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Abstract
Integrator based model is used to describe a wide range of systems in robotics. In this paper, we present an axis-coupled

trajectory generation algorithm for chains of integrators with an arbitrary order. Special notice has been given to problems with
pre-existing nominal plans, which are common in robotic applications. It also handles various type of constraints that can be
satisfied on an entire time interval, including non-convex ones which can be transformed into a series of convex constraints
through time segmentation. The proposed approach results in a linearly constrained quadratic programming problem, which can
be solved effectively with off-the-shelf solvers. A closed-form solution is achievable with only the boundary constraints considered.
Finally, the proposed method is tested in real experiments using quadrotors which represent high-order integrator systems.
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1 Introduction

Chains of integrators are used in approaching and
analyzing the dynamics of many systems in robotic ap-
plications, such as the electrical motor, robotic arms,
and computer numerical control (CNC) machines. Es-
pecially, many of the holonomic vehicles, including the
recently popular multi-copters, can be effectively simpli-
fied into chains of integrator because of their differential

flat properties [1]. In many of these applications, it is
desirable to generate a trajectory that satisfies certain
constraints while minimizing the deviation from a pre-
existing nominal plan [22].

� Boundary conditions: The trajectory is required to
start and end in a specific state. For example, many
methods rely on trajectory re-planning to handle the
system and environment uncertainties, the initial state
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in such a problem is usually the current or near future
state of the system.
� Input constraints: Most robotic system has limited

input, such as limited torque, current, etc. If a trajectory
is to be tracked precisely and safely, the limits on inputs
need to be satisfied.
� Safety constraints: The trajectory has to stay in cer-

tain safe regions. Moreover, in many cases, this leads to
non-convex constraints due to the nature of the system
or the environment.
� Derivative constraints: Many systems come with

state limits that can be expressed as the derivative of
the trajectory, such as the maximum angular speed of a
motor, the limited acceleration of a multicopter, or the
jerk constraint in a CNC machine.

Generally, the last two constraints can also be sum-
marized as the state constraints. In robotic applications,
due to the limited computational power and the require-
ment of real-time capability, they are usually dealt with
vastly different methods.

Many systems adopt a multi-layer approach in mo-
tion planning to reduce the volume of the search space.
Global planning is usually conducted with a vehicle
model with highly reduced dynamics, and results in a
nominal plan consisting of simple geometric primitives
such as points and lines. A trajectory generation algo-
rithm shall be able to minimize the derivative to the
nominal plans while satisfying all the above mentioned
constraints. Finally, a smooth reference trajectory is usu-
ally desirable. It implies a minimized energy consump-
tion and lesser wear and tear, which are beneficial in
general.

There is a rich literature on trajectory generation.
A common approach is first to generate multiple
keyframes which are then interpolated through poly-
nomials. A recent example can be seen in [1], where the
authors formulate a (QP) problem to interpolate a series
of waypoints using polynomial splines. It can be consid-
ered as a multiple shooting method due to the usage of
equality constraints to connect different polynomial seg-
ments. For chains of integrators, the underlying ordinary
differential equations (ODEs) in a shooting method can
be solved analytically. Therefore, it is possible to refor-
mulate the problem with different variables and elimi-
nate the unnecessary equality constraints [2]. However,
due to the base functions used in [1] and [2], they only
support point-wise constraints. One needs to enforce
the constraints at multiple discrete samples [3] or solve
the problems various times [4] to ensure the constraints

are well satisfied on the entire trajectory. To address the
issue, Bézier curve is adopted in [5] and [6] to enforce
the constraints in a continuous time interval. However,
it is not applied to the trajectory’s derivatives, and the
equality constraints for segment connection cannot be
omitted.

On the other hand, the authors of [10] presents a
method based on the pontryagin’s maximum principle
to generate a jerk limited and time-optimal trajectory
in the form of cubic splines. The method utilizes a de-
cision tree to differentiate between multiple shapes of
acceleration profiles where each of them has an analytic
solution. Therefore, it is highly efficient, and a trajectory
could be generated in micro-seconds level. The author
of [7] later extended it for multi-axis synchronization and
applied to robotic arms [8]. In [9], the authors adopt a
binary searching based approach to simplify the solution
of the original problem and extend it to support higher
order systems. But the time consumption grows expo-
nentially with the system order and the time optimally
is lost. The input reference generated by the methods
mentioned above [7, 10] always switches between its
maximum magnitude and zero. While it is less obvious
for electric motors, it could trigger unnecessary aggres-
sive maneuvers for other systems such as the multi-
copters. Moreover, these methods can only be used to
solve two-point boundary value problems instead of a
general interpolation. In [21], this method has been suc-
cessfully implemented on a vertical-take-off-and-landing
vehicle.

Furthermore, B-splines have also been used for gen-
erating trajectories for chains of integrators. By using the
control points as variables, it guarantees the continuity
of the trajectory implicitly, and the equality constraints
for segment connection can be safely ignored. The for-
mulation presented in [11] and [12] explores the non-
negativity and partition-of-unity properties of the base
function to satisfy linear boundaries over a time inter-
val. However, the proposed piece-wise linear bound-
aries decomposition is only applied to 2-dimensional
cases, and it is not sufficient to constrain the trajectory
inside arbitrary non-convex regions. Moreover, it fits
only point-wise or time-dependent nominal plans but
not other geometric primitives.

In this paper, we propose a method based on the
B-spline to solve the problems mentioned above with
efficient QP formulation. Its major advantages include:
� Addressing the issues of axis-coupling and interval-

wise effectiveness through the convex hull property of
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the B-spline.
� Converting non-convex constraints into convex ones

through segmentation.
� Resulting in a QP with adjustable problem size,

which offers a trade-off between solution quality and
computing time.

Throughout the paper,X ∈ Rd×1 denotes the d dimen-
sional workspace, where d ∈N. For vectors or matrixes,
the bracketed subscript denotes specific elements. For
a vector a ∈ Rm×1, then a(i) represents its ith element.
Similarly, for a matrix A ∈ Rm×n, A(i, j) denotes its ele-
ment in row i and column j, and A(i,∗) represents the
entire ith row, and A(∗, j) represents the entire jth col-
umn. For the axis-coupled formulation, the Kronecker
product is marked by the ⊗ operator, and Id denotes the
identity matrixRd×d. Finally, for a matrix A, its vectoriza-
tion Â is defined as Â = [A(1,∗),A(2,∗), . . . ,A(m,∗)]T where
T denotes the transpose.

The rest of the paper is organized as follows. The
introduction to the B-spline formulation is covered in
Section 2; whereas, in Section 3, we show how to for-
mulate the desired problems with quadratic cost func-
tions and linear constraints. In Section 4, the resulting
QP is presented, and its solution is discussed, including
a closed-form solution. To demonstrate the proposed
method, real-experiments are performed using quadro-
tors, the results and analysis are provided in Section 5.
Finally, a conclusion is drawn in Section 6.

2 Background material on B-spline approx-
imation

B-spline, or the basis spline is widely used in statis-
tics for curve fitting and data differentiation. A kth order
B-spline Sk can be expressed as

Sk(s) =
M−1∑
i=0

ciNk
i (s), ci, S ∈ X, Nk

i ∈ R, (1)

where Nk
i is the basis function and ci ∈ Rd×1 is called

the control point. The basis functions are defined over an
knot vector K = [s0, s1, . . . , sM+k] and a path parameter
s:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N0

i (s) =

⎧⎪⎪⎨⎪⎪⎩
1, if si � s < si+1,

0, otherwise,

Nj
i (s) = NA(s, i, j)Nj−1

i (s) +NB(s, i, j)Nj−1
i+1 (s),

(2)

where

NA(s, i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if si = si+ j,

s − si

si+ j − si
, otherwise.

NB(s, i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if si+1 = si+ j+1,

si+ j+1 − s
si+ j+1 − si+1

, otherwise.

(3)

In order to achieve an efficient QP problem, the car-
dinal B-spline is chosen where the knots have equal
distances in between [13]. Since most robotic applica-
tion have boundary conditions to be satisfied, the first
and last knots are repeated k times, thus an closed-form
solution for boundary value problems can be achieved.
Therefore, the knots can be written as

K = [s0, s1, . . . , sM+k]
= [0, . . . , 0︸��︷︷��︸

k+1 times

, 1, 2, . . . ,M − k, . . . ,M − k︸���������������︷︷���������������︸
k+1 times

]. (4)

A linear mapping from path parameter s to time t is
introduced:

s
t
= α. (5)

It gives Sk(s) = Sk(αt) where t ∈ [0,Tend] and Tend =
M − k
α

. The basis of a 4th order cardinal B-spline can be
seen in Fig. 1.

Fig. 1 Base function of a cardinal B-spline.

For the ease of analysis, we also define

C = [c0, c1, . . . , cM−1], C ∈ Rd×M (6)

as the control point matrix.
Due to the selected basis function, the B-spline has

the following two important properties:
� Non-negativity: Nk

i (s) � 0 for all i ∈ {0, 1, . . . ,M − 1}
and s ∈ [s0, sM+k].
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� Partition-of-unity:
M−1∑
i=0

Nk
i (s) = 1 for all s ∈ [s0, sM+k].

The two property together define the convex-hull prop-
erty and will be used through out the paper.

3 Axis-coupled smooth trajectory

In this section, we formulate trajectory generation as
an optimization problem. The focus is on achieving an ef-
ficient QP to fit various geometric primitives, and trans-
forming non-convex constraints into convex ones. With
such a simplification, the proposed formulation can be
solved with off-the-shelf QP solvers and satisfy the real-
time requirement in robotic applications.

3.1 Method overview

The trajectory generation problem can be briefly con-
sidered as

min E + ωε
s.t. boundary conditions,

safety constraints,
input constraints, and
derivative constraints, (7)

where E stands for the integration of the square of the
trajectory’s derivatives; and by minimizing E the tra-
jectory becomes more smooth. The term ε represents
the deviation from the desired nominal plan. Previously,
the description of nominal plan in such a fitting prob-
lem is limited to points or keyframes. In this paper,
it is extended to cover general geometrical flats in the
high-dimensional space. Both E and ε can be expressed
as quadratic terms related to the control points. More-
over, ω is a weighting factor and all constraints are lin-
ear. Among them, the boundary conditions are a set of
equality constraints, and the others are sets of inequality
constraints. The rest of this section shows how the cost
function and the constraints are constructed.

3.2 Smoothness cost

By minimizing the integration of the square of the tra-
jectory’s derivatives, abrupt changes on the trajectory is
penalized, and a smoother trajectory is expected. Here
the cost function E can be expressed as

E =
k∑

n=1
σ(n)

� ∞
−∞
∥∥∥dnSk

dtn

∥∥∥2dt

=
k∑

n=1

d∑
i=1
σ(n)

� ∞
−∞(

dnSk(i)

dtn )2dt, (8)

where σ(n) � 0, ∀n ∈ {1, . . . , k} are the weighting fac-
tors. By introducing Ĉ, which is the vecorization of the
control point matrix C, it can be expressed in quadratic
form [11] as

E = ĈT[
k∑

n=1
(σ(n)Vn) ⊗ Id]Ĉ, (9)

where

Vn(i, j) = α
2n−1

� ∞
−∞

dnNk
i (s)

dsn

dnNk
j (s)

dsn ds. (10)

From equation (8), it is guaranteed E � 0, therefore
σ(n)Vn ⊗ Id is positive semi-definite.

3.3 Deviation cost

We show how to formulate quadratic cost functions
to penalize the deviation from a given nominal plan
which includes points, lines, and planes. The presented
method can be applied to arbitrary geometric flats in
high dimension.

3.3.1 Points

Point and keyframe based nominal plane are widely
used in robotics. For a problem in a d dimensional
space, a higher level planner would generate a list of
NW desired position-points, each of which is in Rd

and to be reached at a specific time-point. Let the ith
position-point and time-point be denoted by pi ∈ Rd

and ti ∈ R with i ∈ {0, 1, . . . ,NW − 1}. The cost func-
tion shall penalize the distance from the trajectory to
the position-points at the corresponding time-points. Let
D = [p0, p1, . . . , pNW−1]T and T = [t0, t1, . . . , tNW−1]T, ti ∈
R, the cost function can be written as

εpoint =
NW−1∑

i=0
‖Sk(αti) − pi‖2

=
NW−1∑

i=0

d∑
j=1

(Sk( j)(αti) − pi( j))
2

=
d∑

j=1
(HC( j,∗) −D( j,∗))T(HC( j,∗) −D( j,∗))

= ĈT(HTH ⊗ Id)Ĉ − 2D̂T(H ⊗ Id)Ĉ + D̂TD̂, (11)

where H ∈ RN×M is constructed as

H(i+1,∗) = [Nk
0(αti),Nk

1(αti), . . . ,Nk
M−1(αti)],

i ∈ {0, 1, . . . ,NW − 1}. (12)
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Here HTH⊗Id is also positive-semi definite. On the other
hand, if the position-points need to be reached exactly,
the following equality constraints shall be introduced:

Sk(αti) = pi, ∀i ∈ {0, 1, . . . ,NW − 1} ⇔ H ⊗ Id = D̂.
(13)

3.3.2 Lines

For holonomic vehicles, the high-level planning algo-
rithm usually produces nominal plans consist of straight
lines, which is then sampled into multiple position-
points in a trajectory generation problem. Here, we
present a method to penalize the trajectory’s deviation
to straight lines without drawing position-point sam-
ples. Assume the high level planner produces NL straight
lines. Whereas the jth straight line passes through the
position-points vj,wj ∈ Rd, where j ∈ {0, 1, . . . ,NL − 1}.

For a point p ∈ Rd, the square of its distance to the
jth straight line can be written as

e2
l = pTQl jp + Rl jp + Sl j, (14)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ql j =
(uT

j uj) ⊗ Id − ujuT
j

uT
j uj

,

Rl j =
−2uT

j ujwj − wT
j uT

j uj

uT
j uj

,

Sl j =
uT

j uj(wT
j wj) − wT

j (ujuT
j )wj

uT
j uj

,

uj = vj − wj.

(15)

Assume cd is the furthest control point to the straight
line, the following shows that the deviation from the
trajectory to the straight line will be no further than cd.

Proof Combining equations (1) and (5), a point p
on the B-spline at time ts is

p =
M−1∑
i=0

ciNk
i (αts). (16)

For simplicity, we denote Nk
i (αts) as Ni and drop the

subscripts for Ql j, Rl j and Sl j. Then, there is

e2
l = (
∑

ciNi)TQ(
∑

ciNi) + R(
∑

ci
TNi) + S

=
∑
i

∑
m

NiNmci
TQcm +

∑
i

NiRci + S, (17)

where Q is positive-semi definite (equation (15)), and
there is

cT
i Qcm �

1
2

(cT
i Qci + cT

mQcm). (18)

Through the non-negativity and partition-of-unity prop-
erty of the B-spline, there are

∑
i

Nici =
1
2
∑
i

∑
m

NiNm(ci + cm) (19)

and
∑
i

∑
m

NiNm = 1. (20)

Since cd is assumed to be the furthest control point from
the straight line, there is

cT
d Qcd + Rcd � cT

i Qci + Rci, ∀i ∈ {0, 1, . . . ,M − 1}.
(21)

Substitute equations (18)–(21) into (17) produces

e2
l �

1
2
∑
i

∑
m

NiNm(cT
i Qci + cT

mQcm + Rci + Rcm) + S

�
∑
i

∑
m

NiNm(cT
d Qcd + Rcd) + S

= cT
d Qcd + Rcd + S. (22)

�

It is then possible to penalize the trajectory’s deviation
by minimizing the distance between the control points
and the straight line.

3.3.3 Planes

As an example to extend to other higher dimensional
flats, we show how to minimize the distance between
the trajectory and desired planes. Let the jth plane be
defined by a normal vector ζ j, an anchor point gj ∈ Rd,
where j ∈ {0, 1, . . . ,NP − 1}. It indicates a plane contains
gj and perpendicular to ζ j. Similar to the previous case,
it is assumed that the jth plane shall be approached on
time-interval [τ j, ρ j). Then, the square of the distance
from a point p to a plane can be written as

e2
p = pTQp jp + Rp jp + Sp j, (23)

where

Qp j =
ζ jζT

j

ζT
j ζ j
, Rp j =

−2gT
j (ζ jζT

j )

ζT
j ζ j

, Sp j =
gT

j (ζ jζT
j )gj

ζT
j ζ j

.

(24)
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We could then formulate the cost function to penalize
the deviation by minimizing the control points’ distance
to the plane.

3.4 Time segmentation

It is usually less meaningful to approach all the straight
lines or planes simultaneously. Here, we separate them
in time by penalizing the deviation to the jth straight
line or plane only within a time interval [τ j, ρ j), where
j ∈ {0, 1, . . . ,NL − 1}.

From equation (5), the corresponding path variable of
a time point τ j is ατ j, which falls between the knot vec-
tor [sη(τ j), sη(τ j)+1) with η(τ j) = 	ατ j
 + k. From equation
(3), there are at most k + 1 non-zero basis functions on
the knot span [ui,ui+1), specifically: Nk

i−k,N
k
i−k+1, . . . ,N

k
i .

Correspondingly, given the time interval [τ j, ρ j), only
the basis functions Nk

i (s), i ∈ {η(τ j)− k, . . . , η(ρ j)}can be
non-zero. Therefore, we can ignore the control points
paired with zero basis functions.

For the NL straight lines, the cost function to penal-
ize the deviation on their individual time interval can be
written as

εl =
NL−1∑

j=0

λρ j∑
i=λτ j

(cT
i Ql jci + Rl jci)

= ĈT(
NL−1∑

j=0

λρ j∑
i=λτ j

ΛT
i Ql jΛi)Ĉ + Rl j(

NL−1∑
j=0

λρ j∑
i=λτ j

Λi)Ĉ, (25)

where λτ j = η(τ j) − k, λρ j = η(ρ j), and Λi is a mapping
matrix between the vectorization of the control point
matrix and the ith control point:

ci = ΛiĈ, i ∈ {0, 1, . . . ,M − 1}. (26)

In Section 3.3.2, it shows Ql j is positive-semi definite,
so does the ΛT

i Ql jΛi in equation (25).
Similarly, for the NP planes, the cost function in equa-

tion (23) can be written as

εp = ĈT(
NP−1∑

j=0

λρ j∑
i=λτ j

ΛT
i Qp jΛi)Ĉ + Rp j(

NP−1∑
j=0

λρ j∑
i=λτ j

Λi)Ĉ,

(27)

which is also quadratic and convex.

3.5 Deviation from line segments

By combining the time segmentation method with the
cost function for the basic geometric flats, it is possible

to write quadratic cost to penalize the deviation to more
complex geometric primitives. Here, we consider pe-
nalizing the deviation to a series of interconnected line
segments. Many sampling-based planners would pro-
duce such a line-segment based nominal plan. Assume
the ith line-segment is defined by two waypoints Wpi
and Wpi+1, an example then can be illustrated as in
Fig. 2.

Wpi−1

Wpi+1

Wpi

L
i

L
i−1

−S
i+1

+S
i−1

−S
i

+S
i

Fig. 2 Problem construction of the proposed method.

Due to the reduced system dynamics during higher-
level planning, the waypoints usually are not associ-
ated with a time-point. Therefore, we first estimate
these time-points using a single or double integra-
tor model, where closed-form solution exists. Assume
the time point for the ith waypoint Wpi is ti where
i ∈ {0, 1, . . . ,NW−1}. Here we adopt the double integra-
tor estimation model, then Δti = ti+1 − ti is calculated as
the minimum time to move from Wpi to Wpi+1 along
the line Li, with zero boundary velocities, while satis-
fying the maximum speed vmaxi and the maximum ac-
celeration amaxi. The time optimal trajectory and Δti can
be calculated efficiently using the algorithm in [14]. Ad-
ditionally, two intermediate waypoints S+i and S−i+1 are
selected from the time optimal trajectory at moments
ti + κΔti and ti + (1− κ)Δti where κ is a design variable.
These moments also serve as the time-points for S+i and
S−i+1. Since the time optimal trajectory always stays on
the underlying straight line, so does S+i and S−i+1. Then,
to penalize the deviation from the line segments, we
minimize:
� The distance to points Wpi,S

−
i ,S

+
i at their corre-

sponding time-points.
� The deviation from the underlying straight line Li

over [ti + κΔti, ti + (1 − κ)Δti) for i ∈ {0, 1, . . . ,NW − 2}.
3.6 Safety constraints

Many robotic applications require the trajectory to
stay in certain safe regions which are usually non-convex
such as in the case of obstacle avoidance. However, non-
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convex optimization is generally difficult to solve, which
is against requirements of reliability and efficiency in
robotic trajectory generation problem. To address this
issue, the non-convex safe region is decomposed into
multiple interconnected convex regions through time
segmentation. It can be illustrated using the following
example.

In Fig. 3, the safe region S is originally non-convex.
However, it can be decomposed into multiple convex re-
gions C = [C0,C1,C2]. Assume the trajectory is to stay
inside S on the timer interval [τ0, τ f ), we can construct
the following sufficient and convex conditions:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Sk ∈ C0, ∀t ∈ [τ0, τa),

Sk ∈ C1, ∀t ∈ [τa, τb),

Sk ∈ C2, ∀t ∈ [τb, τ f ),

(28)

which guarantees the trajectory to stay inside S. The ex-
ample can be extended into higher dimensions with an
arbitrary number of decomposed convex regions. As-
sume the convex regions are all polytopes, where the
interior of each can be represented by {p ∈ Rd|Ajp � bj}
with j ∈ {0, 1, . . . ,NC − 1}. For the completeness of the
paper, we now show that if all control points for a B-
spline satisfy

Aci � b, i ∈ {0, 1, . . . ,M − 1}, (29)

so does the entire trajectory which is commonly called
the convex hull property of the B-spline.

Fig. 3 Dcomposing of the non-convex region. (a) Non-convex
region. (b) Convex subregions.

Proof Assume that a point p is select from the tra-
jectory at time ts. For simplicity, we use Ni to denote

Nk
i (ts) then there is

Ap = A
∑
i

Nici =
∑
i

Ni(Aci). (30)

By the non-negativity and partition-of-unity of the basis
functions, and equation (29),

∑
i

Ni(Aci) �
∑
i

Nib = b⇒ Ap � b. (31)

Through the time segmentation, we can assume the
trajectory satisfies the jth convex region constraint
on the time interval [τ j, τ j+1). Following the analysis
in Section 3.4, it affects a finite subset of the con-
trol points, which can be written as Ajci � bj, ∀i ∈
{η(τ j)− k, . . . , η(ρ j)}. Combining equation (26), we have
the following linear inequality constraints for the safe
regions:

AjΛiĈ < bj,∀ j ∈ {0, . . . ,NC − 1},
∀i ∈ {η(τ j) − k, . . . , η(ρ j)}. (32)

3.7 Derivative constraints

In many cases, it is also desirable to constrain
the trajectory’s derivatives. Several previous methods
[10, 15, 16] propose to enforce the constraints along
each axis, which spans an axis-aligned cuboid. By us-
ing the proposed method, it is possible to construct
axis-coupled constraints that come with larger interior
volume, with which the trajectory could achieve a lower
cost. In Fig. 4, the desired acceleration constraint spans
a cylinder. By enforcing constraints along each axis, it
results in the blue cuboid. On the other hand, the axis-
coupled method spans the red octagonal prism which
covers more usable volume.

To enforce constraints on the trajectory’s derivatives,
it is first noticed that the derivative of the B-spline is a
reduced-order B-spline. For example, the first derivative
of a kth order B-spline S(1)

k is a (k − 1)th order B-spline:

S(1)
k =

dSk(s)
dt

=
M−2∑
i=0

c(1)
i Nk−1

i+1 (s) (33)

where c(1)
i is given as

c(1)
i = α

k(ci+1 − ci)
si+k+1 − si+1

. (34)

S(1)
k now has only M − 1 control points, therefore there
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shall be M + k − 1 knots which are given as

K (1) = [s(1)
0 , s

(1)
1 , . . . , s

(1)
M+k−2]

= [0, . . . , 0︸��︷︷��︸
k times

, 1, 2, . . . ,M − k, . . . ,M − k︸���������������︷︷���������������︸
k times

]. (35)

For simplicity, we write equation (34) in a matrix form

Ĉ(1) = αΓ1Ĉ, (36)

where C(1) = [c(1)
0 , c

(1)
1 , . . . , c

(M−2)
(1) ] is the control point

matrix of S(1)
k . By repeating the above process, the con-

trol points of the nth order derivative S(n)
k are

Ĉ(n) = αnΓnĈ. (37)

Fig. 4 Constrained volume for acceleration.Axis-decoupled
methods select an axis-aligned cuboid (the blue cube). The ax-
is-coupled method selects arbitrarily shaped convex polytopes
(the octagonal prism).

Following equation (26), there exists an mapping ma-
trix for the control points of S(n)

k as

c(n)
i = Λ

(n)
i Ĉ(n). (38)

Using the results in Section 3.6, one could then con-
struct convex safe regions for S(n)

k . Assume the convex
region is described by {p ∈ Rd|Anp � bn}, the inequality
constraints are

Anc(n)
i =AnΛ

(n)
i Ĉ(n)

=αnAnΛ
(n)
i ΓnĈ < bn, ∀i ∈ {0, . . . ,M − n − 1}.

(39)

Similarly, for non-convex constraints, the time segmen-
tation method can be utilized.

3.8 Input constraints

For a qth order integrator, if its trajectory is repre-
sented by an kth order B-spline Sk, then its input is the
qth order derivative of Sk.

u = S(q)
k .

Therefore, the results in Section 3.7 can be applied to
limit the input to the system as equation (39) holds true
for arbitrary ordered derivatives.

3.9 Boundary conditions

Let Sini, Send denote the desired initial and final states
of the trajectory Sk, respectively. S(n)

ini , S(n)
end represent

the desired initial and final states of the trajectory’s nth
derivative S(n)

k , respectively. From Eqs. (1) and (3), the
initial and end states of Sk are determined by the first
and last control points:

⎧⎪⎨⎪⎩
Sk(0) = c0,

Sk(αTend) = cM−1.
(40)

Since S(n)
k is a reduced-order B-spline, it also satisfies:

⎧⎪⎪⎨⎪⎪⎩
S(n)

k (0) = c(n)
0 ,

S(n)
k (αTend) = c(n)

M−n−1.
(41)

From equations (37), (26) and (38), the boundary con-
ditions can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Λ0Ĉ = Sini,

ΛM−1Ĉ = Send,

αnΛ(n)
0 ΓnĈ = S(n)

ini ,

αnΛ(n)
M−n−1ΓnĈ = S(n)

end,

(42)

where Ĉ is the vectorization of the control point matrix.

4 Quadratic programming problem

So far, we have formulated convex and quadratic cost
functions in equations (9), (11), (25) and (27), and linear
constraints in equations (32), (39) and (42). Therefore,
it is straightforward to construct a QP to describe the
trajectory generation problem as

min
Ĉ

ĈTGĈ + FĈ
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s.t. AeqĈ = beq, AieqĈ � bieq. (43)

The QP problem can be solved from various off-the-shelf
solvers such as the MATLAB QUADPROG [19] and the
IBM CPLEX [20]. Among the four types of constraints in
Section 1, if the problem only has boundary conditions,
then our formulation gives a closed form solution. In
robotic applications, the other constraints can usually
be omitted through various ad-hoc methods, but the
boundary constraints are difficult to be replaced. From
equation (42), the elements between the (k + 1)th and
(M − k)th column of Aeq are all zero when only con-
sidering the boundary constraint. To separate out the
non-zero parts, we define

AF = [Aeq(∗,0),Aeq(∗,1), . . . ,Aeq(∗,k),

Aeq(∗,M−k+1), . . . ,Aeq(∗,M)] (44)

and re-arrange the control point matrix C into

⎧⎪⎨⎪⎩
CF = [c0, c1, . . . , ck−1, cM−k, . . . , cM−1],
CM = [ck, ck+1, . . . , cM−k−1].

(45)

Here, the “fixed” part CF is fully determined by the
boundary conditions:

CF = A−1
F beq. (46)

In order to isolate the “fixed” part from the optimization
problem, we define a mapping matrix Φ:

Ĉ = Φ

⎡⎢⎢⎢⎢⎢⎣
ĈF

ĈM

⎤⎥⎥⎥⎥⎥⎦ . (47)

Then, equation (43) can be written as

[ĈT
F ĈT

M]ΦTGΦ

⎡⎢⎢⎢⎢⎢⎣
ĈF

ĈM

⎤⎥⎥⎥⎥⎥⎦ + FΦ

⎡⎢⎢⎢⎢⎢⎣
ĈF

ĈM

⎤⎥⎥⎥⎥⎥⎦ . (48)

By defining

⎧⎪⎪⎨⎪⎪⎩
GΦ = ΦTGΦ,

FΦ = FΦ,
(49)

equation (48) can be written as

[ĈT
F ĈT

M]GΦ

⎡⎢⎢⎢⎢⎢⎣
ĈF

ĈM

⎤⎥⎥⎥⎥⎥⎦ + FΦ

⎡⎢⎢⎢⎢⎢⎣
ĈF

ĈM

⎤⎥⎥⎥⎥⎥⎦ , (50)

and equals

[ĈT
F ĈT

M]

⎡⎢⎢⎢⎢⎢⎣
GFF
Φ GFM

Φ

GMF
Φ GMM

Φ

⎤⎥⎥⎥⎥⎥⎦
︸��������︷︷��������︸

GΦ

⎡⎢⎢⎢⎢⎢⎣
ĈF

ĈM

⎤⎥⎥⎥⎥⎥⎦ + [FF
Φ FM

Φ ]︸����︷︷����︸
FΦ

⎡⎢⎢⎢⎢⎢⎣
ĈF

ĈM

⎤⎥⎥⎥⎥⎥⎦ , (51)

and can be further simplified as

ĈT
FGFF
Φ ĈF + ĈT

FGFM
Φ ĈM + ĈT

MGMF
Φ ĈF

+ ĈT
MGMM

Φ ĈM + FF
ΦĈF + FM

Φ ĈM. (52)

Finally, by collecting the terms, there is

ĈT
MGMM

Φ ĈM + (ĈT
FGFM
Φ + FM

Φ + ĈT
F(GMF

Φ )T)ĈM

+ ĈT
FGFF
Φ ĈF + FF

ΦĈF. (53)

Since the value of ĈT
FGFF
Φ ĈF+FF

ΦĈF is constant due to the
pre-determined ĈF from equation (46), the minimum of
equation (53) can then be found at

ĈM = (GMM
Φ )−1(ĈT

FGFM
Φ + ĈT

F(GMF
Φ )T + FM

Φ ). (54)

5 Flight experiments and analysis

To demonstrate the performance of the proposed ap-
proach, real experiments are performed using a small
quadrotor as shown in Fig. 5.

Fig. 5 The quadrotor used for experiment.

The quadrotor has been proven as a differential flat
system and is commonly approximated as a triple or 4th
ordered integrator system during trajectory generation.
In this paper, we adopt the 4th order model and also
utilize a 4th order B-spline (k = 4). The algorithm is im-
plemented in Matlab except when calculating H, where
a C application is linked through Mex. Our method is
compared to the previous interpolation based trajectory
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generation for quadrotors [1], [2], the implementation
of which is from the open source project [17].

5.1 Point-type data fitting

In the first example, we demonstrate the algorithm’s
capability in fitting point-type nominal plans. The nomi-
nal plan is generated through direct user input through
drawing. Since the sketching inputs come with a large
amount of sampled data points, we formulate the tra-
jectory generation as an approximation problem and
achieves better results compared to the previous inter-
polation based methods [1,2]. The major problem with

the interpolation based methods is overfitting. Especially
in the case of noisy or crudely estimated time-points.
The inaccurate time-point would introduce unnecessary
excursions. Through our formulation, the excursions can
be reduced by tunning the weighting factors. With the
introducing of the deviation cost, the numerical stabil-
ity of the optimization is also increased. Fig. 6 shows
the result of fitting a user sketch with more than 1000
data points. The time-points are estimated heuristically
with a single integrator model. The proposed method
generates a smooth trajectory that could be tracked pre-
cisely by the quadrotor while the interpolation method
diverges.

Fig. 6 Densely fitting of user sketching inputs. The blue curve shows the real vehicle tracking performance.

5.2 Nominal plan with line-segments

We also compare the performance at fitting a nom-
inal plan consists of line-segments. As mentioned pre-
viously, poorly chosen time-points usually lead to large
excursions [18]. A common practice is to insert interme-
diate position-points along the line-segments [2]. How-
ever, it often leads to more aggressive maneuvers of the
vehicle. Here, we use the snap cost, which is the inte-
gration of the square of the snap along the trajectory, to
measure the aggressiveness of the trajectory.

In Fig. 7, it shows a comparison between three meth-

ods. Methods 1 and 2 are the interpolation based meth-
ods using a 7th order polynomial spline. Method 1 only
interpolates the original waypoints while Method 2 also
inserts and interpolates intermediate position-points. Fi-
nally, Method 3 is the proposed technique for fitting line
segments. The experiment shows that Methods 2 and
3 perform similarly at fitting the nominal plan with an
average deviation of 0.05 m and 0.02 m, respectively.
However, compared to Method 2 which gives a snap
cost of 6923, Method 3 produces a much less aggres-
sive trajectory with a snap cost of 348.
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Fig. 7 Comparison for fitting line segments. The time-point allocation for the original waypoints are the same for each method.

5.3 Trajectories on desired planes
In a light paint event with quadrotors, it is desirable to have the trajectory stay close to a plane to prevent the

shape from distorted when viewed from different angles. We apply the results in Section 3.3.3 to achieve the desired
results. In Fig. 8, four position-points on the same surface defined an M shaped trajectory. However, if the trajectory
now considers the velocity and acceleration constraints, it might cause an asynchronous movement and distort the
desired shape, especially when viewed from aside. (see Fig. 8 (b)). On the other hand, the proposed approach could
penalize the deviation to the desired plane and reduce the distortion.

Fig. 8 Comparison between trajectory with surface penalty (w/SP) and without surface penalty (w/o SP). (a) 0o view. (b) 55o view.
(c) 90o view. (d) Real flight.
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5.4 Safety and feasibility

Quadrotors are usually operated in obstacle strewn
environments. The safety and feasibility of its trajectory
can be guaranteed using the methods presented in Sec-
tions 3.6 and 3.7. In Fig. 9, the safe operation region is
constructed using 7 pieces of oriented bounding boxes.
Furthermore, the trajectory is also required to satisfy the
following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ẋ2 + ẏ2 � 3.1, −0.55 � ż � 2.2,√
ẍ2 + ÿ2 � 2.8, −0.5 � z̈ � 2,√
...
x 2 +

...
y 2 � 7.1, −5 �

...
z � 5,

(55)

where x, y, z denotes the trajectory’s component on the
corresponding axis. These constraints on the velocity,
acceleration, and jerk spans three separate cylinders.
With the axis-decoupled constraints, the largest axis-

aligned cuboid is adopted inside the cylinder. Using the
proposed axis-coupled constraints, the largest hexago-
nal prism inside the cylinder is formed.

Fig. 9 Safe corridor.

We compare the resulting cost value and compu-
tational time against the number of control points
used (see Fig. 10). The formulation with axis-coupled
constraints generates trajectories with lower costs but
slightly longer computational time. However, it also pro-
duces a feasible solution with fewer control points.

Fig. 10 Comparison between axes-coupled and decoupled methods. (a) Cost. (b) Computing time.

6 Conclusions

In this paper, we have presented a method to gen-
erate trajectories for chains of integrators using the B-
spline technique. It systematically studies the issue of
axis-coupling and interval-wise effectiveness. The appli-
cation includes penalizing the deviation from arbitrary
geometric flats. Through the convex hull property, all
convex constraints can be satisfied throughout the entire
trajectory. We have shown that non-convex constraints
and nominal plans can be converted into convex ones
through time segmentation. To guarantee the real-time
capability and reliability which are required in robotic

applications, we have formulated the problem into a
QP. A closed-form solution has been derived for solving
boundary value problems efficiently. Finally, the overall
approach has been successfully tested and verified in
real experiments using quadrotors which is commonly
considered as high-order integrators.
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