SFC checking (Algorithm 4) and its deriva-
tives satisfy problems (10) and (11), does the check()
function (line 7 in Algorithm 3) return true and
would the vehicle switch to the new trajectory Ti+1.
Therefore, the trajectory is guaranteed to be both
safe and feasible for the underlying controllers.

4.3 Computational efficiency

The major advantage of the proposed approach
lies in its efficiency, taking only several microsec-
onds on a normal laptop. In the trajectory gener-
ation phase, we adopt a bisection search coupled

with a process with a closed-form solution. For
the trajectory checking phase, a continuous check-
ing process is adopted to guarantee the soundness
of the algorithm. The proposed algorithm takes
only a small amount of memory space. Thus, it is
expected to be implementation-friendly for a flight
controller with a low-end computational capability,
such as the Pixhawk flight controllers. We test the
efficiency of the single-axis jerk limited trajectory
generation algorithm (Algorithm 2). Then we se-
lect the initial state and limitations as random vari-
ables among the following ranges: p0 ∈ [−100, 100],
v0 ∈ [−20, 20], a0 ∈ [−10, 10], amin ∈ [−10,−0.1],
amax ∈ [0.1, 10], vmin ∈ [−20,−0.1], vmax ∈ [0.1, 20],
jmin ∈ [−20,−0.1], and jmax ∈ [0.1, 20]. Without
loss of generality, the position set-point is at the ori-
gin. In the experiment, a total of one billion tra-
jectories are generated without failures. The aver-
age time to solve one single-axis trajectory is less
than 1 µs, and the size of the execution file is less
than 30 KB (Table 1). We compare our algorithm
with the Reflexxes library (Kröger, 2011) in solv-
ing the single-axis position set-point problem, where
our algorithm outperforms the Reflexxes library in
terms of both computation efficiency and memory
consumption. The comparisons are done on a lap-
top computer equipped with Intel i5 processor under
Windows.

Table 1 Time consumption of the single-axis position
set-point problem

Method Average time (µs) Executable size (KB)

Our method 0.72 28
Reflexxes 1.96 282

We test the average cycling time of smooth nav-
igation among SFCs. For each computational cycle,
the total time of executing the smooth navigation
algorithm is 3.91 µs, the time of the trajectory gen-
eration phase is 2.68 µs, and the time of the checking
phase is 0.90 µs. We randomly generate a nominal
plan with nine line-segments. The velocity, accelera-
tion, and jerk limitations are all randomly selected.
The experiment is repeated multiple times and the
average is taken. The average cycle time is less than
5 µs with both the three-axis trajectory generation
and trajectory checking. The experiment has been
done on a laptop computer equipped with Intel i7
processor under Linux. Considering that the outer-
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loop controllers of the quadrotors are usually running
at a frequency of 20–50 Hz, the computational per-
formance is suitable for any real-time application.

5 Flight experiment

We first demonstrate a simulation showing a
flight path that goes through a nine-segment SFC
(Fig. 11) and the corresponding trajectory references
(Figs. 12 and 13). The horizontal and vertical accel-
eration limitations are ahmax = 2.2, avmax = 0.8,

and avmin = −0.8. Fig. 11 shows that the trajectory
is fully enclosed by the SFC, and that there are no
sharp turns or unnecessary stops at each waypoint.
The corresponding position reference can be seen in
Fig. 12, which confirms the smooth transition among
segments over the entire trajectory. Finally, the ac-
celeration profile is shown in Fig. 13 to satisfy all the
constraints mentioned above.
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The proposed algorithm has been tested by ac-
tual flight experiments using a low-cost platform
(Fig. 14). The vehicle used is equipped with a Pix-
hawk flight controller and a Vicon motion capture
system providing its position information. The drone
has a tip-to-tip size of 26 cm and weighs 726 g. A
desktop computer wirelessly provides a reference and
measurement signal to the onboard flight controller,
which is running at 20 Hz. We compare the execution
time of the trajectory obtained by the proposed tech-
nique with the trivial approach. When comparing
the two methods, we adopt the same limitations on
velocity, acceleration, and jerk in both global frame
G and each local frame Li. Specifically, the cylindri-
cal CVs in Table 2 are used. The SFCs, references,
and flight results are shown in Fig. 15. In experiment
A (Fig. 15a), the SFC is automatically generated
to guide the vehicle to fly through multiple pillars.
The nominal line-segment path is generated using a
traditional A* algorithm. Experiment B (Fig. 15b)
is conducted to test the capability of the algorithm
to guide the vehicle flying in more complex envi-
ronments with a rapid height variance. Finally, in
experiment C (Fig. 15c) a simulated power-line in-
spection mission is conducted with a broader mission
area and a faster flying speed. Compared with the
trivial solution which comes to a full stop at each
endpoint, our method saves more than 40% flying
time in all three experiments (Table 3).

We demonstrate that through the trajectory
switching method, it is possible to dynamically
change the desired target. A user could choose
an arbitrary destination within an SFC at any mo-
ment, and the vehicle will safely proceed towards
it. In Fig. 16, the vehicle is first given a target A.
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Table 2 State constraints

Experiment
vhmax vvmax vvmin ahmax avmax

(m/s2) (m/s) (m/s) (m/s) (m/s2)

A 4 0.8 –0.8 2.2 0.8
B 3 0.8 –0.8 1.2 0.8
C 15 0.8 –0.8 2.2 0.8

Experiment
avmin jhmax jvmax jvmin

(m/s2) (m/s3) (m/s3) (m/s3)

A –0.8 3 3 –3
B –0.8 3 3 –3
C –0.8 3 3 –3

Table 3 Flying time consumption

Experiment
Flying time (s)

Improvement
Our method Trivial method

A 11.05 23.70 53%
B 13.05 23.45 44%
C 123.80 211.50 41%

Fig. 14 Platform used for real flight experiments

However, before reaching its goal, the aim is modified
to point B. Once the vehicle reaches B, the goal is
ultimately changed to C. For each target switching,
the trajectory is immediately re-planned towards the
new goal. Since our method can generate the trajec-
tory in microseconds, the instant reaction is to be
expected for a flight controller with a low-end com-
putational capability.

6 Conclusions

In this paper, we have developed a computation-
ally efficient algorithm for the quadrotor platform to
generate a jerk limited trajectory within a safe cor-
ridor. The corridor is conveniently described as a
series of inter-connected cuboids. Unlike the triv-
ial solution that requires the vehicle stop at each
intersected point of the connected boxes, our algo-
rithm generates a smooth non-stop trajectory with a
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safety guarantee. The main idea is to incrementally
generate a full trajectory by continuously generating
a candidate trajectory from the current state of the
UAV towards an intermediate waypoint between two
cuboids.
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To consider the computational efficiency, we
have temporarily ignored the complex geometric con-
straints when generating candidate trajectories. For
each candidate trajectory, our algorithm can limit
its velocity, acceleration, and jerk in a cylindrical
constraint volume, which satisfies the physical lim-
itations of the vehicle. Then a checking algorithm
has been proposed to determine the feasibility and
safety of the candidate trajectory. Our checking pro-
cedure does not require trajectory discretization but
guarantees the satisfaction of various constraints on
a continuous time interval. Finally, we have noted
that the proposed technique has been successfully
implemented and tested on actual flight experiments.
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