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a b s t r a c t

This paper studies the structural controllability of a class of uncertain switched linear systems, where the
parameters of subsystems’ state matrices are either unknown or zero. The structural controllability is a
generalization of the traditional controllability concept for dynamical systems and purely based on the
interconnection relation between the state variables and inputs through non-zero elements in the state
matrices. In order to illustrate such a relationship, two kinds of graphic representations of switched linear
systems are proposed, based on which graph theory-based necessary and sufficient characterizations of
the structural controllability for switched linear systems are presented. Finally, the paper concludes with
discussions on the results and future work.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As a special class of hybrid control systems, a switched linear
system consists of several linear subsystems and a rule that orches-
trates the switching among them. Switching between different
subsystems or different controllers can greatly enrich the control
strategies andmay achieve better control performances than fixed
(non-switching) controllers (Liberzon, 2003). Besides, switched
linear systems also have promising applications in control of me-
chanical systems, aircrafts, satellites and swarming robots. Driven
by its importance in both theoretical research and practical ap-
plications, the switched linear system has attracted considerable
attention during the last decade; see e.g., Ji, Lin, and Lee (2009),
Liberzon (2003), Lin and Antsakis (2007), Qiao and Cheng (2009),
Sun, Ge, and Lee (2002), Xie and Wang (2003).

Muchwork has been done on the controllability of switched lin-
ear systems. For example, the controllability and reachability for
low-order switched linear systems have been presented in Loparo,
Aslanis, and Hajek (1987). Complete geometric criteria for con-
trollability and reachability were established in Sun et al. (2002)
and Xie and Wang (2003). However, all the previous work men-
tioned above has been based on the traditional controllability con-
cept. In this paper, we investigate the structural controllability of
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a class of uncertain switched linear system, where the parameters
of subsystems’ state matrices are either unknown or zero. This is a
reasonable assumption as many system parameters are difficult to
identify and only known to certain approximations. On the other
hand, we are usually pretty sure where zero elements are either by
coordination transformation or by the absence of physical connec-
tions among components in the system. Thus structural properties
that are independent of a specific value of unknownparameters are
of particular interest. A switched linear system is said to be struc-
turally controllable if one can find a set of values for the unknown
parameters such that the corresponding switched linear system
is controllable in the classical sense. For linear structured sys-
tems, generic properties including structural controllability have
been studied extensively and it turns out that generic properties
including structural controllability are true for almost all values
of the parameters; see e.g., Blackhall and Hill (2010), Dion, Com-
mault, and vanderWoude (2003), Glover and Silverman (1976), Lin
(1974), Mayeda (1981), Murota (1987), Reinschke (1988), Shields
and Pearson (1976), van derWoude (1991). This also holds true for
switched linear systems studied here and presents one of the rea-
sons why this kind of structural controllability is of interest.

It turns out that the structural controllability of switched linear
systems only depends on graphic topologies among state and input
vertices of individual subsystems and their union. The paper aims
to characterize such a relationship, and its contribution is twofold.
First, two kinds of graphic representations of switched linear
systems are proposed. Second, graph theory-based necessary and
sufficient characterizations of the structural controllability for
switched linear systems are presented. Graphic conditions canhelp
to understand how the graphic topologies of dynamical systems
influence the corresponding generic properties, here especially
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for the structural controllability. This would be helpful in many
practical applications and motivates our pursuit on illuminating
the structural controllability of switched linear systems from a
graph theoretical point of view. Preliminary results of this paper
appeared in Liu, Lin, and Chen (2010). An extended version of this
paper with illustrative examples can be found in Liu, Lin, and Chen
(2013) as a technical report.

The organization of this paper is as follows: in Section 2, we
introduce some basic preliminaries and the problem formulation,
followed by structural controllability study of switched linear sys-
tems in Section 3, where several graphic necessary and sufficient
conditions for the structural controllability are given. Finally, some
concluding remarks are drawn in Section 4.

2. Preliminaries and problem formulation

2.1. Graph theory preliminaries

A matrix P is said to be a structured matrix if its entries are
either fixed zeros or independent free parameters. A numerical
matrix P̃ is called admissible (with respect to P) if it can be obtained
by fixing the free parameters of P at some particular values. In
addition Pij is adopted to represent the element of P from row i
and column j.

Consider a linear control system, ẋ = Ax(t) + Bu(t), where
x(t) ∈ Rn and u(t) ∈ Rr . The matrices A and B are assumed to
be structured matrices, which means that their elements are ei-
ther fixed zeros or free parameters. This structured system given
bymatrix pair (A, B) can be described by a directed graph, denoted
asG(A, B), with vertex setV = X∪U, whereX = {x1, x2, . . . , xn}
called state vertex set and U = {u1, u2, . . . , ur} called input vertex
set, and edge set I = IUX ∪IXX , where IUX = {(ui, xj)|Bji ≠ 0, 1 ≤

i ≤ r, 1 ≤ j ≤ n} and IXX = {(xi, xj)|Aji ≠ 0, 1 ≤ i ≤ n, 1 ≤ j ≤

n} are the oriented edges between inputs and states and between
states defined by the interconnection matrices A and B above. The
following notations from Lin (1974) are recalled.

Definition 1 (Stem). An alternating sequence of distinct vertices
and oriented edges is called a directed path, in which the terminal
node of any edge never coincide to its initial node or the initial or
the terminal nodes of the former edges. A stem is a directed path
in the state vertex set X that begins in the input vertex set U.

Definition 2 (Accessibility).Avertex (other than the input vertices)
is called nonaccessible if and only if there is no possibility of
reaching this vertex through any stem of the graph G.

Definition 3 (Dilation). Consider one vertex set S formed by the
vertices from the state vertices setX anddetermine another vertex
set T (S), which contains all the vertices v with the property that
there exists an oriented edge from v to one vertex in S. Then the
graph G contains a ‘dilation’ if and only if there exist at least a set
S of k vertices in the vertex set of the graph such that there are no
more than k − 1 vertices in T (S).

2.2. Switched linear system, controllability and structural controlla-
bility

In general, a switched linear system is composed of a family of
subsystems and a rule that governs the switching among them and
is mathematically described by

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), (1)

where x(t) ∈ Rn are the states, u(t) ∈ Rr are piecewise continuous
input, σ : [0, ∞) → M , {1, . . . ,m} is the switching signal.
System (1) contains m subsystems (Ai, Bi), i ∈ {1, . . . ,m} and
σ(t) = i implies that the ith subsystem (Ai, Bi) is active at time
instance t .

In the sequel, the following definition of controllability for the
system (1) will be adopted (Sun et al., 2002):

Definition 4. The switched linear system (1) is said to be (com-
pletely) controllable if for any initial state x0 and final state xf , there
exist a time instance tf > 0, a switching signal σ : [0, tf ) → M
and an input u : [0, tf ) → Rr such that x(0) = x0 and x(tf ) = xf .

For the controllability of switched linear systems, a matrix rank
condition was given in Sun et al. (2002).

Lemma 1. If the matrix:

[B1, B2, . . . , Bm, A1B1, A2B1, . . . , AmB1, A1B2, A2B2, . . . , AmB2, . . . ,

A1Bm, A2Bm, . . . , AmBm, A2
1B1, A2A1B1, . . . , AmA1B1, A1A2B1,

A2
2B1, . . . , AmA2B1, . . . , A1AmBm, A2AmBm, . . . , A2

mBm, . . . ,

An−1
1 B1, A2An−2

1 B1, . . . , AmAn−2
1 B1, A1A2An−3

1 B1, A2
2A

n−3
1 B1, . . . ,

An−3
1 B1, . . . , A1An−2

m Bm, A2An−2
m Bm, . . . , An−1

m Bm]

has full row rank n, then the switched linear system (1) is controllable,
and vice versa.

Remark 1. This matrix is called the controllability matrix of the
switched linear system (1) and denoted as C (A1, . . . , Am, B1, . . . ,
Bm). If we use Im P to represent the range space of a matrix P ,
then Im C (A1, . . . , Am, B1, . . . , Bm) is the controllable subspace
of the switched linear system (1) (Sun et al., 2002). The above
lemma implies that the system (1) is controllable if and only if ImC
(A1, . . . , Am, B1, . . . , Bm) = Rn. Besides, its controllable subspace
can be expressed as ⟨A1, . . . , Am|B1, . . . , Bm⟩, which is the smallest
subspace containing Im Bi, i = 1, . . . ,m and invariant under the
transformations A1, . . . , Am (Qiao & Cheng, 2009).

For the structured system (1), elements of all the matri-
ces (A1, B1, . . . , Am, Bm) are either fixed zero or free parameters
and free parameters. A numerically given matrices set (Ã1, B̃1,

. . . , Ãm, B̃m) is called an admissible numerical realization (with re-
spect to (A1, B1, . . . , Am, Bm)) if it can be obtained by fixing all free
parameter entries of (A1, B1, . . . , Am, Bm) at some particular val-
ues. As aforementioned, we are interested in the structural con-
trollability of (1).

Definition 5. The switched linear system (1) is said to be struc-
turally controllable if and only if there exists at least one admis-
sible realization (Ã1, B̃1, . . . , Ãm, B̃m) such that the corresponding
switched linear system is controllable in the usual numerical sense.

Remark 2. It turns out that once a structured system is control-
lable for one choice of system parameters, it is controllable for al-
most all system parameters, in which case the structured system
then will be said to be structurally controllable (Dion et al., 2003;
Lin, 1974).

Before proceeding further, we need to introduce the definition of
g-rank.

Definition 6. The generic rank (g-rank) of a structured matrix P is
defined to be the maximal rank that P achieves as a function of its
free parameters.

Then, we have the following algebraic condition for structural
controllability:

Lemma 2. The switched linear system (1) is structurally controllable
if and only if g-rank C (A1, . . . , Am, B1, . . . , Bm) = n.
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3. Structural controllability of switched linear systems

3.1. Criteria based on the union graph

For the switched linear system (1), a digraphGi = G(Ai, Bi)with
vertex set Vi and edge set Ii can be adopted as the representation
graph of its subsystems (Ai, Bi), i ∈ {1, . . . ,m}. The switched
linear system (1) can be represented by a union graph G (actually
a digraph) of these digraphs Gi.

Definition 7. Given a collection of digraphs Gi = {Vi, Ii}, their
union graph is G1 ∪ G2 ∪ · · · ∪ Gm = {V1 ∪ V2 ∪ · · · ∪ Vm; I1 ∪

I2 ∪ · · · ∪ Im}.

Remark 3. It turns out that the union graphG is the representation
graph of linear structured system: (A1 + A2 + · · · + Am, B1 +

B2 + · · · + Bm). The reason is as follows: if the element aji (bji)
in matrix [A1 + A2 + · · · + Am, B1 + B2 + · · · + Bm] is a free
parameter, this implies that there exist some matrices [Ap, Bp],
p = 1, . . . ,m such that the element at the position aji (bji) is also
a free parameter and in the corresponding subgraph Gp, there is
an edge from vertex i to vertex j. According to the definition of
union graph, it follows that there is also an edge from vertex i to
vertex j in the union graph G. If the element at the position aji (bji)
in [A1 + A2 + · · · + Am, B1 + B2 + · · · + Am] is zero, this implies
that for every matrices [Ap, Bp], p = 1, . . . ,m, the element at the
position aji (bji) is zero and in the corresponding subgraphGp, there
is no edge from vertex i to vertex j. It follows that there is also no
edge in the union graph G from vertex i to vertex j.

Definition 8 (Lin, 1974). The matrix pair (A, B) is said to be
reducible or of form I if there exists a permutation matrix P
such that they can be written in the following form: PAP−1

=
A11 0
A21 A22


, PB =


0

B22


,where A11 ∈ Rp×p, A21 ∈ R(n−p)×p, A22 ∈

R(n−p)×(n−p) and B22 ∈ R(n−p)×r .

Remark 4. Whenever thematrix pair (A, B) is of form I, the system
is structurally uncontrollable (Lin, 1974) and meanwhile, the con-
trollability matrix C ,


B, AB, . . . , An−1B


will have at least one

row which is identically zero for all parameter values (Glover &
Silverman, 1976). If there is no such permutation matrix P , we say
that the matrix pair (A, B) is irreducible.

Definition 9 (Lin, 1974). Thematrix pair (A, B) is said to be of form
II if there exists a permutation matrix P such that they can be
written in the following form:


PAP−1, PB


=


P1
P2


,where P2 ∈

R(n−k)×(n+r), P1 ∈ Rk×(n+r) with no more than k − 1 nonzero
columns (all the other columns of P1 have only fixed zero entries).

The following lemma characterizes the structural controllabil-
ity for linear system (A, B) (Lin, 1974; Reinschke, 1988).

Lemma 3 (Lin, 1974; Reinschke, 1988). For linear structured system,
the following statements are equivalent:

(a) the pair (A, B) is structurally controllable;
(b) (i) [A, B] is irreducible or not of form I,

(ii) [A, B] has g-rank [A, B] = n or is not of form II;
(c) (i) there is no nonaccessible vertex in G(A, B),

(ii) there is no ‘dilation’ in G(A, B).

This lemma proposes interesting graphic conditions for struc-
tural controllability of linear systems and reveals that the struc-
tural controllability is totally determined by the underlying graph
topology. Next,we turn to the switched linear system (1) and prove
a graphic sufficient condition for its structural controllability.
Theorem 4. The switched linear system (1) with graphic topologies
Gi, i ∈ {1, . . . ,m}, is structurally controllable if its union graph G
satisfies

(i) there is no nonaccessible vertex in G,
(ii) there is no ‘dilation’ in G.

Proof. Assume the two conditions in this theorem are satisfied.
According to Remark 3 and Lemma 3, the corresponding linear
system (A1 +A2 +· · ·+Am, B1 +B2 +· · ·+Bm) is structurally con-
trollable. It follows that there exist some scalars for the free param-
eters in matrices (Ai, Bi), i = 1, 2, . . . ,m such that controllability
matrix

[B1 + B2 + · · · + Bm, (A1 + A2 + · · · + Am)(B1 + B2 + · · · + Bm),

(A1 + A2 + · · · + Am)2(B1 + B2 + · · · + Bm), . . . ,

(A1 + A2 + · · · + Am)n−1(B1 + B2 + · · · + Bm)]

has full row rank n. Expanding the matrix, it follows that matrix

[B1 + B2 + · · · + Bm, A1B1 + A2B1 + · · · + · · ·

+ AmBm, . . . , An−1
1 B1 + A2An−2

1 B1 + · · · + An−1
m Bm]

has full rank n.
The following matrix can be got after adding some column vec-

tors to the above matrix:

[B1 + B2 + · · · + Bm, B2, . . . , Bm, A1B1 + A2B1 + · · · + AmBm,

A2B1, . . . , AmBm, . . . , An−1
1 B1 + A2An−2

1 B1 + · · · + An−1
m Bm,

A2An−2
1 B1, . . . , A1An−2

m B1, . . . , An−1
m Bm].

Since this matrix still has n linear independent column vectors, it
follows that it has full row rank n. Next, subtracting B2, . . . , Bm
from B1 + B2 + · · · + Bm; subtracting A2B1, . . . , AmBm from A1B1 +

A2B1 + · · · + AmB1 + · · · + A1Bm + · · · + AmBm and subtracting
A2An−2

1 B1, . . . , A1An−2
m B1, . . . , An−1

m Bm from An−1
1 B1 + A2An−2

1 B1 +

· · · + A1An−2
m B1 + · · · + An−1

m Bm, we can get the following matrix:

[B1, B2, . . . , Bm, A1B1, A2B1, . . . , AmBm, . . . ,

An−1
1 B1, A2An−2

1 B1, . . . , A1An−2
m B1, . . . , An−1

m Bm],

which is the controllability matrix for switched linear systems
(1). Since column fundamental transformation does not change
the matrix rank, this matrix still has full row rank n. Hence, the
switched linear system (1) is structurally controllable.

Actually, from the proof, we can see that full rank of controlla-
bilitymatrix of linear system (A1+A2+· · ·+Am, B1+B2+· · ·+Bm)
in Remark 3 implies the full rank of controllabilitymatrix of system
(1), which means that the structural controllability of this linear
system implies structural controllability of system (1). It turns out
that this criterion is not necessary for system (1) to be structurally
controllable. This implies that the union graph does not contain
enough information for determining structural controllability. This
is because edges from different subsystems are not differentiated
in the union graph. In the following subsection, another graphic
representation of switched linear systems is proposed, fromwhich
necessary and sufficient conditions for structural controllability
arise.

3.2. Criteria based on the colored union graph

In the union graph, there is no distinction made between the
edges from different subsystems. To solve this issue, we introduce
the following ‘colored union graph’ as another graphic representa-
tion of switched systems.
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Definition 10. Given a collection of digraphs Gi = {Vi, Ii}, their
colored union graph is G̃(Ṽ, Ĩ), where its vertex set Ṽ = {V1 ∪

V2 ∪ · · · ∪ Vm} and edge set Ĩ = {e|e ∈ Ii, i = 1, 2, . . . ,m},
i.e., for i ∈ {1, . . . ,m}.

Intuitively, each edge e in the colored union graph G̃ is associ-
ated with an index i (color) to indicate that e comes from the ith
subsystem (subgraph Gi). With the colored union graph, several
graphic properties are introduced in the following lemmas.

Lemma 5. There is no nonaccessible vertex in the colored union graph
G̃ of the switched linear system (1) if and only if the matrix [A1 +A2 +

· · · + Am, B1 + B2 + · · · + Bm] is irreducible or not of form I.

Proof. One vertex is accessible if and only if it can be reached
by a stem. From Definitions 7 and 10, it follows that there is no
nonaccessible vertex in the colored union graph if and only if
there is no nonaccessible vertex in the union graph. Besides, from
Remark 3, it is clear that the matrix representation of the union
graph is [A1 + A2 + · · · + Am, B1 + B2 + · · · + Bm]. According to
Lemma 3, there is no nonaccessible vertex in the union graph if
and only if matrix is irreducible or not of form I. Consequently the
equivalence between accessibility of the colored union graph and
irreducibility of this matrix gets proved.

A new graphic property ‘S-dilation’ in the colored union graph
is introduced here.

Definition 11. In the colored union graph G̃, which is composed
of subgraphs Gi, i = 1, 2, . . . ,m, consider one vertex set S formed
by the vertices from the state vertex set X and determine another
vertex set T (S) = {v|v ∈ Ti(S), i = 1, 2, . . . ,m}, where Ti(S) is a
vertex set in Gi which contains all the verticesw with the property
that there exists an oriented edge from w to one vertex in S. Then
|T (S)| =

m
i=1 |Ti(S)|. If |T (S)| < |S|, we say that there is a S-

dilation in the colored union graph G̃.

Based on this new graphic property, the following lemma can
be introduced.

Lemma 6. There is an S-dilation in the colored union graph G̃ of the
switched linear system (1) if and only if matrix [A1, A2, . . . , Am, B1,
B2, . . . , Bm] is of form II. It means that this matrix can be written into
[A1, A2, . . . , Am, B1, B2, . . . , Bm] =


P1
P2


, where P1 ∈ Rp×k with no

more than p − 1 nonzero columns (all the other columns of P1 have
only fixed zero entries).

Proof. From Lin (1974) and Mayeda (1981) or Lemma 3, it is
known that in linear systems, there is no ‘dilation’ in the corre-
sponding graph if and only if the matrix pair [A, B] cannot be of
form II or have g-rank = n. From the explanation of this result
in Lin (1974) and Definition 9, P1 in [A, B] has p rows, which ac-
tually represents the p vertices of vertex set S (defined for dila-
tion), and each nonzero element of each row of P1 represents that
there is one vertex pointing to the vertex presented by this row.
Therefore, the number of nonzero columns in P1 is the number
of vertices pointing to some vertex in S, and actually equals to
|T (S)|. Furthermore, by the definition of S-dilation, |T (S)| is now
the summation of |Ti(S)|, i ∈ {1, . . . ,m}, in every subgraph. It fol-
lows that there is S-dilation in G̃ if and only if matrix [A1, A2, . . . ,
Am, B1, B2, . . . , Bm] is of form II.

Before going further to give another algebraic explanation of S-
dilation, one definition and lemmaproposed in Shields and Pearson
(1976) must be introduced first.

Definition 12 (Shields & Pearson, 1976). A structured n × m′ (n ≤

m′) matrix A is of form (t) for some t , 1 ≤ t ≤ n, if for some k in
the range m′

− t < k ≤ m′, A contains a zero submatrix of order
(n + m′

− t − k + 1) × k.
Lemma 7 (Shields & Pearson, 1976). g-rank of A = t

(i) for t = n if and only if A is not of form (n);
(ii) for 1 ≤ t < n if and only if A is of form (t + 1) but not of form

(t).

From the above definition and lemma, another lemma is pro-
posed here.

Lemma 8. There is no S-dilation in the colored union graph G̃ of the
switched linear system (1) if and only if the matrix [A1, A2, . . . , Am,
B1, B2, . . . , Bm] has g-rank n.

Proof. Necessity: If this matrix has g-rank < n, from Lemma 7,
it follows that this matrix is of form (n). Then referring to
Definition 12, the matrix must have a zero submatrix of order
(n+m′

−t−k+1)×k. Here, t can be chosen as n, thenmatrix has a
zero submatrix of order (m′

−k+1)×k. For this (m′
−k+1) rows,

there are only (m′
−k) nonzero columns. Consequently, thematrix

is of form II and by Lemma 6, there is S-dilation in the colored union
graph G̃ of system (1).

Sufficiency: If there is S-dilation in the colored union graph G̃, by
Lemma 6, the matrix is of form II, then obviously P1 in this matrix
cannot have row rank equal to k and furthermore, this matrix
cannot have g-rank = n.

With the above definitions and lemmas, a graphic necessary
and sufficient condition for the switched linear system to be
structurally controllable can be proposed.

Theorem 9. The switched linear system (1)with graphic representa-
tions Gi, i ∈ {1, . . . ,m}, is structurally controllable if and only if its
colored union graph G̃ satisfies the following two conditions:

(i) there is no nonaccessible vertex in the colored union graph G̃,
(ii) there is no S-dilation in the colored union graph G̃.

Proof. Necessity: (i) If there exist nonaccessible vertices in G̃, by
Lemma 5, the matrix [A1 + A2 + · · · + Am, B1 + B2 + · · · + Bm] is
reducible or of form I. It follows that the controllability matrix

[B1 + B2 + · · · + Bm, (A1 + A2 + · · · + Am)(B1 + B2 + · · · + Bm),

(A1 + A2 + · · · + Am)2(B1 + B2 + · · · + Bm), . . . ,

(A1 + A2 + · · · + Am)n−1(B1 + B2 + · · · + Bm)]

always has at least one row that is identically zero (Remark 4).
It is clear that every component of the matrix, such as Bi,
AiBj and Ap

i A
q
j Br has the same row always to be zero. As a result,

the controllability matrix

[B1, . . . , Bm, A1B1, . . . , AmB1, . . . , AmBm, A2
1B1, . . . , AmA1B1,

. . . , A2
1Bm, . . . , AmA1Bm, . . . , An−1

1 B1, . . . , AmAn−2
1 B1, . . . ,

A1An−2
m Bm, . . . , An−1

m Bm]

always has one zero row and cannot be of full rank n. Therefore,
the switched linear system (1) is not structurally controllable.

(ii) Suppose that the switched linear system (1) is struc-
turally controllable, i.e., the controllability matrix satisfies g-rank
C (A1, . . . , Am, B1, . . . , Bm) = n. Specifically, Im[B1, . . . , Bm, A1
B1, . . . , AmBm, A2

1B1, . . . , An−1
m Bm] = Rn Since ∀P ∈ Rn×r , Im(AiP)

⊆ Im(Ai), we have that Im[B1, . . . , Bm, A1B1, . . . , AmBm, A2
1B1, . . . ,

An−1
m Bm] ⊆ Im[A1, A2, . . . , Am, B1, B2, . . . , Bm] ⊆ Rn. Thus condi-

tion g-rank C(A1, . . . , Am, B1, . . . , Bm) = n requires that Im[A1,
A2, . . . , Am, B1, B2, . . . , Bm] = Rn and therefore g-rank [A1, A2,
. . . , Am, B1, B2, . . . , Bm] = n. However, if there is S-dilation in
the colored union graph G̃, by Lemma 6, g-rank [A1, A2, . . . , Am,
B1, B2, . . . , Bm] < n. Consequently, the switched linear system (1)
is not structurally controllable.
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Sufficiency: The general idea in the sufficiency proof is that we
will assume that the two graphical conditions in the theorem hold.
Then a contradiction will be found such that it is impossible that
the switched linear system (1) is structurally uncontrollable.

Before proceeding to the switched linear system (1), first, con-
sider a structured linear system:

ẋ(t) = Ax(t) + Bu(t). (2)

It is well known that system (2) is structurally controllable if and
only if there exists a numerical realization (Ã, B̃), such that rank
(sI − Ã, B̃) = n, ∀s ∈ C. Otherwise, the PBH test (Kailath, 1980)
states that system (2) is uncontrollable if and only if for every nu-
merical realization, there exists a row vector q ≠ 0 such that
qÃ = s0q, s0 ∈ C and qB̃ = 0, where rank (s0I − Ã, B̃) < n.

On onehand, if for every numerical realization rank (sI−Ã, B̃) =

n, ∀s ∈ C\{0}, then the uncontrollability of system (2) implies nec-
essarily that for every numerical realization there exists a vector
q ≠ 0 such that qÃ = 0 and qB̃ = 0.

On the other hand, Lemma 14.1 of Reinschke (1988) states that,
if in the digraph associated with (2), every state vertex is an end
vertex of a stem (accessible), then g-rank (sI − A, B) = n, ∀s ∈

C\{0}, whichmeans that for almost all numerical realization (Ã, B̃),
rank (sI − Ã, B̃) = n, ∀s ∈ C \ {0}.

Now considering the switched linear system (1), assume that
the two conditions in Theorem 9 are satisfied. Due to Lemma
14.1 of Reinschke (1988), as all the parameters of matrices
A1, . . . , Am, B1, . . . , Bm are assumed to be free, the condition (i)
of Theorem 9 implies that, for almost all vector values ū =

(ū1, . . . , ūm), we have g-rank (sI − (ū1A1 + · · · + ūmAm), (ū1B1 +

· · · + ūmBm)) = n, ∀s ≠ 0. On the other hand, if the switched
linear system (1) is structurally uncontrollable, then for all con-
stant values, ū = (ū1, . . . , ūm), linear systems defined by matri-
ces (Ā, B̄) are also uncontrollable, where Ā =

m
i=1 ūiAi and B̄ =m

i=1 ūiBi. We write the numerical realization of (Ā, B̄) as ( ˜̄A, ˜̄B).
This is due to the fact that for all constant values ū, Im(C(Ā, B̄) ⊆

Im(C(A1, . . . , Am, B1, . . . , Bm)). Therefore, if the switched linear
system is structurally uncontrollable, since for almost all ū =

(ū1, . . . , ūm), g-rank (sI − (ū1A1 + · · · + ūmAm), (ū1B1 + · · · +

ūmBm)) = n, ∀s ≠ 0, we have that for every numerical realization
matrix pair ( ˜̄A, ˜̄B), there exists a nonzero vector q such that q ˜̄A = 0
and q ˜̄B = 0. Since this statement is true for almost all the values
ū = (ū1, . . . , ūm), we have that for almost all n · m-tuple values
ūj

= (ūj
1, . . . , ū

j
m), j = 1, . . . , n ·m, we can find nonzero vectors qj

such that the following holds:
m
i=1

ūj
iqjÃi = 0, j = 1, . . . , n · m

m
i=1

ūj
iqjB̃i = 0. j = 1, . . . , n · m.

(3)

Obviously, there cannot exist more than n linear independent vec-
tors qj. Let us denote q1, q2, . . . , qn the vectors such that span
(q1, q2, . . . , qn·m) ⊆ span(q1, q2, . . . , qn) (we can renumber the
vectors if necessary). All the vectors qj, j = n+1, . . . , n ·m are lin-
ear combinations of q1, q2, . . . , qn. Therefore, system (3) contains
the following equations:

n
k=1

m
i=1

aji,k(ū)qkÃi = 0 j = 1, . . . , n · m

n
k=1

m
i=1

aji,k(ū)qkB̃i = 0 j = 1, . . . , n · m
(4)
where aji,k(ū) are linear functions of ūj, j = 1, . . . , n · m. Since sys-
tem (3) is satisfied for almost all the values, we can find ūj, j =

1, . . . , n · m such that

det


a11,1(ū) a11,2(ū) . . . a1m,n(ū)
a21,1(ū) a21,2(ū) . . . a2m,n(ū)

...
...

...
...

an·m1,1 (ū) an·m1,2 (ū) . . . an·mm,n(ū)

 ≠ 0.

In this case, the only solution of (4) is qkÃ1 = · · · = qkÃm = qkB̃1 =

· · · = qkB̃m = 0, k = 1, . . . , n. Obviously, if the switched linear
system is structurally uncontrollable, then vector qk, k = 1, . . . , n
is nonzero. Consequently, the switched linear system (1) is struc-
turally uncontrollable only if for every numerical realization there
exists at least one nonzero vector q such that qA1 = · · · = qAm =

qB1 = · · · = qBm = 0. However, if condition ii of Theorem 9 is
satisfied, then g-rank [A1, . . . , Am, B1, . . . , Bm] = n and therefore,
for at least one numerical realization, there does not exist a vector
q ≠ 0 such that qA1 = · · · = qAm = qB1 = · · · = qBm = 0.
Hence, the two conditions are sufficient to ensure the structural
controllability of the switched linear system (1).

Actually, using the terminologies ‘dilation’ and ‘S-dilation’ as
graphic criteria is not so numerically efficient. For example, to
check the second condition of Theorem 9, we need to test for all
possible vertex subsets to see whether there exist S-dilation in the
colored union graph or not. Consequently, we will adopt another
notion ‘S-disjoint edges’ to form a more numerically efficient
graphic interpretation of structural controllability.

Definition 13. In the colored union graph G̃, consider k edges
e1 = (v1, v

′

1), e2 = (v2, v
′

2), . . . , ek = (vk, v
′

k). We define for
i = 1, . . . , k, Si as the set of integers j such that vj = vi, i.e., Si =

{1 ≤ j ≤ k|vj = vi}. These k edges e1, e2, . . . , ek are S-disjoint if
the following two conditions are satisfied:

(i) edges e1, e2, . . . , ek have distinct end vertices,
(ii) for i = 1, . . . , k, Si = {i} or there exist r distinct integers

i1, i2, . . . , ir such that ej1 ∈ Ii1 , ej2 ∈ Ii2 , . . . , ejr ∈ Iir , where
j1, j2, . . . , jr are all the elements of Si.

Roughly speaking, k edges are S-disjoint if their end vertices are all
distinct and if all the edges which have the same begin vertex can
be associatedwith distinct indexes i. For this newgraphic property,
the following lemma can be given.

Lemma 10. Considering switched linear system (1), there exist n S-
disjoint edges in the associated colored union graph G̃ if and only if
[A1, A2, . . . , Am, B1, B2, . . . , Bm] has g-rank = n.

Proof. Necessity: If there exist n S-disjoint edges in G̃, matrix
[A1, A2, . . . , Am, B1, B2, . . . , Bm] contains at least n free parame-
ters. Since the n S-disjoint edges have distinct end vertices, the cor-
responding n free parameters lie on n different rows. Besides, the
n S-disjoint edges have distinct begin vertices or have same begin
vertex that can be associated with distinct indexes i. This implies
that these n free parameters lie on n different columns. Keep these
n free parameters and set all the other free parameters to be zero.
We can see thatmatrix [A1, A2, . . . , Am, B1, B2, . . . , Bm]has follow-

ing form:


0 λ1 0 0 . . . 0
0 0 0 λ2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
λn 0 0 0 . . . 0

.

, which has g-rank = n.

Sufficiency: From the Definition 12.3 and the following discus-
sions of Reinschke (1988), for a structured matrix Q , g-rank Q= s-
rankQ , where s-rank ofQ is defined as themaximal number of free
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parameters that no two of which lie on the same row or column. If
matrix [A1, A2, . . . , Am, B1, B2, . . . , Bm] has g-rank = n, it follows
that there exists n free parameters from n different rows, which
implies that the corresponding n edges have different end vertices,
from n different columns, which implies that these n edges start
from different vertices or start from the same vertices but can be
associated with different indexes. Hence the condition that matrix
has g-rank = n is sufficient to ensure the existence of n S-disjoint
edges.

With the above definition and lemma, another necessary and
sufficient condition for structural controllability of system (1) can
be proposed here.

Theorem 11. The switched linear system (1) with graphic represen-
tations Gi, i ∈ {1, . . . ,m}, is structurally controllable if and only if its
colored union graph G̃ satisfies the following two conditions:

(i) there is no nonaccessible vertex in the colored union graph G̃,
(ii) there exist n S-disjoint edges in the colored union graph G̃.

Proof. Lemmas 6 and 10 show that there exist n S-disjoint edges
in the colored union graph G̃ if and only if there is no S-dilation in
G̃. Then this theorem follows immediately.

3.3. Computation complexity of the proposed criteria

Compared with the condition using ‘S-dilation’, this condition
using ‘S-disjoint edges’ does not require to check all the vertex sub-
sets, which is a more efficient criterion. The maximal number of
‘S-disjoint edges’ can be calculated using bipartite graphs. For ex-
ample, we can use the algorithm in Micali and Vazirani (1980),
which allows us to compute the cardinality of maximum match-
ing into a bipartite graph. A bipartite graph is a graph whose ver-
tices can be divided into two disjoint setsU andW such that every
edge connects a vertex in U to one in W . To build a bipartite graph
in directed subgraphGi(Vi, Ii), what we need to do is adding some
vertices and making Ui = {v ∈ Vi|∃(v, v′) ∈ Ii}, which implies
that cardinality |Ui| equals to the number of nonzero columns in
matrix [Ai, Bi]. Besides, Wi = Xi, i.e., the state vertex set. Then it
follows that the maximum matching in this bipartite graph is the
same as the maximal S-disjoint edge set in Gi(Vi, Ii). According to
the definition of S-disjoint edges, the beginning vertex from differ-
ent subgraphs should be differentiated when building the bipar-
tite graph for the colored union graph G̃. Therefore for the bipartite
graph of G̃, U = {v|∃(v, v′) ∈ Ii, i = 1, 2, . . . ,m}, which implies
that cardinality |U| equals to the number of nonzero columns in
matrix [A1, A2, . . . , Am, B1, B2, . . . , Bm]. And W = X, i.e., the state
vertex set. Similarly, themaximummatching in this bipartite graph
is the same as the maximal S-disjoint edge set in the colored union
graph. Therefore the complexity order of the algorithm using the
method in Micali and Vazirani (1980) is O(

√
p + n · q), where q

is the number of edges in the colored union graph, i.e., the num-
ber of free parameters in all system matrices, p is the number of
nonzero columns in matrix [A1, A2, . . . , Am, B1, B2, . . . , Bm] and n
is the number of state variables. Compared with condition (ii) of
Theorem11, condition (i) of Theorem11 is easier to check.Wehave
to look for pathswhich connect each state vertexwith oneof the in-
put vertex. This is a standard task of algorithmic graph theory. For
example, the depth-first search or breadth-first search algorithm
for traversing a graph can be adopted and the complexity order is
O(|V | + |E|), where |V | and |E| are cardinalities of vertex set and
edge set in the union graph.
4. Conclusions and future work

In this paper, structural controllability for switched linear sys-
tems has been investigated. Combining the knowledge in the liter-
ature of switched linear systems and graph theory, several graphic
necessary and sufficient conditions for the structurally control-
lability of switched linear systems have been proposed. These
graphic interpretations provide us a better understanding on how
the graphic topologies of switched linear systems will influence or
determine the structural controllability of switched linear systems.
This shows us a new perspective that we can design the switch-
ing algorithm to make the switched linear system structurally
controllable conveniently just having tomake sure that someprop-
erties of the corresponding graph (union or colored union graph)
are kept during the switching process. In this paper, the param-
eters in different subsystem models are assumed to be indepen-
dent. A more general assumption is that some free parameters
remain the same among different subsystems switching, i.e., de-
pendence among subsystems. It turns out that our necessary and
sufficient condition derived here would be a necessary condition
under this dependence assumption. Besides, our result can be
treated as basic starting point for exploring the structural control-
lability of switched nonlinear systems: using Lie algebra or transfer
function methods to get full characterization for controllability of
the switched non-linear system, then try to interpret each condi-
tion into graphic one and finally combine these conditions together
to get graphic interpretations for structural controllability for the
switched nonlinear system. To obtain a full characterization for the
dependent case or switched nonlinear case needs further investi-
gation.
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