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Abstract. Current state-of-the-art 3D scene understanding methods are
merely designed in a full-supervised way. However, in the limited recon-
struction cases, only limited 3D scenes can be reconstructed and anno-
tated. We are in need of a framework that can concurrently be applied to
3D point cloud semantic segmentation and instance segmentation, partic-
ularly in circumstances where labels are rather scarce. The paper intro-
duces an effective approach to tackle the 3D scene understanding problem
when labeled scenes are limited. To leverage the boundary information,
we propose a novel energy-based loss with boundary awareness benefit-
ing from the region-level boundary labels predicted by the boundary pre-
diction network. To encourage latent instance discrimination and guar-
antee efficiency, we propose the first unsupervised region-level semantic
contrastive learning scheme for point clouds, which uses confident predic-
tions of the network to discriminate the intermediate feature embeddings
in multiple stages. In the limited reconstruction case, our proposed app-
roach, termed WS3D, has pioneer performance on the large-scale ScanNet
on semantic segmentation and instance segmentation. Also, our proposed
WS3D achieves state-of-the-art performance on the other indoor and out-
door datasets S3DIS and SemanticKITTI.
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1 Introduction

The 3D scene segmentation problem, which typically consists of two important
downstream tasks: point cloud semantic segmentation and instance
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Fig. 1. The illustration of the overall framework of our proposed WS3D.

segmentation, becomes increasingly important recently with the wide deployment
of 3D sensors, such as LiDAR and RGB-D cameras [3]. Point clouds are the raw
sensor data obtained by 3D sensors and the most common 3D data representa-
tion for 3D scene understanding in robotics and autonomous driving. However, the
majority of point cloud understanding methods rely on heavy annotations [4,7,15].
Annotations of 3D point cloud requires a large amount of time and huge labours.
For instance, it requires approximately half an hour per scene for ScanNet [10] or
S3DIS [2] with even thousands of scenes. Though existing point cloud understand-
ing methods [4,7,15] have achieved good results on these datasets, it is difficult to
directly extend them to new scenes when high-quality labels are scarce. And lim-
ited number of scenes can be reconstructed in reality [18]. Therefore, developing
methods that can be trained with limited 3D labels in complex scenes, termed as
weakly supervised learning (WSL)-based or semi-supervised learning (SSL)-based
3D point cloud understanding, becomes in high demand. Recently, motivated by
the success of WSL in images [54], many works start to tackle WSL with fewer
labels in 3D, but great challenges remain. The challenges involve the meaningful
information loss when 3D scenes are transformed to image [50], reliance on fully
supervised image segmentation [50], sophisticated pre-processing and pre-training
[55], customized labeling strategy and reliance on scene class labels for sub-clouds
[52], lack of relationship mining both in low-level geometry and high-level seman-
tics [18]. Hence, developing an effective 3D WSL framework to effectively exploit
the information in limited 3D labeled data for the scene segmentation task becomes
extremely important.

Weakly supervised image semantic and instance segmentation is a vehement
research focus in recent years. Some simple but effective methods have been pro-
posed for WSL-based semantic understanding such as contrastive learning [19,55]
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and conditional random field (CRF) [6,43]. However, there still exist four main
challenging unsolved issues. Firstly, the widely adopted energy-function-based
conditional random field segmentation [6] relies on handcrafted feature similari-
ties, and does not consider the boundary information. It attaches equal importance
to pixels on the semantic boundary and within the same semantic object, which can
cause vague and inaccurate predictions in pixel-level segmentation at the object
boundaries. And how to leverage boundary information has been explored in 2D
but rarely explored in 3D WSL. Secondly, the computation costs are both very
high when applying pixel-level contrastive learning or pixel-level energy-based seg-
mentation in a high-resolution image for every pixel pair. Furthermore, the large-
scale point cloud scenes even contain billions of points, making the point-level
contrastive learning intractable. Thirdly, the existing unsupervised contrastive-
learning-based pre-training for point clouds [18,55] only regards the geometrically
registered point cloud pairs as positive samples, while does not take their impor-
tant correlated semantics into consideration. Finally, although existing state-of-
the-art detection and segmentation methods [31,63] succeed in using multi-level
feature representations in 2D, it remains challenging to design efficient 3D multi-
stage contrastive learning strategies to establish more distinctive feature represen-
tations at each stage of the feature pyramid.

As depicted in Fig. 1, we propose a unified WS3D framework which simul-
taneously solves the 3D semantic segmentation and instance segmentation. We
firstly use the oversegmentation [46] to obtain regions, and use a boundary pre-
diction network as an intermediate tool to obtain boundary region labels. Then,
high-confidence boundary region labels serve as guidance for our proposed unsu-
pervised region-level energy-based loss. Meanwhile, we propose an unsupervised
multi-stage region-level confidence-guided contrastive loss to enhance instance
discrimination. Combined with supervised loss, complete 3D scene segmentation
is achieved. Specifically, our WS3D includes two novel designs to address the
challenging issues mentioned above and to enhance the performance. Firstly, to
encourage latent instance discrimination and to guarantee efficiency, an efficient
region-level contrastive learning strategy is proposed to guide network training
at multiple stages, which realizes unsupervised instance discrimination. Also, to
leverage boundary information as labels for semantic divisions, an energy-based
loss with guidance from the semantic boundary regions is proposed to make the
maximum utilization of the unlabeled data in network training.

The main contributions of our work are highlighted as follows:

1. We propose an unsupervised region-level energy-based loss to achieve region-
level boundary awareness, which utilizes boundaries as additional information
to assist the 3D scene segmentation.

2. We propose the first unsupervised region-level semantic contrastive learning
strategy for multi-stage feature discrimination. The energy-based loss and
the contrastive loss are jointly optimized for the segmentation network in a
complementary manner to make full use of the unlabeled data.

3. We propose the first weakly supervised framework that can be simultane-
ously applied for 3D semantic segmentation and instance segmentation. We
conduct a lot of experiments on ScanNet and other indoor/outdoor bench-
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marks such as S3DIS and SemanticKITTI with different annotation ratios. It
is demonstrated State-of-the-art performance has been attained.

2 Related Work

Machine Learning for 3D Scene Understanding. Point cloud processing
has become increasingly important in robotic control and scene understand-
ing applications [33–38]. Deep-learning-based approaches are commonly selected
for the downstream high-level tasks of 3D scene understanding. The deep-
learning-based point cloud processing approaches can be roughly divided into
voxelization-based approaches [8,42,45,47,59], transformation-based approaches
[13,14,27,30,53,56], and point-based approaches [1,12,23,28,29,35,36,39,41,58,
60,62]. The typical point-based method is the superpoint-graph [28] proposing
graph-based deep metric learning for point clouds oversegmentation, which has
inspired our work. Different from them, we use the oversegmentation result as
the intermediate tool to obtain the boundary region labels. Typical voxel-based
method is the Sparseconv [16]. We use it as the backbone network in the task of
semantic segmentation because of its high performance in inferring 3D semantics.

Pre-training for the Point Clouds Understanding. Many recent works
proposed to pre-train networks on source datasets with auxiliary tasks such as
the low-level point cloud geometric registration [55], the local structure predic-
tion [48], the completion of the occluded point clouds [51], and the high-level
supervised point cloud semantic segmentation [11], with effective learning strate-
gies such as contrastive learning [55] and generative models [11]. Then, they
finetuned the weights of the trained networks for the target 3D understanding
tasks to boost performance on the target dataset. However, two major chal-
lenges still exist. Firstly, all the mentioned approaches depended on high-quality
full annotations, which are hard to obtain for large-scale 3D scenes. Secondly,
the large-scale pre-training requires a huge number of computational resources
even for image understanding tasks [65]. Thus, the pre-training for large-scale
point clouds understanding is hard to put into practice. The unsupervised pre-
training [18] showed great capacity in unleashing the potential of a large amount
of training data to serve for complicated tasks, e.g., instance segmentation. But
merely utilizing unsupervised pre-training cannot explicitly make the utilization
of unlabeled scenes, which results in unsatisfactory performance. Unlike previous
methods benefiting a lot from pre-training, our proposed approach is trained in
an end-to-end manner without pre-training.

WSL for 3D Semantic/Instance Segmentation. A large number of recent
works focused on the task of 3D semantic and instance segmentation [21,25,30,
44] with full labels. However, applying current State-of-the-art methods (SOTAs)
in a direct way for training often results in a great decrease in performance [20]
for WSL, if the percentage of labeled data drops to a certain value, e.g., less
than 30%. Recently, many works started to focus more on point cloud semantic
segmentation with partially labeled data. Wang et al. [50] chose to transform 3D
point clouds representations to 2D images, but pixel-level semantic segmentation
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Fig. 2. WS3D architecture overview. WS3D consists of three modules: 1. Unsuper-
vised region-level energy-based optimization guided by boundary labels; 2. Unsuper-
vised multi-stage region-level contrastive learning with high confidence; 3. Super-
vised region-level semantic contrastive learning with labeled data. The backbone net-
work adopts the encoder-decoder structures. The weights of the backbone network are
shared in the supervised and unsupervised branch. Our framework can be integrated
seamlessly to any off-the-shelf point-based or voxel-based backbones.

labels are still in need during network training. Sub-cloud-level labels [52] needed
additional large amount of labor to divide the whole scene into point cloud sub-
scenes and to annotate the divided 3D scans into diverse categories. The iterative
self-training approaches [40] took advantage of designing a sequential learning
strategy, which was made up of two steps to provide pseudo supervisions from
limited annotations. However, the OTOC merely works for the task of semantic
segmentation. And it can not be easily generalized to more complicated tasks
such as instance segmentation. Xu et al. [57] designed a learning framework
that merely relies on a small portion of points to be annotated during training.
It was designed to approximate the gradient during the learning process, where
the auxiliary 3D spatial constraints and color-level evenness were also considered
in the network optimizations. However, the approach was restricted to the object
part segmentation, and it is difficult to annotate points in a well-proportioned
and homogeneous as required. Like Xu et al. [57], we interchangeably use the
terms weakly-supervised and semi-supervised for the limited reconstruction cases
in this work. In summary, weakly/semi-supervised 3D semantic and instance
segmentation are far from mature. More effective methods should be proposed
to extract meaningful information from the unlabeled data when limited 3D
scenes can be labeled.

3 Proposed Methodology

We propose a general WS3D framework to tackle weakly supervised 3D under-
standing with limited labels, as shown in Fig. 2. We choose different backbone
networks for semantic and instance segmentation tasks. For semantic segmen-
tation, we choose the effective backbone Sparseconv [16]. For instance segmen-
tation, our backbone and point clustering procedure follow widely-used Point-
Group [25]. WS3D consists of three modules for the network optimization:
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1. Unsupervised energy-based loss guided by boundary awareness and highly
confident predictions for unlabeled data, which is discussed in Subsect. 3.1; 2.
Unsupervised multi-stage region-level contrastive learning with highly confident
predictions for unlabeled data, which is discussed in Subsect. 3.2. 3. Supervised
semantic contrastive learning for labeled data, which is discussed in Subsect. 3.3.
The three modules are integrated jointly into the optimization function for net-
work training to accomplish the semantic or instance segmentation task.

3.1 Unsupervised Region-Level Boundary Awareness

Energy-function-based conditional random field segmentation was proposed in
[6] and has been widely applied. However, it works in a fully supervised man-
ner and does not consider the semantic boundary information, which is a great
indication of semantic partitions in point clouds scenes. In this Subsection, we
develop a boundary-aware energy-based loss for unsupervised learning. As shown
in Fig. 1, to obtain robust boundaries for unlabeled 3D points, we first perform
point cloud oversegmentation [46], and also extract boundary points using an
off-the shelf semantic boundary prediction network, which are both subsequently
used as the conditions to define boundary regions for 3D points. Then, we pro-
pose a region-level energy-based loss based on obtained boundary region labels.

Point Clouds Oversegmentation. To obtain boundary regions, and facil-
itate subsequent region-level affinity computation and region-level contrastive
learning, we first perform a region-level coarse clustering based on point cloud
oversegmentation. The previous method depended on the region growing [46]
to do oversegmentation, which relied heavily on the accurate normal estimation
and were easily influenced by noises. In our work, we choose to use normal, cur-
vature to provide the initial oversegmentation. And the oversegmentation results
are shown in Fig. 1 and 4. Denote original point clouds as Pin. After overseg-
mentation, they are partitioned into Q subregions S = {s1, s2, ..., sq}, where
si ∩ sk = ∅ for any si �= sk as shown in Fig. 1 and 4.

Boundary Points Extraction. As shown in Fig. 1, in addition to the over-
segmentation results, we extract the semantic boundary points to further iden-
tify boundary regions. The semantic boundary often indicates the distinguish-
ment between various semantic classes. We extract semantic boundary points by
JSENet [22], as shown in Fig. 2. As for training, we first define semantic bound-
ary points from the limited labeled scenes as ground truth. With definition of
the ground truth boundary points, we design the loss following JSENet except
substituting the binary cross entropy loss Lbce with the focal loss Lfoc [32] to
tackle the large class imbalance between the boundary points and non-boundary
points. Lfoc is as follows:

Lfoc = − 1
Ni

Ni∑

i=1

(1 − bi)
α
bgt
i log(bi) + (bi)α(1 − bgt

i )log(1 − bi), (1)

where bi denotes the binary predicted boundary map and bgt
i denotes the ground

truth boundary map. Ni is the total number of input points for training. We
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select α = 2 based on the original design [32]. After its convergence, we apply
the trained network to the remaining unlabeled scenes to obtain their boundary
points. Examples of predicted boundary points of ScanNet [10] are shown in
Fig. 4, which clearly reveal distinctions between diverse semantic classes.

Boundary Labels. After extracting semantic boundary points, we utilize them
as labels of discrimination between diverse semantic categories. As shown in
Fig. 1, denote the jth adjacent regions of the center region si as si,j . The adjacent
region query is realized by fast Octree-based K -nearest neighbour search [5].
Then, we determine the two adjacent regions as boundary regions if both si and
si,j contain boundary points. The label for boundary region wi,j is designed as:

wi,j =

{
1 if si, si,j both contain boundary points;
0 otherwise.

(2)

The label wi,j denotes semantic boundaries of adjacent regions, which is then
used to guide the optimization of the energy function for segmentation.

Energy Loss Guided by Boundary Labels. As shown in Fig. 2, we first per-
form data augmentation (detailed in the Appendix) for the input point clouds
Pin to obtain two transformed point clouds Pin,1 and Pin,2 ∈ R

N×Cin , where N
is the numbers of points. Cin and Cout are the numbers of input and output fea-
ture channels, respectively. Utilizing the backbone network Sparseconv [16], we
can obtain point cloud predictions Pout,1 and Pout,2. Then, applying region-level
max pooling on the same subregions, we obtain the predicted classes P1, and
P2 ∈ R

M×Cout of the specific subregions. P = {p(s1), p(s2), ...p(si), ..., p(sR)},
where R is the total number of regions obtained by oversegmentation. Denote
the prediction of the jth neighbouring region of center region si as p(si,j). Tak-
ing the unary network prediction and pairwise affinity between the neighbouring
region into account, inspired by conditional random field (CRF) in DeepLab [6],
we formulate the optimization energy function Esum as follows:

Esum =
∑

i

Ei(si) +
adjacent∑

i<j

Ei,j(si, si,j). (3)

The first unary network prediction item Ei(si) is the entropy regulariza-
tion term. It encourages region-level prediction with high confidence, which also
facilitates the contrastive learning introduced subsequently. It is formulated as:

Ei(si) = −log p(si). (4)

We propose the pairwise affinity term of Esum as:

Ei,j(si, si,j) = Hi,jwi,j [ε − ‖p(si) − p(si,j)‖]2+
+Hi,j(1 − wi,j)‖p(si) − p(si,j)‖2.

(5)

The Hi,j is the confidence indicator. Hi,j = 1, if the probabilities which pro-
duce p(si) and p(si,j) are both larger than a threshold γ. Otherwise, it equals 0.
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ε can be any value in the range of (0, 1). p(si) and p(si,j) are the semantic pre-
dictions for the ith center region and the jth neighbouring region, respectively.
And [x]+ is the maximum function max(0, x). For adjacent boundary regions, we
encourage their confident semantic or instance predictions to be different (i.e.,
larger ‖p(si) − p(si,j)‖); while for non-boundary adjacent regions, we force their
semantic predictions to be the same (i.e., ‖p(si) − p(si,j)‖ = 0). Different from
the traditional energy function in DeepLab [6], which used handcrafted features
to compare similarities, we propose to use the learned boundary region labels
to guide the network’s confident max-pooled region-level predictions. Therefore,
the proposed boundary-aware energy function better encourages semantic sepa-
rations at boundaries. Furthermore, we only consider pairwise affinity between
adjacent regions instead of all pixel pairs, which greatly reduces computation
costs, and avoids noises induced by distant unrelated pairs in the meanwhile.

3.2 Unsupervised Region-Level Instance Discrimination

After applying entropy regularization term Ei(si), we can obtain region-level
predictions with high confidence. Note that confident region-level predictions
further improve the latent feature discrimination capacity of the network, which
makes contrastive learning in the latent space feasible. Therefore, we further
propose a multi-stage region-level contrastive learning for unlabeled data.
Compared with previous work only using contrastive learning with low-level
geometric registrations [55], our work unleashes potentials of contrastive learning
with instance discrimination to enhance distinct feature learning in latent space.

The key of semantic/instance segmentation is to maintain discriminative fea-
ture representations at different stages of the backbone network [63]. Inspired
by the feature pyramid network [31,63], we propose a simple but effective multi-
stage contrastive learning approach for point clouds in an unsupervised setting.
As shown in Fig. 2, given the input augmented point clouds Pin,1 and Pin,2,
we feed them into the backbone encoder. We add five additional MLP heads
with region-level max-pooling to obtain region-level segmentation predictions at
the mth backbone stage, denoted as fg,m and fh,m, respectively (five stages in
our case, denote M as the total network stages. i.e., M = 5). After we apply
the MLP heads to the extracted features at different stages, we can obtain the
hierarchical feature embeddings. Unlike existing pixel-level [9] (or point-level for
point clouds) contrastive learning, our proposed contrastive learning performs
on the region level. The region-level semantic contrastive loss is formulated as:

Lm
contrast = − 1

Sp

∑

(a,b)∈Sp

log
Hi,jexp(fag,m · f+h,m/τ)

∑
(·,c)∈Sp

Hi,jexp(fag,m · f−h,m/τ))
, (6)

where (a, b) ∈ Sp are latent confident predicted positive region pairs, and (a, c) ∈
Sp are latent negative region pairs. As mentioned before, Hi,j is designed for
eliminating contrastive learning candidates with low confidence degrees. Reliable
region-level contrastive learning is only applied to confident predictions by the
network. Note that although a recent work GPC [24] proposed methods to
perform contrastive learning on the point clouds in a SSL manner, our work is
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different from their method in two aspects. Firstly, our contrastive learning is
conducted at region level while GPC conducted contrastive learning at point
level. Secondly, GPC focused on the selection of the positive and negative point-
set samples to perform contrastive learning in a pseudo-label supervised manner
on two different 3D scene samples, while we focus on unsupervised contrastive
learning which disentangles different feature representations in latent spaces on
the same augmented 3D scene sample, guided by confident network predictions.

The final proposed multi-stage contrastive learning loss is formulated as the
sum of losses at every network stage:

Lmulti =
M∑

m=1

Lm
contrast. (7)

After applying the multi-stage contrastive loss Lmulti, the output at each
stage of the network will provide more distinctive representations to attain a
better performance. From our ablation experiments, the performance can be
boosted by applying multi-stage contrastive loss. Combining proposed loss items
Esum,1, Esum,2 (see Eq. 3) for the two augmented scenes Pin,1, Pin,2, and Lmulti

(see Eq. 7), we formulate the overall loss Lunlabeled for the WS3D training with
unlabeled data: Lunlabeled = Esum,1 + Esum,2 + Lmulti.

3.3 Supervised Learning for Labeled Data

We also guide the network optimization by using supervision from the labeled
data. As shown in Fig. 2, we use the cross-entropy loss Lce to guide the supervised
learning on the labeled data in the supervised branch. The loss term for the
WS3D training with the labeled data is Llabeled = Lce.

3.4 The Overall Optimization Loss Function

Leveraging our proposed region-level energy-based loss and region-level con-
strastive learning, the network can make use of the unlabeled data for better
feature learning to boost performance. As shown in Fig. 2, for semantic segmen-
tation and instance segmentation, we train the network in an end-to-end manner
for both supervised and unsupervised branches to make full use of labeled and
unlabeled data. The overall optimization function Ltotal is formulated as follows:

Ltotal = Llabeled + Lunlabeled. (8)

4 Experiments

4.1 Experimental Settings

Datasets. To demonstrate the effectiveness of our proposed WS3D for WSL
under the limited reconstruction labeling scheme, we have tested it on various
of benchmarks, including S3DIS [2], ScanNet [17], and SemanticKITTI [4] for
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BAAF-Net
(100% Labels)

Cylinder3D
(100% Labels)

Ground Truth WS3D 
(5% Labels)

Fig. 3. Qualitative semantic segmentation results of proposed WS3D on
SemanticKITTI Val. Set with 5% labeling percentage, compared with fully supervised
arts Cylinder3D [64], and BAAF-Net [44] with semantics indicated by different colors.
The red circles highlight the performance difference between diverse methods.

semantic segmentation, and ScanNet [17] for instance segmentation, respectively.
The detailed information of each dataset is put in the Appendix.

Training Set Partition. Following the typical setting in data-efficient learning
in the limited reconstruction case [18,24], we partition the training set of all
tested datasets into labeled data and unlabeled data with various of labeling
points proportion, e.g., {1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 100%}. For
the limited reconstruction case, noted that to partition the labeled points into
a specific labeling ratio, we probably need to split a maximum of one scene into
two sub-scenes. One of the sub-scenes belongs to the labeled data and the other
sub-scenes belong to the unlabeled data.

Implementation Details. For the task of semantic segmentation, we train the
network for 500 epochs on a single NVIDIA 1080Ti GPU with a batch size of
16 during training. The initial learning rate is 1×10−3 and is multiplied with
0.2 every 50 epochs. We implement it by PyTorch and optimize it with Adam
optimizer [26]. We set the hyperparameter γ as 0.8 to ensure merely highly
confident prediction can be used for the network optimization. ε is set to 0.5.
For the instance segmentation, we train the network for 580 epochs on a single
NVIDIA 1080Ti GPU with a batch size of 8 during training. The other settings
are the same as the semantic segmentation task.

4.2 WSL-Based 3D Semantic Segmentation

Overall Experimental Results. For semantic segmentation, we tested WS3D
on various indoor and outdoor benchmarks, including ScanNet [10], S3DIS [2],
and SemanticKITTI [4]. We have done experiments with limited labeled data,
e.g., only {1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 100%} data in the training
set are used as labeled data. As mentioned, we have used the voxel-based method
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Table 1. Comparison of semantic segmentation results with different labeling per-
centages on ScanNet val. set, and S3DIS val. set (Area 5), and SemanticKITTI val. set.
‘Sup-only-GPC’ denotes GPC model trained with only labeled data. ‘WS3D’ denotes
model trained with our proposed methods. We have shown the performance increase
in the last row for each dataset, compared to merely trained models with labeled data
(the left value) and to the SOTAs GPC [24] (the right value).

Datasets Network model Semantic segmentation mIOU (%) on the validation set according to supervision level (%)

1% 5% 10% 15% 20% 25% 30% 40% 100%

ScanNet Sup-only-GPC 40.9 48.1 57.2 61.3 64.0 65.3 67.1 68.8 72.9

GPC [24] 46.6 54.8 60.5 63.3 66.7 67.5 68.9 71.3 74.0

WS3D 49.9 56.2 62.2 65.8 68.5 69.4 70.3 73.4 76.9

↑ +9.0/+3.3 +8.1/+1.4 +5.0/+1.7 +4.5/+2.5 +4.5/+1.8 +4.1/+1.9 +3.2/+1.4 +4.6/+2.1 +4.0/+2.9

S3DIS Sup-only-GPC 36.3 45.0 52.9 55.3 59.9 60.3 61.2 62.6 66.4

GPC [24] 38.2 53.0 57.7 60.2 63.5 63.9 64.9 65.0 68.8

WS3D 45.3 54.6 59.3 62.3 65.7 66.5 67.2 69.5 72.9

↑ +9.0/+7.1 +9.6/+1.6 +6.4/+1.6 +7.0/+2.1 +5.8/+2.2 +6.2/+2.6 +6.0/+2.3 +6.9/+4.5 +6.5/+4.1

SemanticKITTI Sup-only-GPC 28.6 34.8 43.9 47.9 53.8 55.1 55.4 57.4 65.0

GPC [24] 34.7 41.8 49.9 53.1 58.8 59.1 59.4 59.9 65.8

WS3D 38.9 43.7 52.3 55.5 61.4 61.7 62.1 63.2 66.9

↑ +10.3/+4.2 +8.9/+1.9 +8.4/+2.4 +7.6/+2.4 +7.6/+2.6 +6.6/+2.6 +6.7/+2.7 +5.8/+3.3 +1.9/+1.1

Sparseconv [16] as the backbone. The qualitative results are shown in Fig. 3. And
the quantitative semantic segmentation performance in terms of mIOU is sum-
marized in Table 1. Our WSL model significantly surpasses the supervised-only
model in GPC that is merely trained with labeled data, showing that our WSL
can make use of the unlabeled data to enhance the feature discrimination capac-
ity of the model. Also, it can be observed that compared with Sup-only-GPC
models, the increment of performance is more obvious when the unlabeled data
percentage is larger. For example, the performance increase on SemanticKITTI
is 10.3% for the 1% labeling percentage, 5.8% for the 40% labeling percentage,
and 1.9% for the 100% labeling percentage. This can be possibly explained by the
fact that for more unlabeled data, our proposed WS3D can extract more mean-
ingful semantic information from the unlabeled data based on our boundary-
guided energy-based loss and confidence-guided region-level contrastive learning
design. In addition, compared with current SOTAs GPC, our proposed WS3D
also achieves consistently better results in semantic segmentation performance,
especially when faced with very limited label circumstances (e.g., 1% labeling
points). In that case, WS3D outperforms GPC by 3.3%, 7.1%, and 4.2% for
ScanNet, S3DIS, and SemanticKITTI, respectively. Figure 3 shows that we can
provide comparable performance compared with fully supervised SOTAs BAAF-
Net [44] and Cylinder3D [64] on SemanticKITTI with 5% labels.

Comparisons with SOTAs in the Fully Supervised Mode. To demon-
strate the feature learning capacity of our proposed WS3D, we have also exper-
imented with the 100% labeling percentage for a fair comparison with fully super-
vised SOTAs. The results are shown in Table 2 and the last column of Table 1.
We have fed the whole training set into the supervised branch and unsuper-
vised branch in Fig. 2 simultaneously. Therefore, our proposed energy-based loss
and region-level contrastive learning strategy operate as additional optimization
guidance for the network training. Table 2 demonstrates that we can realize at
least comparable or even better results, compared with fully supervised SOTAs.
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Table 2. Comparison of SOTAs methods
in the semantic segmentation performance
on ScanNet validation set, S3DIS validation
set (Area 5), and on SemanticKITTI vali-
dation set and test set. All results are based
on the 100% label ratio. Top-two results are
highlighted.

Approaches Venue ScanNet S3DIS SemanticKITTI

Val Val. (Area 5) Val Test

Minkow-Network [8] CVPR19 72.2 65.4 61.1 63.1

PointASNL [58] CVPR20 66.4 62.6 – 58.8

KPConv [49] ICCV19 69.2 67.1 – 46.8

SPV-NAS [47] ECCV20 – – 64.7 66.4

Fusion-Net [61] ECCV20 – 67.2 63.7 61.3

MV-Fusion [27] ECCV20 76.4 65.4 – –

Cylinder3D [64] CVPR21 – – 65.9 67.8

BAAF-Net [44] CVPR21 – 72.1 61.2 59.9

Sup-only-GPC – 72.9 66.4 65.0 65.4

GPC ICCV21 74.0 68.8 65.8 67.7

WS3D - 76.9 72.9 66.9 69.0

Table 3. Comparison of experimental
results on 20% and fully labeled case
for the task of inductive and transduc-
tive learning, respectively. In transduc-
tive learning, the test set is also utilized
for network training. We test on the
task of semantic segmentation on Scan-
Net, S3DIS, and SemanticKITTI with
the evaluation metric of mIOU(%).

Datasets 20% label 100% label

Base Induct Transduct. Base Induct Transduct

ScanNet Val. 64.0 68.5 71.4 72.9 76.9 77.6

S3DIS Area5 Val. 59.9 65.7 66.6 66.4 72.9 73.5

Semantic KITTI Val. 53.8 61.4 64.5 65.0 66.9 68.2

Semantic KITTI Test. 55.7 62.5 63.6 65.4 68.1 71.3

Transductive Learning. Similar to the experimental setting of [24], we have
also conducted experiments evaluating the performance of WS3D in transduc-
tive learning. Different from inductive learning we tested above that requires the
trained model to be generalized to an unseen test set, transductive learning can
exploit the testing set when training. Compared with inductive learning, we add
the test set as part of the unlabeled data in transductive learning. As is demon-
strated in Table 3, the sem. seg. mIOU becomes higher if the network is learned
in a transductive way, both for the fully labeled case with 100% labels and the
weakly labeled case with 20% labels. It demonstrates that our proposed WSL
approaches, including the energy-based boundary-aware loss and the region-level
contrastive learning, can leverage the unlabeled data for feature learning effec-
tively in an implicit way to enhance the final segmentation performance.

4.3 WSL-Based 3D Instance Segmentation

As our method can be integrated seamlessly into various network backbones and
applied to different highly-level understanding tasks, we have also integrated
our method with Point-Group [25] for the instance segmentation on ScanNet
with results shown in Table 4. Noticed that the performance increase is 21.7%
when merely 1% data is labeled compared with the sup-only case. It further
demonstrates that our proposed approaches for the unsupervised branch have
effectively exploited the unlabeled data to improve the feature learning capacity
of the model. As shown in Fig. 4, our proposed approach can provide explicit
boundary guidance for separating diverse semantic classes, and the instance
segmentation performance is comparable to those fully supervised counterparts.
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Table 4. Comparison of the performance of instance segmentation, under various
levels of supervision on ScanNet validation set. ‘Sup-only-GPC’ denotes the model
trained with only labeled data. ‘WS3D’ denotes the model trained with our proposed
methods. We have shown the performance increase of WS3D in the last row.

Tested Dataset Network Model Ins. Seg. Results with the metric of AP@50%

1% 5% 10% 15% 20% 30% 35% 40% 100%

ScanNet Sup-only-GPC 10.8 33.6 42.8 45.3 48.2 49.0 49.5 50.2 56.8

WS3D 32.5 45.6 49.2 51.1 51.3 51.9 52.5 53.0 58.7

↑ +21.7 +12.0 +6.4 +5.8 +3.1 +2.9 +3.0 +2.8 +1.9

Table 5. WS3D ablation studies on ScanNet (Left Value) and S3DIS (Right Value)
Val. Set, for semantic segmentation (Metric: mIOU%) and on ScanNet Val. set for
instance segmentation (Metric: AP@50%), both tested with the 5% labeled case.

Cases Base wi,j Hi,j in EF Hi,j in UCSL UCSL MS-UCSL SCE mIOU% AP@50%

No. 1 � � � � � � 56.2/54.6 45.6

No. 2 � � � � � 51.0/49.3 39.9

No. 3 � � � � 49.9/47.2 37.0

No. 4 � � � � � 51.6/52.1 40.1

No. 5 � � � � � 51.1/51.4 40.7

No. 6 � � � � � � 52.5/50.9 42.2

No. 7 � � � � 49.3/48.0 38.1

No. 8 � � � � � 54.3/52.8 42.9

No. 9 � � 48.1/45.0 34.8

4.4 Ablation Study

Ablations: In this Subsection, to analyze the significance and demonstrate the
effectiveness of various components in WS3D, we have done comprehensive
ablations on ScanNet and S3DIS datasets for different network modules on both
semantic segmentation and instance segmentation tasks. The final results are
summarized in Table 5. We have ablated network modules in all combinations
of settings as follows. Take the ScanNet instance segmentation at AP@50% as
examples: Case 1: The full WS3D. Case 2: Removing the boundary prediction
network, and not using the guidance of wi,j . The framework still consists of the
supervised branch, unsupervised guidance of the energy function based on the
predicted confident pseudo label, and contrastive learning. This setting leads to
a significant drop of 5.7% on AP. Case 3: Removing the pairwise term in the
energy-based optimization function Esum, the AP drops largely by 8.6%. Case 4:
Removing Hi,j in the energy function, the performance drops by 5.5%. Case 5:
Removing Hi,j in the unsupervised contrastive learning, the performance drops
by 4.9%. Case 6: Conducting contrastive learning only with the region-level
feature fg,5 and fh,5 at the fifth network stage, rather than at multiple stages.
The performance drops by 3.4%. Case 7: Removing the unsupervised region-
level contrastive learning branch, the performance drops largely by 7.5%. Case
8: Removing the supervised learning branch with the cross-entropy loss, the
performance drops by 2.7%. Case 9: Only using the supervised branch, the ins.
seg. performance drops significantly by 10.8%.
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Fig. 4. Qualitative instance segmentation results of proposed WS3D on ScanNet
with the 5% labeling ratio, compared with fully supervised arts, with instances indi-
cated by different colors. And the intermediate oversegmentation results for obtaining
regions and boundary predictions, with boundary points (pts.) indicated by blue.

Analyses: From the above ablations, some important findings are summarized:
Firstly, not using our designed modules results in a significant performance
drop (Cases No. 3, No. 7, and No. 9), which demonstrates the effectiveness of the
proposed unsupervised branch and learning strategies to leverage the unlabeled
data. Secondly, our proposed learning strategies with boundary label wi,j (Case
No. 2), energy function design (No. 3), high-confidence prediction based energy
function design (No. 4), high-confidence based region-level contrastive learning
strategy (No. 5), multi-stage contrastive learning network design (No. 6), all have
a boost on the overall semantic/instance segmentation performance. The results
demonstrate that the proposed energy loss is significant for semantic/instance
seg. performance, because semantic boundary labels are crucial for identifying
diverse objects. Thirdly, removing the supervision (Case No. 8), our method
still maintains the performance with a slight drop of performance by 2.7%. It
further validates the robustness and feature learning capacity of our approach.

5 Conclusion

In summary, we propose a general WS3D framework for WSL-based 3D scene
segmentation with SOTAs performance. We propose an unsupervised boundary-
aware energy-based loss and a novel region-level multi-stage semantic contrastive
learning strategy, which are complementary to each other to make the network
learn more meaningful and discriminative features from the unlabeled data. The
effectiveness of our approach is verified across three diverse large-scale 3D scene
understanding benchmarks under various experiment circumstances.
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