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a b s t r a c t

This paper presents a hybrid supervisory control framework for the three-dimensional leader–follower
formation control of unmanned helicopters. In particular, a spherical abstraction of the state space is
proposed. Utilizing the properties of multi-affine functions over the partitioned space, a finite state
model is obtained, which is shown to be bisimilar to the original continuous-variable dynamical system.
Then, in the discrete domain, a logic supervisor is modularly designed for the abstracted model, which
can be recaptured as a hybrid controller for the original continuous-variable dynamics. The designed
hybrid supervisor is able to bring the unmanned helicopters to the desired formation, starting from any
initial point inside the control horizon, and then maintain the formation. Moreover, a collision avoidance
mechanism is embedded in the designed supervisor. The algorithm is verified through hardware-in-the-
loop simulations.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Formation control of unmanned aerial vehicles (UAVs) is a
typical cooperative control scenario, which can leverage limited
capabilities of individual UAVs to collectively perform complicated
tasks that are impossible or difficult for individual agents
(Anderson, Fidan, Yu, & Walle, 2008). In general, a formation
scenario consists of several subtasks. First, the UAVs should be
controlled to form the desired formation. After reaching the
formation, theUAVs shouldmaintain the achieved formationwhile
tracking adesiredpath as a team.Meanwhile, the control algorithm
is required to take care of collision between vehicles.

To address these problems, many studies have been conducted
in the literature. For reaching the formation, there are several
existing methods such as optimal control techniques, navigation
function, and potential field (De Gennaro & Jadbabaie, 2006;
How, King, & Kuwata, 2004; Paul, Krogstad, & Gravdahl, 2008).
Maintaining the formation can be seen as a standard control
problem inwhich the system’s actual position has slightly deviated
from the desired position, for which many control approaches
have been developed, such as feedback control, rigid graph, and

✩ The authors gratefully acknowledge financial support from TDSI (TDSI/08-
004/1A) and TL@NUS (TL/CG/2009/1). Thematerial in this paper was not presented
at any conference. This paper was recommended for publication in revised form by
Associate Editor Andrey V. Savkin under the direction of Editor Ian R. Petersen.

E-mail addresses: akarimoddini@gmail.com (A. Karimoddini), hlin1@nd.edu
(H. Lin), bmchen@ieee.org (B.M. Chen), eleleeth@nus.edu.sg (T.H. Lee).
1 Tel.: +1 574 6313177; fax: +1 574 631 4393.

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2012.10.008
virtual structure (Hassan, Yahya, & ul Haq, 2006; Linorman &
Liu, 2008; Shames, Fidan, & Anderson, 2009). Finally, in Cetin,
Bikdash, and Hadaegh (2007), Jansson and Gustafsson (2008),
and Schlanbusch, Kristiansen, and Nicklasson (2011), different
mechanisms for collision avoidance have been introduced using
probabilistic methods, MILP programming, and behavioral control.

However, there is still a lack of a unified solution to address
the whole process, starting from reaching the formation, to
maintaining the formation while avoiding collision. A usual
practice is to separately design controllers for each of these tasks
in a decoupled way, and then a decision making unit is needed to
orchestrate the switching between these subcontrollers according
to different scenarios. Although the negligence of the interactions
between the continuous dynamics and the discrete logic decisions
simplifies the design, this may degrade the reliability of the overall
system and may cause unexpected failures. Therefore, a more
comprehensive analysis requires an in-depth understanding of
the interplay between the continuous dynamics and the discrete
supervisory logic of the system. Hence, we are motivated to
propose a unified control mechanism for the formation control of
UAVs based on hybrid modeling and control theory (Koutsoukos,
Antsaklis, Stiver, & Lemmon, 2000; Tabuada, 2009) that can
provide a solution for all parts of the formation process and can
capture both the discrete and the continuous dynamics of the
system.

In this paper, we propose a three-dimensional (3D) hybrid
supervisory control architecture for the path planner layer of two
UAV helicopters that are involved in a leader–follower formation
mission. First, a new method of abstraction based on spherical
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partitioning of the state space is introduced, by which the original
continuous system with infinite states is bisimilarly abstracted to
a finite state machine. Then, for the resulting abstracted system,
we can take advantage of thewell-developed theory of supervisory
control of discrete event systems (DESs) (Ramadge & Wonham,
1989), and modularly design the discrete supervisors for reaching
the formation, keeping the formation, and avoiding collisions.

This work represents an extension of our previous work
(Karimoddini, Lin, Chen, & Lee, 2011), which focused on a two-
dimensional (2D) formation algorithm by assuming that the
UAVs’ altitude remain unchanged and irrelevant. Compared with
Karimoddini, Lin et al. (2011), the main contributions of this paper
are that, first, the results are extended to the 3D space and the
spherical partitioning of the state space is provided. The extension
of the polar partitioning in 2D space to the spherical abstraction is
not trivial, since the structures of the sectors in polar and spherical
coordinate systems are different, so their resulting DESmodels are
also not the same. Second, to show that the designed controller for
the abstract model works for the original plant, the bisimulation of
the partitioned model of the plant and its abstracted DES model is
proved, and the bisimulation relation is explicitly described. Third,
the proposed algorithm has been verified through a hardware-in-
the-loop simulation platform which was explained in Cai, Chen,
Lee, and Dong (2009).

To construct a bisimulation-based abstraction, we have uti-
lized the properties of multi-affine functions over a spherically
partitioned space. Multi-affine functions describe a large class of
dynamics that are decidable under triangularization or rectangu-
larization of the state space. In Belta and Habets (2006), a class of
nonlinear systems has been abstracted using rectangular partition-
ing. In Broucke (2009), it has been shown that an affine feedback
over a simplex can be designed to steer the system’s trajectory to
its exit facets, and in Habets, Collins, and van Schuppen (2006) the
method is extended to the reachability problem over a partitioned
system whose elements are simplices. Despite the existing theo-
retical developments, so far, the use of these methods for practical
robotic applications is still in its infancy, and in particular, these
methods have not been used in UAV path planning and formation
control applications. Furthermore, the proposed spherical parti-
tioning of the state space, locating the target at the center of the
spherically partitioned space,makes it possible to generate a direct
path towards the desired point, which facilitates the implementa-
tion and the design of the formation algorithm.

The rest of this paper is organized as follows. First, the problem
of formation control is formulated in Section 2, and then Section 3
describes the principles of the spherical partitioning of the state
space and utilizes the properties of multi-affine functions over
the partitioned state space. Using this method, the partitioned
model can be abstracted into a finite state machine. In Section 4,
first, the DES model of the system has been developed, and
then a discrete supervisor has been designed modularly. It has
been also shown that how the discrete supervisor can be applied
to the plant and how the closed-loop system works. Section 5
verifies the proposed algorithm through hardware-in-the-loop
simulation results. Finally, the paper is concluded in Section 6.
The bisimulation relation between the partitioned system and the
abstractedmodel is proven in theAppendix. Someof the proofs and
more details are presented in the extended version of this paper
(Karimoddini, Lin, Chen, & Lee, 2011) as a technical report.

2. Problem formulation

The modeling and low-level control structure of the National
University of Singapore (NUS) UAV helicopters are explained in
Karimoddini, Cai, Chen, Lin, and Lee (2011) and Peng et al. (2009).
These UAVs are Raptor-90 helicopters with 1410 mm full length
Fig. 1. In the relative frame, the follower should reach the desired position with
respect to the leader.

and 190 mm full width of the fuselage (Cai, Feng, Chen, & Lee,
2008). For each of these helicopters we have used a multi-layer
control structurewhose inner-loop controller stabilizes the system
using H∞ control design techniques, and its outer loop is used
to drive the UAV towards the desired position. The inner loop is
fast enough to track the given references Karimoddini, Cai et al.
(2011), so the outer loop dynamics can be approximately described
as follows:

ẋ = u x ∈ R3, u ∈ U ⊆ R3, (1)
where x is the position of the UAV, u is the UAV’s velocity reference
generated by the formation algorithm, and U is the velocity
constraint set, which is a convex set.

Now, consider the follower’s velocity in the following form:
Vfollower = Vleader + Vrel. (2)

It is assumed that the follower always has the velocity and
position information of the leader. The follower UAV should
reach and keep the formation by tuning the relative velocity, Vrel.
Alternatively, one can consider a relatively fixed frame, in which
the followermoveswith velocity Vrel and the leader has a relatively
fixed position (Fig. 1). The problem is to design a supervisor in
the outer loop to bring the follower UAV to the desired position
with respect to the leader. Apparently, the desired position moves
when the leader changes its position. Here, the control horizon is a
sphere, SRm , with radius Rm, that is centered at the desired position.
Therefore, the formation problem can be stated as follows.

Problem 1. Given the dynamics of the follower UAV as (1) and
its velocity in the form of (2), design the formation controller
to generate the relative velocity of the follower, Vrel, such that,
starting from any initial state inside the control horizon, it
eventually reaches the desired position, while avoiding a collision
between the leader and the follower. Moreover, after reaching the
formation, the follower UAV should remain at the desired position.

To solve this problem, we further assume that |Vleadermax | <
|Vfollowermax | to make the follower be able to track the leader. On the
other hand, based on Eq. (2), we should have |Vfollower | = |Vleader +

Vrel| < |Vfollowermax |. To satisfy this requirement, it is sufficient to
have |Vrel| < |Vfollowermax |−|Vleadermax |. This is the velocity constraint
that should be considered when we design the controller to adjust
Vrel.

To address this problem, first, we will spherically partition
the control horizon, SRm , and then, using the properties of multi-
affine functions, for each partitioning element, several controllers
are designed which can make a partitioning element an invariant
region or can derive the trajectory of the follower UAV to exit from
one of its facets. Such a system can be abstracted to a finite state
machine for which we will design a supervisor that can decide
about the regions that should be traversed by the follower UAV
to accomplish the formation task. The next section describes our
proposed method of abstraction based on spherical partitioning of
the control horizon.
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Fig. 2. (a) The partitioned sphere, (b) vertices, edges, and facets of the element Ri,j,k ,
and (c) outer normal vectors of the element Ri,j,k .

3. Spherical abstraction of the state space

3.1. Spherical partitioning

Consider a plant with continuous dynamics ẋ = g(x) = h
(x, u(x)), defined over the sphere SRm , with radius Rm, where u(x) is
the control value computed based on the feedback position of the
system. The sphere SRm can be partitioned in the spherical coor-
dinate system with r ≥ 0, 0 ≤ θ < 2π , and 0 ≤ φ ≤ π (Fig. 2(a)).
The curves {r = ri | 0 ≤ ri ≤ Rm, for i < j : ri < rj, i, j =

1, . . . , nr , r1 = 0, rnr = Rm}, {θ = θi | 0 ≤ θi ≤ 2π,
for i < j : θi < θj, i, j = 1, . . . , nθ , θ1 = 0, θnθ = 2π},
and {φ = φi | 0 ≤ φi ≤ π, for i < j : φi < φj, i, j =

1, . . . , nφ, φ1 = 0, φnφ = π}, with nr , nθ , nφ ≥ 2, partition the
control horizon SRm . Equivalently partitioning, we will use {ri =
Rm

nr−1 (i − 1), i = 1, . . . , nr}, {θj =
2π

nθ−1 (j − 1), j = 1, . . . , nθ },
and {φk =

π
nφ−1 (k − 1), k = 1, . . . , nφ} as the partitioning curves.

Clearly, choosing large partitions reduces the maneuverability of
the UAVs in the partitioned space. Therefore, it is desired to have
smaller partitions. Theoretically we can choose very small parti-
tions for the system with a mass point model, but this increases
the computation cost due to the increase in the number of discrete
states, and also itmay cause collision between twoUAVs that are in
adjacent regions. Therefore, the size of partitions should be bigger
than the size of the helicopters.

In the partitioned space, the region R̄i,j,k = {x = (r, θ, φ)|ri ≤

r ≤ ri+1, θj ≤ θ ≤ θj+1, φk ≤ φ ≤ φk+1} is a subset of
SRm surrounded by the above curves. We use the term Ri,j,k to
denote the interior of the region R̄i,j,k. The intersection between
the region R̄i,j,k and the partitioning curves is called a face, and it
could be 0-dimensional, 1-dimensional, or 2-dimensional, which
are named as vertex, edge, and facet, respectively (Fig. 2(b)). Each
region Ri,j,k has eight vertices, vm, m = (mφ mθ mr)2, where
mφ , mθ , and mr are the binary indices refer to the partitioning
curves that have generated the vertex. For example, if mr =

1, this shows that the vertex vm of the region Ri,j,k touches the
curve ri+1, and if mr = 0, it touches the curve ri. The set
V (∗) stands for the vertices that belong to ∗ (∗ can be a facet,
a region Ri,j,k, or the sphere SRm ), and F(vm) is the set of facets
that the vertex vm belongs to. Furthermore, the element Ri,j,k has
six facets {F+

r , F
−
r , F

+

θ , F
−

θ , F
+

φ , F
−

φ } and, correspondingly, six outer
normal vectors {n+

r , n
−
r , n

+

θ , n
−

θ , n
+

φ , n
−

φ }, as shown in Fig. 2(c). The
exception is when the region Ri,j,k touches the origin or the z axis.
In this case, some of the vertices are coincident.

In the sphere SRm , let us define S̄ as the sphere surface, and E as
the set of all edges and vertices. Also, consider the detection element
d([i, j, k], [i′, j′, k′

]) = R̄i,j,k ∩ R̄i′,j′,k′ − E, which is defined for two
regionsRi,j,k andRi′,j′,k′ that are adjacent in a common facet. Indeed,
the detection elements are the facets in which the edges and the
vertices are excluded.With this procedure, the sphere SRm has been
partitioned into E ∪ Ri,j,k ∪ d([i, j, k], [i′, j′, k′

]) ∪ S, where 1 ≤

i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤ k, k′
≤ nφ − 1 and S = S̄ − E.

Correspondingly, consider Ẽ, R̃i,j,k, d̃([i, j, k], [i′, j′, k′
]), and S̃ as the

labels for these partitioning elements, where ℑ(r̃) = r relates
the label r̃ to the set r . This partitioned space can be captured by
the equivalence relation Q = {(x1, x2)|∃r̃ ∈ {Ẽ, R̃i,j,k, d̃([i, j, k],
[i′, j′, k′

]), S̃} s.t. x1, x2 ∈ ℑ(r̃) and 1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤

nθ − 1, 1 ≤ k, k′
≤ nφ − 1}. Correspondingly, the projection map

πQ (x) shows the partitioning element that x belongs to it: πQ (x) =

r̃ ∈ {Ẽ, R̃i,j,k, d̃([i, j, k], [i′, j′, k′
]), S̃} s.t. x ∈ randℑ(r̃) = r , where

1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤ k, k′
≤ nφ − 1.

In the next section, wewill utilize the properties of multi-affine
functions over the above partitioned space.

3.2. Multi-affine vector fields over spherically partitioned space

Multi-affine functions are a class of functions defined as follows.

Definition 1 (Multi-Affine Function (Tabuada, 2009)). A function
g = (g1, g2, . . . , gm) : Rn

→ Rm is said to be multi-
affine if, for all gi : Rn

→ R, i = 1, . . . ,m, and for every
a1, a2 satisfying a1 + a2 = 1, the following equality holds:
gi(x1, . . . , (a1xk1 + a2xk2), . . . , xn) = a1gi(x1, . . . , xk1 , . . . , xn) +

a2gi(x1, . . . , xk2 , . . . , xn).

3.2.1. Properties of multi-affine functions over the spherically parti-
tioned space

Theorem 1. For a multi-affine function g(x) : SRm → R3, the
following property holds:

∀x = (r, θ, φ) ∈ R̄i,j,k :

g(x) =


m

λmg(vm), m = 0, 1, 2, . . . , 7, (3)

where vm ∈ V (Ri,j,k) are the vertices of the element Ri,j,k and λm can
be obtained uniquely as follows:

λm = λmr
r (1 − λr)

1−mrλ
mθ
θ (1 − λθ )

1−mθ λ
mφ
φ (1 − λφ)

1−mφ , (4)

where mr , mθ , mφ are the corresponding binary digits of the index m,
and

λr =
r − ri

ri+1 − ri
λθ =

θ − θj

θj+1 − θj
λφ =

φ − φk

φk+1 − φk
.

Proof. The proof is given in Karimoddini et al. (2011). �

Remark 1. It can be verified that the resulting coefficientsλm,m =

0, 1, . . . , 7, have the property that λm ≥ 0 and


m λm = 1.

As a special case, Theorem1 also holds true for the points on the
facets, as described in the following corollary.

Corollary 1 (Karimoddini et al., 2011). For a multi-affine function
defined over R̄i,j,k, for all of the facets F s

q of Ri,j,k, q ∈ {r, θ, φ} and
s ∈ {+,−}, the following property holds:

∀x = (r, θ, φ) ∈ F s
q : g(x) =


vm

λmg(vm), vm ∈ V (F s
q). (5)

3.2.2. Utilizing multi-affine functions over the spherically partitioned
space

For a multi-affine vector field defined over the region Ri,j,k, two
important control features can be defined: the invariant region and
the exit facet. For an invariant region, starting from any point inside
it, the trajectories do not leave the region; and for a region with an
exit facet, starting from any point inside the region, the trajectories
leave the region through the exit facet within a finite time. Similar
definitions have been used for the simplices in Broucke (2009).
These control features laterwill be used to construct the abstracted
model. The following theorems provide sufficient conditions that
make a region an invariant region or make one of its facets an exit
facet.
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Theorem 2 (Sufficient Condition for Ri,j,k to be an Invariant Re-
gion). For a multi-affine vector field ẋ = g(x), g : SRm → R3, Ri,j,k
is an invariant region if, for each facet F s

q and its corresponding outer
normal ns

q, q ∈ {r, θ, φ} and s ∈ {+,−}, the following inequality
holds:

ns
q(y)

T
· g(vm) < 0, ∀vm ∈ V (F s

q),∀y ∈ F s
q. (6)

Proof. We should show that ns
q(y)

T
· g(y) < 0 holds true for any

y ∈ F s
q . First, according to Corollary 1, we know that ∀y ∈ F s

q :

g(y) =


vm
λmg(vm), vm ∈ V (F s

q). Using this value of g(y), we
can write

ns
q(y)

T
· g(y) = ns

q(y)
T

·


vm

λmg(vm)

=


vm

λm ns
q(y)

T
· g(vm). (7)

Now, according to the assumption described in (6), we know
that ns

q(y)
T
· g(vm) < 0 for all vm ∈ V (F s

q) and y ∈ F s
q . On the other

hand, according to Remark 1, we have λm ≥ 0 and


m λm = 1.
Hence, from (7), it can be concluded that ns

q(y)
T

· g(y) < 0.
This means that the trajectories of the system cannot leave Ri,j,k

through the facet F s
q . Since this is true for all of the facets, the

trajectories of the system will not leave the region Ri,j,k and will
remain inside it forever. �

Theorem 3 (Sufficient Condition for an Exit Facet). For a multi-affine
vector field ẋ = g(x), g : SRm → R3, the facet F s

q with the outer
normal ns

q, q ∈ {r, θ, φ} and s ∈ {+,−}, is an exit facet if

1. ns′
q′(y)T · g(vm) < 0∀vm ∈ V (F s′

q′ ),∀y ∈ F s′
q′ , q′

≠ q, or s′ ≠ s
2. ns

q(y)
T

· g(vm) > 0∀vm ∈ V (Ri,j,k), for all y ∈ F s
q .

Proof. The first requirement guarantees that the trajectories of the
system do not leave Ri,j,k through the non-exit facets F s′

q′ ≠ F s
q . This

has already been proven in Theorem 2. The second requirement is
to drive the trajectory of the system out through the facet F s

q . Based
on the assumption, for all y ∈ F s

q and for all vm ∈ V (Ri,j,k), we
have ns

q(y)
T

· g(vm) > 0. According to Theorem 1, for the multi-
affine function g , there exist λmsuch that ∀x ∈ R̄i,j,k : g(x) =

m λmg(vm),m = 0, 1, . . . , 7. Since λm ≥ 0 and


m λm = 1,
ns
q(y)

T
· λmg(vm) > 0 for all vm. This will lead to having ns

q(y)
T

·

g(x) > 0 for all x ∈ R̄i,j,k, which means that the trajectories of
the system have a strictly positive velocity in the direction of ns

q(y)
steering them to exit from Ri,j,k through the facet F s

q . �

Remark 2. Respecting the second condition of Theorem 3 for the
points on the exit facet F s

q , we will have ns
q(y)

T
· g(y) > 0,∀y ∈ F s

q .
This strictly positive inequality guarantees the following.

1. The trajectories that leave the region do not return back any
more.

2. The points on the exit facet are not reachable from other points
on the facet.

3. A trajectory that has reached the exit facet leaves it immedi-
ately.

3.2.3. Control over the spherically partitioned space
By proper selection of the control value u(x), it is possible to

tune the multi-affine vector field, ẋ = g(x) = h(x, u(x)), at the
vertices, so that the region Ri,j,k becomes an invariant region or one
of its facets becomes an exit facet. Indeed, to make the region Ri,j,k
an invariant region, the value of the control signal at the vertices,
u(vm), should be chosen such that g(vm) = h(vm, u(vm)) falls in
the set Um(Inv(Ri,j,k)) = Invm(Ri,j,k) ∩ U , for m = 0, . . . , 7, where
Invm(Ri,j,k) is the eligible set for the vertex vm so that g(vm) satisfies
the conditions of Theorem 2, and U is the velocity bound, which
comes from the practical limitations. If Um(Inv(Ri,j,k)) ≠ ∅, for all
m = 0, . . . , 7, then making the region Ri,j,k an invariant region
is feasible. Based on Theorem 1, having the value of the control
function u at the vertices of the region, it is possible to construct
a multi-affine controller u(x) for all x ∈ R̄i,j,k. We will use the
notation C0 to label this controller.

To make the facet F s
q an exit facet, similar to the invariant

controller, it is sufficient to choose the values of u(vm) such
that g(vm) = h(vm, u(vm)) falls in the set Um(Ex(F s

q(Ri,j,k))) =

Exm(F s
q(Ri,j,k)) ∩ U , where Exm(F s

q(Ri,j,k)) is the eligible set for the
vertex vm that satisfies the exit facet condition for F s

q(Ri,j,k), as
explained in Theorem3, andU is the velocity constraint. Therefore,
for the region Ri,j,k, if all of Um(Ex(F s

q(Ri,j,k))) ≠ ∅, m = 0, . . . , 7,
then corresponding to each of its facets, F+

r , F−
r , F+

θ , F−

θ , F+

φ , F−

φ ,
there are controllers that canmake themexit facets.We label these
controllers as C+

r , C−
r , C+

θ , C−

θ , C+

φ , C−

φ , respectively. In Karimoddini,
Lin et al. (2011), a geometric way is introduced to solve the
inequalities in Theorems 2 and 3, and to construct the eligible sets.

3.3. Abstraction of the state space

Now, consider the original system which is defined over
the partitioned space. The equivalence relation Q , defined in
Section 3.1, describes this partitioned space. The system over the
partitioned space can be captured by a transition system TQ =

(XQ , XQ0 ,UQ ,→Q , YQ ,HQ ), where

• XQ = E∪Ri,j,k∪d([i, j, k], [i′, j′, k′
])∪S is the set of systemstates,

where 1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤ k, k′
≤ nφ − 1.

• XQ0 is the set of initial states. Assuming that the system initially
starts from inside one of the regions Ri,j,k, XQ0 =


Ri,j,k, where

1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤ k, k′
≤ nφ − 1.

• UQ = Ua ∪ Ud, where
– Ua = {C+

r , C
−
r , C

+

θ , C
−

θ , C
+

φ , C
−

φ , C0} is the set of labels
corresponding to the controllers that can make the region
Ri,j,k an invariant region or can make one of its facets an exit
facet. For these control labels, as discussed in Section 3.2.3,
the sets of control actions that can be activated in this
region are r(C s

q) = {u(x)|u(x) =


m λmu(vm),m =

0, 1, . . . , 7, vm ∈ V (Ri,j,k), u(vm) ∈ Um(Ex(F s
q))}, and

r(C0) = {u(x)|u(x) =

λmu(vm), vm ∈ V (Ri,j,k), u(vm) ∈

Um(Inv(Ri,j,k))}, where λm can be obtained by (4).
– Ud = Uc ∪ Ue is the set of the detection events, where

Uc = {d̂([i, j, k], [i′, j′, k′
])| 1 ≤ i, i′ ≤ nr −1, 1 ≤ j, j′ ≤ nθ−

1, 1 ≤ k, k′
≤ nφ − 1}. Here, d̂([i, j, k], [i′, j′, k′

]) is an event
that shows that the detection element d([i, j, k], [i′, j′, k′

])
has been crossed and Ue is the set of external events such as
entering into an alarm zone of collision.

• (x, x′, v) ∈ →Q , denoted by x
v

→Q x′, if and only if one of the
following conditions holds true.
1. Actuation.

– Exit facet: v ∈ {C s
q| q ∈ {r, θ, φ}, s ∈ {+,−}}; πQ (x) ≠

πQ (x′); ∃R̃i,j,k and d̃([i, j, k], [i′, j′, k′
]) such that πQ (x) =

R̃i,j,k and πQ (x′) = d̃([i, j, k], [i′, j′, k′
]); ∃τ(finite) and ε >

0 such that ψ(t) : [0, τ + ε] → R3 is the solution of
ẋ = h(x, r(v)), ψ(0) = x;ψ(τ) = x′, πQ (ψ(t)) = πQ (x)
for t ∈ [0, τ ), and πQ (ψ(t)) ≠ πQ (x) for t ∈ [τ , τ + ε].
Here, r(v) is the continuous controller corresponding to
the control label v, which can be constructed as discussed
above.
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– Invariant region: v = C0; ∃R̃i,j,k such that πQ (x) =

πQ (x′) = R̃i,j,k;ψ(t) : R+
→ R3 is the solution of

ẋ = h(x, r(v)), ψ(0) = x, ψ(τ) = x′, and πQ (ψ(t)) =

πQ (x) for all t ≥ 0.
2. Detection.

– Crossing a detection element: v ∈ Uc ; πQ (x) ≠ πQ (x′);
∃R̃i,j,k, R̃i′,j′,k′ , d̃([i, j, k], [i′, j′, k′

]) such that πQ (x) =

d̃([i, j, k], [i′, j′, k′
]) and πQ (x′) = R̃i′,j′,k′ ; ∃0 < ε < τ

and ∃w ∈ {C s
q|q ∈ {r, θ, φ}, s ∈ {+,−}} such that ψ(t) :

[0, τ ] → R3 is the solution of ẋ = h(x, r(w)), ψ(ε) =

x;ψ(τ) = x′, πQ (ψ(t)) = R̃i,j,k for t ∈ (0, ε), and
πQ (ψ(t)) = R̃i′,j′,k′ for t ∈ (ε, τ ].

– External events: v ∈ Ue, and x = x′. In this case, x is the
value of the system state at the time instant atwhich event
v appears. The external events do not affect the system
dynamics.

• YQ = XQ is the output space.
• HQ : X → YQ is the output map. Here, we have chosen

HQ (x) = πQ (x).

Although TQ contains only important transitions that either
cross the boundaries or remain inside the regions, it still has
infinite states, and the analysis of such a systemmight be difficult.
Abstraction (Alur, Henzinger, Lafferriere, & Pappas, 2000) is a
technique that can reduce the complexity and can lead to a finite
state machine for which the DES supervisory control tools can
be used for the system analysis and control synthesis. To do so,
each partitioning element can be considered one state in the
abstracted model. Hence, the abstract model is a tuple Tξ =

(Xξ , Xξ0 ,Uξ ,→ξ , Yξ ,Hξ ), where

• Xξ = {R̃i,j,k|1 ≤ i ≤ nr − 1, 1 ≤ j ≤ nθ − 1, 1 ≤

k ≤ nφ − 1}


{d̃([i, j, k], [i′, j′, k′
])| 1 ≤ i, i′ ≤ nr −

1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤ k, k′
≤ nφ − 1}, where R̃i,j,k

and d̃([i, j, k], [i′, j′, k′
]) are the labels for the regions Ri,j,k and

d([i, j, k], [i′, j′, k′
]), respectively. Note that, since the system

starts from a point inside the regions Ri,j,k and never crosses
the edges or the vertices (see Lemma 2 in the Appendix), the
set E does not need to be considered in the abstracted system.
Moreover, as the sphere SRm is the control horizon, its surface,
S, should not be crossed.

• Xξ0 = {R̃i,j,k|1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤ k, k′
≤

nφ − 1}.
• Uξ = Ua ∪ Ud is like what we defined in TQ .
• (r, r ′, v) ∈ →ξ , denoted by r

v
→ξ r ′, if ∃v ∈ Uξ , x ∈ ℑ(r),

x′
∈ ℑ(r ′) such that x

v
→Q x′.

• Yξ = Xξ .
• Hξ (r) = r is the output map, which is selected as an identity

map.

In general, the abstract model contains all of the behaviors of
the partitioned system; however, the conversemight not be always
true. If the converse is also true,we say that the original partitioned
system and the abstract model are bisimilar. A bisimulation
relation between two transition systems can be formally defined
as follows.

Definition 2 (Alur et al., 2000). Given Ti = (Qi,Q 0
i ,Ui,→i, Yi,Hi),

(i = 1, 2), R is a bisimulation relation between T1 and T2, denoted
by T1 ≈R T2, iff the following hold.

1. ∀q1 ∈ Q 0
1 then ∃q2 ∈ Q 0

2 such that (q1, q2) ∈ R. Also, ∀q2 ∈ Q 0
2

then ∃q1 ∈ Q 0
1 such that (q1, q2) ∈ R.

2. ∀q1 →1 q′

1, and (q1, q2) ∈ R then ∃q′

2 ∈ Q2 such that q2 →2 q′

2
and (q′

1, q
′

2) ∈ R. Also, ∀q2 →2 q′

2, and (q1, q2) ∈ R then ∃q′

1 ∈

Q1 such that q1 →1 q′

1 and (q′

1, q
′

2) ∈ R.
Theorem 4. The original partitioned system, TQ , and the abstract
model, Tξ , are bisimilar.

Proof. See the Appendix for the proof. �

This bisimulation relation ensures that the abstract model, Tξ ,
and the original partitioned system, TQ , behave exactly the same,
so, for the control synthesis, we can use the abstract model with
finite states instead of the original partitioned systemwith infinite
states, as we will do in the following sections.

4. Hybrid supervisory control of the plant

4.1. DES model of the plant

The finite state machine Tξ can be formally presented by an
automaton G = (X,Σ, α, X0, Xm), where X = Xξ is the set of
states; X0 = Xξ0 ⊆ X is the set of initial states; Xm = {R̃1,j,k|1 ≤

j ≤ nθ − 1, 1 ≤ k ≤ nφ − 1} is the set of final (marked) states.
Σ is the (finite) set of events. The sequence of these events forms
a string. We use ε to denote an empty string, while Σ∗ is the set
of all possible strings over the set Σ including ε. The language
of the automaton G, denoted by L(G), is the set of all strings that
can be generated by G, starting from the initial states. The marked
language, Lm(G), is the set of strings that belong to L(G) and end
with the marked states. L(G(x0)) is the set of strings that belong to
L(G) and start from the initial state x0. L̄ is the set of all prefixes to
the strings that belong to the language L.

Here, the event set Σ consists of the actuation events Ua =

{C s
q|q ∈ {r, θ, φ}, s ∈ {+,−}} ∪ {C0}, the crossing detection

events Uc = {d̂([i, j, k], [i′, j′, k′
])|1 ≤ i, i′ ≤ nr − 1, 1 ≤

j, j′ ≤ nθ − 1, 1 ≤ k, k′
≤ nφ − 1}, and the external events Ue.

The set Ue = {C+, C−
} contains the events that are used for the

collision avoidance in Section 4.2.2. The event setΣ consists of the
controllable event setΣc = Ua and uncontrollable event setΣuc =

Ud = Uc ∪ Ue. The uncontrollable events are those that cannot be
affected by the supervisor. In automaton G, α : X × Σ → X is
the transition function, which is a partial function and determines
the possible transitions in the system caused by an event. This
function is corresponding to →ξ in Tξ , so that for any r

v
→ξ r ′ we

haveα(r, v) = r ′. Based on the definition of Tξ and the constructed
controllers C0, C+

r , C
−
r , C

+

θ , C
+

θ , C
+

φ , C
−

φ , we have

α(R̃i,j,k, σ )

=



R̃i,j,k for σ = C0

R̃i,j,k for σ ∈ Ue for i ≠ 1
d̃([i, j, k], [i + 1, j, k]) for σ = C+

r for i ≠ nr − 1
d̃([i, j, k], [i − 1, j, k]) for σ = C−

r for i ≠ 1
d̃([i, j, k], [i, j + 1, k]) for σ = C+

θ for j ≠ nθ − 1
d̃([i, j, k], [i, 1, k]) for σ = C+

θ for j = nθ − 1
d̃([i, j, k], [i, j − 1, k]) for σ = C−

θ for j ≠ 1
d̃([i, j, k], [i, nθ − 1, k]) for σ = C−

θ for j = 1
d̃([i, j, k], [i, j, k + 1]) for σ = C+

φ for k ≠ nφ − 1
d̃([i, j, k], [i, j, k − 1]) for σ = C−

φ for k ≠ 1

α(d̃([i, j, k], [i′, j′, k′
]), σ ) = R̃i′,j′,k′

for σ = d̂([i, j, k], [i′, j′, k′
]).

Some parts of the graph representation of the system automa-
ton are shown in Fig. 3. In this automaton, the arrows starting from
one state and ending to another state represent the transitions, la-
beled by the events belonging to Σ . The states with an entering
arrow stand for the initial states. As is shown in Fig. 3, the system
could start from any of the states R̃i,j,k.
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Fig. 3. DES model of the plant.
4.2. Design of the discrete supervisor

The logical behavior of the system can be modified by a
discrete supervisor to achieve a desired order of events. Indeed,
the supervisor, S, observes the executed events of the plant G and
disables the undesirable controllable strings. Here, we assume that
all of the events are observable. The language andmarked language
of the closed-loop system, L(S/G) and Lm(S/G), can be constructed
as follows:

(1) ε ∈ L(S/G),
(2) [(s ∈ L(S/G)) and (sσ ∈ L(G)) and (σ ∈ L(S))] ⇔ (sσ ∈

L(S/G)),
(3) Lm (S/G) = L(S/G) ∩ Lm (G),

where s is the string that has been generated so far, and σ is an
event which the supervisor should decide whether to keep active
or not.

Within this framework, we can use parallel composition to
facilitate the control synthesis. Parallel composition is a binary
operation between two automata. Here, parallel composition is
used to combine the plant discrete model and the supervisor.

Definition 3 (Parallel Composition (Kumar & Garg, 1995)). Given
G = (XG,ΣG, αG, x0G , XmG) and S = (XS,ΣS, αS, x0S , XmS ), Gcl =

G ∥ S = (Xcl,Σcl, αcl, x0cl , Xmcl) is said to be the parallel
composition of G and S with Xcl = XG × XS ,Σcl = ΣG ∪ΣS , x0cl =

(x0G , x0S ), Xmcl = XmG ×XmS , and ∀x = (x1, x2) ∈ Xcl, σ ∈ Σcl, then

αcl(x, σ ) =



•(αG(x1, σ ), αS(x2, σ ))
if αG(x1, σ )! andαS(x2, σ )! and σ ∈ ΣG ∩ΣS

•(αG(x1, σ ), x2)
if αG(x1, σ )! and σ ∈ ΣG −ΣS

•(x1, αS(x2, σ ))
if αS(x2, σ )! and σ ∈ ΣS −ΣG

•undefined otherwise

where α∗(x, σ )! shows the existence of a transition from state x
by event σ in system ∗. In this definition, the initial conditions
of these automata were assumed to be the states x0G and x0S .
Extending this definition to the case that the automata G and S
have the initial state sets X0G and X0S , the initial state set of the
composed system will be X0cl = Υ (X0G , X0S ) ⊆ X0G × X0S , where
the relationΥ describes the initial states inG and S that are coupled
to synchronously generate a string in the composed system.
In fact, parallel composition synchronizes operand systems on
their common events; however, their private events can transit
independently. The following lemma uses the parallel composition
of the plant and the supervisor to obtain the closed-loop system.

Lemma 1 (Karimoddini et al., 2011). Let G = (X,Σ, α, X0, Xm) be
the plant with the initial state set X0 = {x10, x

2
0, . . .} and K =


Ki ⊆

Σ∗ be a desired language, where Ki is the desired language that should
be generated starting from xi0. If ∅ ≠ Ki = K̄i ⊆ L(G(xi0)) and Ki is
controllable for all i = 1, 2, . . . , |X0|, then there exists a nonblocking
supervisor S such that L(S/G) = L(S ∥ G) = K. In this case, S could
be any automaton that has the initial state set S0 = {s10, s

1
0, . . . , s

m
0 },

m ≤ |X0|, and for any xi0 there exists an sj0, (x
i
0, s

j
0) ∈ Υ , which

satisfies Lm(S(s
j
0)) = L(S(sj0)) = Ki, where Υ is the coupling relation

between the initial states of supervisor S and plant G.

In the next section, we will design the supervisor for reaching
the formation, keeping the formation, and collision avoidance,
modularly.

4.2.1. Design of the supervisor for reaching and keeping the formation
For reaching the formation, it is sufficient to drive the follower

UAV directly towards one of the regions R1,j,k, 1 ≤ j ≤ nθ − 1, 1 ≤

k ≤ nφ−1, located in the first sphere. After reaching R1,j,k, the UAV
should remain inside it, for ever. This specification, KF , is realized
in Fig. 4. When the UAV is not in the first sphere, the command
C−
r will be generated to push the UAV towards the origin. Entering

into a new state, the event d([i, j, k], [i′, j′, k′
])will appear to show

the current state of the system. This will continue until the event
d([i, j, k], [1, j′, k′

]) is generated, which shows that the formation
is reached. In this case, event C0 will be activated, which keeps the
system trajectory in the first region. Since there is another module
to handle the collision avoidance, the formation supervisor does
not change the generable language after events C+ and C−, and it
lets the collision avoidance supervisor disable undesirable events,
as will be explained in the next section. It can be seen that KF is
controllable, as it does not disable any uncontrollable event.

Based on Lemma1, there exists a supervisor that can control the
plant to achieve this specification. The supervisor is the realization
of the above specification in which all states are marked. Marking
all states of the supervisor allows the closed-loop marked states to
be solely determined by the plant marked states. The supervisor
for reaching the formation and keeping the formation is denoted
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Fig. 4. The realization of reaching and keeping the formation specification.
Fig. 5. Collision avoidance specification, KC .
by SF . The closed-loop system can be obtained using the parallel
composition Gcl = SF/G = SF ∥ G. Here, the coupling relation is
Υ = {(Ri,j,k, SRRi,j,k)|1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤

k, k′
≤ nφ − 1}. All of the events are common between the plant

and the supervisor. Moreover, it can be seen that L(SF ) ⊆ L(G),
which leads to L(SF/G) = L(G ∥ SF ) = L(G) ∩ L(SF ) = L(SF ) = KF .

Remark 3. The tracking error in the reaching formation mode
depends on the size of the partitioning elements in the first sphere,
R1,j,k, and the value of the vector field at its vertices. Indeed, there
are two ways to reduce the tracking error. One way is to reduce
the size of R1,j,k, which is restricted by the size of the helicopter.
But a more suitable way is to choose the value of the vector field at
the vertices of R1,j,k so that the equilibrium point for the invariant
region is pushed towards the origin. For this purpose, it is sufficient
to choose bigger values for the vector field at the vertices 1, 3, 5, 7
of region R1,j,k.

4.2.2. Design of the supervisor for collision avoidance
When the follower UAV is going to reach the desired position,

in some situations, the follower may collide with the leader. If the
leader is located in the way of the follower towards the desired
position and the follower enters into the alarm zone, a collision
alarm will be generated. More precisely, assume that the follower
is in region Ri,j,k, and that the leader is in region Ri′,j′,k′ . If i′ < i,
|i − i′| ≤ 2, |j − j′| < 2, and |k − k′

| < 2, then the follower
has entered into the alarm zone and may collide with the leader.
If we look at this problem from the relative frame point of view,
the leader UAV has a fixed position in this frame, and therefore,
for collision avoidance, it suffices that the follower turns to change
its azimuth angle, θ , to exit from the alarm zone, and then it can
resume the task of reaching the formation. The turning direction
depends on the values of j and j′. If j′ ≤ j, then the collision
alarm C+ will be generated, which requires the follower to change
the azimuth angle anticlockwise by activating the command C+

θ ,
and if j < j′, then the collision alarm C− will be generated,
which requires the follower to change the azimuth angle clockwise
by activating the command C−

θ . This procedure will continue till
the follower exits from the alarm zone. In this case, the collision
alarm will be removed and the collision avoidance supervisor lets
the formation supervisor resume reaching the formation. To do
so, the collision avoidance supervisor only changes the generable
language after the occurrence of events C+ and C− and lets the
rest be treated by the formation supervisor. The collision avoidance
specification KC is shown in Fig. 5. Here, the coupling relation is
Υ = {(Ri,j,k, SCRi,j,k)|1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤

k, k′
≤ nφ − 1}. Again, all of the events are common between the

plant and the supervisor, SC . Hence, L(SC ) ⊆ L(G), which leads to
L(SC/G) = L(G ∥ SC ) = L(G) ∩ L(SC ) = L(SC ) = KC , where KC is
the collision avoidance specification.

4.2.3. The closed-loop system
For prefix closed languages KF and KC , we can apply modular

synthesis (Kumar & Garg, 1995), by the composition of the plant,
the reaching and keeping the formation supervisor, and the
collision avoidance supervisor: Gcl = G∥SF∥SC . Hence, the closed-
loop system’s language can be achieved as L(G∥SF∥SC ) = L(G) ∩

L(SF ) ∩ L(SC ) = L(SF ) ∩ L(SC ) = KF ∩ KC . The refined closed-loop
automaton, Gcl, is shown in Fig. 6.
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Fig. 6. The closed-loop system.
4.3. Construction of the hybrid supervisor

To describe the partitioned system and its relation with the
discrete supervisor, analogous with (Koutsoukos et al., 2000) and
referring to the definition of TQ , we can define an interface layer,
which connects the supervisor to the plant. The interface layer has
two main blocks: the detector and the actuator.

The detector converts the continuous time signals to a sequence
of symbols. Upon crossing the detection elements, a plant symbol,
d̂([i, j, k], [i′, j′, k′

]), is generated, which informs the supervisor
about the current situation of the plant. Based on the observed
plant symbols, the supervisor decides which control signal should
be given to the plant to satisfy the desired specification. This
command has a discrete nature, but the control commands to be
given to the plant need to be continuous.

The actuator translates the discrete commands to continuous
ones: r(v) = u(x) = Σmλm(x)u(vm), where v is the discrete
command and u(vm) should be chosen from the setsUm(Inv(Ri,j,k))
if v = C0. Otherwise, it should be selected from the set
Um(Ex(F s

q(Ri,j,k))) for v = C s
q . The coefficients λm(x),m = 0, . . . , 7,

can be obtained from (4). The whole structure, including the
interface layer and the supervisor, is implemented on the follower
UAV. The following theorem shows that this hybrid structure can
behave as the same as the closed-loop systemof the abstractedDES
model.

Theorem 5. With the aid of the interface layer, the discrete supervisor
S = SC ∥ SF can be applied to the original partitioned system, TQ , so
that the closed-loop system satisfies the required specification, KF∩KC .

Proof. As constructed in Section 3.3, the plant and the interface
layer elements, together with the actuator and the detector, form
the transition system TQ . Theorem 4 shows that this transition
system can be bisimilarly abstracted to the finite state machine
Tξ for which we designed the discrete supervisor. Due to the
bisimilarity of TQ and Tξ , the designed supervisor for Tξ can work
for TQ , so their closed-loop system behaviors are the same. �

5. Verifying the algorithm

To verify the proposed algorithm, we have used a hardware-
in-the-loop simulation platform (Cai et al., 2009) developed for
NUS UAV helicopters (Peng et al., 2009). In this platform, the
nonlinear dynamics of the UAVs have been replaced with their
nonlinear model, and all software and hardware components that
are involved in a real flight test remain active during the simulation
so that the simulation results achieved from this simulator are very
close to the actual flight tests. This multi-UAV simulator test bed is
used to simulate the algorithm for the following cases.

5.1. Simulation of reaching the formation and collision avoidance

First, to monitor the reaching the formation and the collision
avoidance behavior of the UAVs, assume that the leader has a
Fig. 7. The position of the UAV for the collision avoidance mechanism.

fixed position and that the follower should reach the desired
position with respect to the leader. The controller, u(x), drives the
UAV inside the spherical partitioned space. This control signal is
generated using the control mechanism described in Section 3.2.3.
The control horizon is a sphere of diameter 50 m. The partitioning
parameters are selected as nr = 15, nθ = 20, and nφ = 10. To
construct the controllers C0, C+

r , C−
r , C+

θ , C−

θ , C+

φ , and C−

φ , we can
apply Theorems 2 and 3. Now, assume that the relative distance
between the follower and the desired position is (dx, dy, dz) =

(−17,−18,−8). Hence, the initial state of the system is R8,13,5.
Also, assume that the leader is in R4,13,5. Since the leader is located
on the path of follower towards the desired position, when the
follower reaches region R6,13,5, a collision avoidance alarm will be
generated to activate the collision avoidance mechanism and to
push the follower UAV away from the alarm zone. The collision
avoidance behavior of the system is shown in Fig. 7. The projection
of the relative distance between the follower and its desired
position onto the x–y plane is shown in Fig. 8. After observing the
collision alarm, the follower first has moved towards the region
R6,15,5 to avoid the collision, and then it has resumed reaching the
formation to complete the mission.

5.2. Simulation of keeping the formation

To monitor reaching and keeping the formation, let the leader
track a circlewith the diameter of 20mand choose the partitioning
parameters as in the previous mentioned scenario. The follower is
initially located at (dx, dy, dz) = (−20,−20,−20) with respect
to the leader. It is expected that, after a while, the follower reaches
the relative distance of (dx, dy, dz) = (5, 5, 5) with respect to the
leader. The behavior of the follower UAV is shown in Fig. 9. As can
be seen, the follower has finally reached the desired formation and
has successfully kept it.
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Fig. 8. The relative distance between the follower and the desired position for the
collision avoidance mechanism projected onto the x–y plane.

Fig. 9. The position of the UAVs in a circle formation mission.

6. Conclusion

In this paper, a hybrid supervisory control scheme was
proposed for the three-dimensional leader–follower formation
control of unmanned helicopters. The approach was based on
spherical abstraction of the state space and utilizing the properties
of multi-affine functions over the partitioned space. The designed
supervisor is able to form the formation, maintain the achieved
formation, and take care of collisions between the agents. The
effectiveness of the algorithm was verified through hardware-in-
the-loop simulations. Currently, velocity bounds are applied to the
algorithm. We will try to capture some other practical limitations
such as acceleration constraints through the design. Furthermore,
exploring more features of the proposed method, we will focus on
the extension of the results to a multi-follower case as the future
direction of this research.
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Appendix

A.1. Proof of Theorem 4

The following two lemmas will be used for the proof of
Theorem 4.

Lemma 2. For a multi-affine vector field ẋ = g(x), g : SRm → R3,
in a region Ri,j,k with the exit facet F s

q constructed by Theorem 3, the
trajectories that leave the region can only pass through the detection
elements.
Proof. As we saw in the proof of Theorem 2, for all points on the
non-exit facets F s′

q′ , we have ns′
q′(y)T ·g(y) < 0. This strictly negative

inequality shows that the trajectories of the system cannot pass
through the non-exit facets, including the edges and the vertices
that belong to them. In particular, the trajectories cannot cross
the edges and the vertices that are common between the non-
exit facets and the exit facet. On the other hand, Theorem 3 shows
that the trajectories of the system cannot remain inside the region.
Hence, the only way is that the trajectories pass through the
internal area of the exit facet, which we have called the detection
element. �

Lemma 3. For a multi-affine vector field ẋ = g(x), g : SRm → R3,
in a region Ri,j,k with the exit facet F s

q constructed by Theorem 3, all
y ∈ F s

q \ E are reachable from a point inside region Ri,j,k.

Proof. Since any y ∈ F s
q is not reachable form an adjacent region

(Part 1, Remark 2) or from another point on F s
q (Part 2, Remark 2),

then, considering ns
q(y)

T
· g(y) > 0, by continuity of g , there is a

point inside region Ri,j,k on the neighborhood of y from which y is
reachable. �

Now, to prove Theorem 4, consider the relation R =

{(qQ , qξ )|qQ ∈ XQ , qξ ∈ Xξ , and qQ ∈ ℑ(qξ )}. We will show that
this relation is a bisimulation relation between TQ and Tξ .

Let us start with the first condition of the bisimulation relation,
defined in Definition 2. For any qQ ∈ XQ0 there exists a region
Ri,j,k such that qQ ∈ Ri,j,k. For this region, there exists a label, R̃i,j,k,
such that Ri,j,k = ℑ(R̃i,j,k) and R̃i,j,k ∈ Xξ0 . Hence, (qQ , R̃i,j,k) ∈ R.
Conversely, it can be similarly shown that, for any qξ ∈ Xξ0 , there
exists a qQ ∈ XQ0 such that (qξ , qQ ) ∈ R.

For the second condition of the bisimulation relation, following
from the definition of Tξ , for any (qQ , qξ ) ∈ R and qQ

u
−→Q q′

Q , there

exists a transition qξ
u
−→ξq′

ξ , where q′

Q ∈ ℑ(q′

ξ ) or equivalently

(q′

Q , q
′

ξ ) ∈ R. For the converse case, assume that qξ
u
−→ξq′

ξ .
According to the definition of R, all x ∈ ℑ(qξ ) are related to qξ .
Hence, to prove the second condition of the bisimulation relation,
we should investigate it for all x ∈ ℑ(qξ ). Based on the control
construction procedure, the labels u, qξ , and q′

ξ can be one of the
following cases.

1. u = C0 and qξ = q′

ξ . In this case, since the controller C0 makes
the region an invariant region (Theorem2), all of the trajectories
starting from any qQ ∈ ℑ(qξ ) will remain inside the region
ℑ(qξ ). Therefore, for any qQ ∈ ℑ(qξ ), there exists a q′

Q ∈ ℑ(qξ )

such that qQ
u
−→Q q′

Q and q′

Q = ℑ(q′

ξ ).
2. u ∈ C s

q , qξ ∈ {R̃i,j,k| 1 ≤ i ≤ nr − 1, 1 ≤ j ≤ nθ − 1, 1 ≤ k ≤

nφ − 1}, and q′

ξ ∈ {d̃([i, j, k], [i′, j′, k′
])| 1 ≤ i, i′ ≤ nr − 1, 1 ≤

j, j′ ≤ nθ − 1, 1 ≤ k, k′
≤ nφ − 1}. In this case, based on

Theorem 3 and Lemma 2, starting from any qQ ∈ ℑ(qξ ), the
controller C s

q drives the system trajectory towards the detection
element ℑ(q′

ξ ). Therefore, for any qQ ∈ ℑ(qξ ), there exists a

q′

Q ∈ ℑ(q′

ξ ) such that qQ
u
−→Q q′

Q and q′

Q ∈ ℑ(q′

ξ ).
3. u ∈ Uc = {d̂([i, j, k], [i′, j′, k′

])|1 ≤ i, i′ ≤ nr − 1, 1 ≤

j, j′ ≤ nθ − 1, 1 ≤ k, k′
≤ nφ − 1} and q′

ξ ∈ {R̃i′,j′,k′ | 1 ≤

i′ ≤ nr − 1, 1 ≤ j′ ≤ nθ − 1, 1 ≤ k′
≤ nφ − 1}, and

qξ ∈ {d̃([i, j, k], [i′, j′, k′
])| 1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤

nθ − 1, 1 ≤ k, k′
≤ nφ − 1}. In this case, based on Lemma 3,

for any qQ ∈ ℑ(qξ ) there exists a controller v ∈ C s
q that has led

the trajectory of the system from the region Ri,j,k to the point
qQ on the detection element d([i, j, k], [i′, j′, k′

]). Since Ri′,j′,k′ is
the unique adjacent region of the element Ri,j,k, common in the
detection element d([i, j, k], [i′, j′, k′

]), based on the definition
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of the controller for the exit facet and Theorem 3, the controller
v leads the trajectory of the system to a point inside the region
Ri′,j′,k′ so that the detection event u = d̂([i, j, k], [i′, j′, k′

]) is
generated. Therefore, for any qQ ∈ ℑ(qξ ), there exists a q′

Q ∈

ℑ(q′

ξ ) such that qQ
u
−→Q q′

Q and q′

Q ∈ ℑ(q′

ξ ).
4. u ∈ Ue is the external event. In this case, the state of the system

does not change, meaning that qQ = q′

Q and qξ ∈ q′

ξ . Therefore,

trivially for any qQ ∈ ℑ(qξ ) and qξ
u

→ q′

ξ , we have qQ
u
−→Q q′

Q ,
where q′

Q ∈ ℑ(q′

ξ ).

In all of the above-mentioned cases, the second condition of the
bisimulation relation for the converse case holds true. Hence, Tξ
and TQ are bisimilar. �
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