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Abstract

This paper serves as an integral part of a project in which the
main objective is to develop the theory and algorithms of computa-
tional methods for optimal UAV trajectory planning in obstacle-rich
environment. In this paper, we apply a Galerkin method of optimal
control to the model of HeLion, a helicopter UAV developed by the
UAV Team from the National University of Singapore (NUS). The goal
of the project is to compute and test minimum-time trajectories for
the unmanned system. We use nonlinear optimal control to formulate
the problem, which is subject to the dynamical system of differential
equations and state-control bounds of HeLion. The dynamical system
is defined by a set of fifteen dimensional nonlinear differential equa-
tions. Different from previous papers on this model, more challenging
constraints including higher order derivatives of the states are included
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in the formulation. The problem does not have an analytic solution.
We numerically solve the problem using a Galerkin method. Then the
computed trajectory is verified in flight tests using HeLion.

Keywords: Minimum-time control, Helicopter UAV, Galerkin computa-
tional optimal control, flight test

1 Introduction

This paper is an integral part of a project in which the main objective is to
develop the theory and algorithms of computational methods for optimal UAV
trajectory planning in an obstacle-rich environment. Due to the complexity
of the system and its constraints, it is a significant challenge for autonomous
UAVs to fly in an optimal manner with respect to use of fuel, expenditure of
time, or distance traveled. In [7, 5, 10], a pseudospectral method of dynamic
optimization was applied to the problem of minimum time trajectory planning
for helicopter UAVs. Due to the requirements of some onboard equipment and
safety concerns, we found that for some missions the trajectories in [7, 5] are
too aggressive. Their acceleration and jerk are larger than the preferred upper
bounds. It raises a technical issue of how to compute optimal trajectories that
satisfy not only the dynamic model of differential equations but also additional
constraints involving second (acceleration) and 3rd (jerk) order derivatives of
the system state variables.

In this paper, we integrate a set of additional constraints on the accelera-
tion and jerk of UAVs into the optimal control problem. In addition, the rate
of change for control inputs are also bounded. Different from [7, 5] in which a
pseudospectral method was used, we decided to use Galerkin type of discretiza-
tion for computational optimal control, a method that reduces the estimation
error when taking high order derivatives of the state variables. This work is
a continuation of the research effort presented in [7, 5, 10] where a library
of useful trajectories are being developed for HeLion, a helicopter UAV built
in National University of Singapore, for various scenarios including optimal
trajectories with and without obstacles, sharp-turn and pointing, and optimal
trajectories with jerk control.

Rather than path planning, in this paper we address the problem of trajec-
tory planning. Therefore, we compute the time functions of the commands to
the system actuators as well as the time functions of all state variables. In ad-
dition, we require that the trajectory minimizes a cost functional, in this case
the minimum flying time. Existing approaches of path planning emphasizes
stability and robustness. Due to the complexity of helicopter aerodynamics
and terrain constraints, optimal trajectory planning cannot be solved analyti-
cally. Therefore, finding numerical solutions is the way to go.
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Variable Physical meaning (unit)
px, py, pz Position vector in NED-frame (m)
u, v, w Velocity vector in body-frame (m/s)
φ, θ, ψ Roll, pitch, and yaw angles (rad)
p, q, r Roll, pitch, and yaw angular rate in body-frame (rad/s)
as, bs Longitudinal and lateral tip-path-plane (TPP) flapping angles
δped,int Intermediate state in yaw rate gyro dynamics

Table 1: Physical meanings of the state variables

2 Problem Formulation

The minimum-time trajectory planning can be formulated as a problem of
optimal control

min J =

∫ tf

t0

1dt (1)

subject to

ẋ = f(x, u)

xmin ≤ x ≤ xmax, umin ≤ u ≤ umax

u̇min ≤ u̇ ≤ u̇max

amin ≤ a ≤ amax, Jmin ≤ J ≤ Jmax

O(x) ≥ 0 (obstacles)

x(t0) = x0, x(tf ) = xf , tf is unspecified

The state and control constraints defined by xmax, xmin umax, and umin represent
the limitations of the variables. The differential equation of f(x, u) represents
the helicopter model, which is a system of fifteen nonlinear differential equa-
tions. Details about the helicopter model can be found in [3]. The model is
based on two coordinate frames, i.e., the body frame and the north-east-down
(NED) frame. The state consists of the following variables

x = [px py pz u v w · · ·
φ θ ψ p q r as bs δped,int]

T

The control input consists of the following variables

u =
[
δcol δlat δlon δped

]T

These variables are explained in Table 1 - 2.
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δlat Normalized aileron servo input (-1, 1)
δlon Normalized elevator servo input (-1,1)
δcol Normalized collective pitch servo input (-1, 1)
δped Normalized rudder servo input (-1, 1)

Table 2: Physical meanings of the control variables

−∞ ≤ px ≤ ∞ −∞ ≤ py ≤ ∞ −∞ ≤ pz ≤ 0
−4 ≤ u ≤ 4 −4 ≤ v ≤ 4 −4 ≤ w ≤ 4

−0.18 ≤ φ ≤ 0.18 −0.18 ≤ θ ≤ 0.18 −0.18 ≤ ψ ≤ 0.18
−0.4 ≤ p ≤ 0.4 −0.4 ≤ q ≤ 0.4 −0.4 ≤ r ≤ 0.4

−0.28167 ≤ δcol ≤ −0.086355 −0.1 ≤ δlat ≤ 0.1 −0.1 ≤ δlon ≤ 0.1
−0.1 ≤ δped ≤ 0.1

Table 3: The lower and upper bounds for state and control variables

In the system model, the state variables and control inputs are bounded
by xmax, xmin umax, and umin. The details of the bounds are listed in Table 3.
These bounds are relatively conservative for safety reasons.

The obstacles are not included in the examples, which was partially ad-
dressed in [10]. Required by the onboard equipment and test flight missions,
we have to make sure that the acceleration and jerk of the UAV are bounded.
In addition, the rate of change for control variables are also bounded. Different
from the model in [7, 5, 10], we include additional constraints for the variables
a, J , and u̇, where

a =
d

dt

√
u2 + v2 + w2, J =

da

dt

3 Galerkin Method for Optimal Control

In this paper we adopt a continuous Galerkin (CG) method of computational
dynamic optimization. CG methods for optimal control have been recently
developed and have shown much promise in solving a wide variety of optimal
control problems [2]. In this project we use a CG method based on Legedre-
Gauss-Lobatto (LGL) quadrature nodes. The CG method approximates the
states and controls with globally interpolating N -th order Lagrange polyno-
mials at the LGL nodes. The LGL nodes, t0 = −1 < t1 < · · · < tN = 1, are
defined by

t0 = −1, tN = 1, and

for k = 1, 2, . . . , N − 1, tk are the roots of L̇N(t)
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where L̇N(t) is the derivative of the N -th order Legendre polynomial LN(t).
The discretization works in the interval of [−1, 1]. It is proved in approximation
theory that the polynomial interpolation at the LGL nodes converges to the
solution under L2 norm at the rate of 1/Nm, where m is the smoothness of
the solution [4]. If the solution is C∞, then the polynomial interpolation at
the LGL nodes converges at a spectral rate, i.e. it is faster than any given
polynomial rate. In a CG method, the state trajectory, x(t), is approximated
by the vector

x̄Nk
≈ x(tk) ∈ R

n, k = 1, 2, . . . , N

Similarly, ūNk is the approximation of u(tk). The CG method for solving
optimal control problems is a good all-around method for the approximation of
smooth functions, integrations, and differentiations, all critical to accurately
solving problems of this form. Discretization of the problem’s dynamics is
an extremely important part of the method. A solution to the differential
equation ẋ = f(x, u) may be approximated by the CG method at the LGL
nodes with the following formulation

N∑
j=0

Dijx̄
Nj = ci, i = 0, . . . , N (2)

where the (N + 1) × (N + 1) differentiation matrix D is defined by

Dij =

∫ 1

−1

φi
dφj

dt
dt, i, j = 0, . . . , N

and the (N + 1) × 1 right-hand-side (RHS) vector c is defined as

ci =

∫ 1

−1

φif(x(t), u(t))dt, i = 0, . . . , N

The Lagrange polynomial φ is obtained from the general definition

φi(t) =
N∏

j=0

j �=i

,
(t− tj)

(ti − tj)
, i = 0, . . . , N

and differentiating the equation for the Lagrange polynomial yields

dφi

dx
(t) =

N∑
k=0
k �=i

(
1

ti − tj

) N∏
j=o

j �=i

j �=k

,
(t− tj)

(ti − tj)
, i = 0, . . . , N
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If LGL quadrature rule is used, the differentiation matrix and RHS vector can
be calculated with the relationships

Dij =

N∑
k=0

φi(tk)
dφj

dξ
(tk)wk, i, j = 0, . . . , N

and

ci ≈ c̄i =
N∑

k=0

φi(tk)f(x̄Nk, ūNk)wk, i = 0, . . . , N

respectively, where the LGL weight w is defined by

wk =
2

N(N + 1)

1

[LN(tk)]
2 , k = 0, . . . , N

Note that LGL quadrature rule is exact for polynomial integrands of degree
less than or equal to 2N − 1. The discretization of the state and control
constraints is simple,

xmin ≤ x̄Nk ≤ xmax, umin ≤ ūNk ≤ umax (3)

for 0 ≤ k ≤ N . The discretization of the acceleration and jerk requires discrete
differentiation. The derivative at LGL nodes can be approximated by matrix
multiplication,

āNk =
N∑

j=0

dkj

√
ūNj + v̄Nj + w̄Nj (4)

J̄Nk =

N∑
j=0

dkj ā
Nj

where dij is the differentiation matrix in pseudospectral method [4]. This
approximation of derivatives has a high order convergence, which is important
for the convergence of computational optimal control. The acceleration and
jerk constraints are discretized as follows

amin ≤ āNk ≤ amax, Jmin ≤ J̄Nk ≤ Jmax (5)

The bounds on the rate of change for control variables are treated in a simi-
lar way. Lastly, the cost functional J [x(·), u(·)] is approximated by the LGL
quadrature rule,

J [x(·), u(·)] ≈

N∑
k=0

g(x̄Nk, ūNk)wk, k = 0, . . . , N (6)
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(u, v, w) (0, 0, 0)
(φ, θ, ψ) (0.038944, 0.0008856, 0)
(p, q, r) (0, 0, 0)

(as, bs, δped,int) (0.0049121,−0.00087278, 0)
(δlat, δlon, δcol, δpet) (−0.17461, 0.0061268,−0.0025549, 0)

Table 4: Howering trim value for the states and controls

To summarize, a finite dimensional approximation of the state and control
trajectories exist at the LGL nodes. The system of differential equations can
be approximated using the discrete differentiation (2). The state and control
constraints are approximated using (3). The acceleration and jerk constraints
are approximated using (4)-(5). The cost function can be approximated by
the LGL quadrature rule (6). Integrating these discretization elements to-
gether yields a finite dimensional nonlinear programming, which can be solved
numerically. In our computations, sequential quadratic programming is used.

4 Optimal Trajectories

We use two examples to test the algorithm. As a starting point, the algorithm
generates an time-optimal trajectory for a 70 meter flight with only the physical
constraints of the helicopter model. At the end points A and B, the UAV
hovers with a zero velocity and hovering trim values given in Table 4. The
details of the numerical optimal trajectory for this first example are shown in
Figures 1- 4. A polynomial order of 80 was used. In order to validate the
trajectories of state and control in continuous-time, a Runge-Kutta solver is
run, using the system model based on a spline interpolation of the optimal
control at the nodes. The dots in the figures represent the results from the
optimization program, while the lines represent the trajectory from Runge-
Kutta method. For all fifteen states and four controls, there is almost no visible
disparity between the Galerkin method results and those of the Runge-Kutta
solver. In particular, the paths generated are within 1 centimeter of each other
throughout the 70 meter flight. Although the angular velocities and flapping
angles are highly nonlinear, the optimal trajectory is highly consistent with
the Runge-Kutta method.

In the second example, additional constraints are added in order to ensure
stability during flight-testing. Constraints are put on the derivatives of the
control inputs; and the norms of the velocity, acceleration, and jerk.

−0.1 ≤ δ̇col ≤ 0.1 0.12 ≤ δ̇lat ≤ 0.12

−0.12 ≤ δ̇lon ≤ 0.12 −0.12 ≤ δ̇ped ≤ 0.12√
u2 + v2 + w2 ≤ 3.8 |a| < 0.8, |J | < 0.85
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Figure 1: x, φ -solid; y, θ - dash; z, ψ - dot.
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Figure 2: u, p -solid; v, q - dash; w, r - dot.
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Figure 3: δcol, δlon -solid; δlad, uped - dash.

In this example, a shorter path of 50 meters is used in order to reduce er-
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Figure 4: as -solid; bs - dash; δped,int - solid.

ror in the Runge-Kutta trajectory. The minimum-time for this trajectory is
t = 18.8269s. With 60 nodes, the algorithm yields a path that is within 20
centimeters of the Runge-Kutta result. As shown in Figures 5 to 8, all state
variables agree with their validating curves, with some error in the x-position.
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Figure 5: x, φ -solid; y, θ - dash; z, ψ - dot.

5 Flight Testing

The platform utilized for the experiment is a fully customized quadrotor de-
veloped by NUS UAV Team. The platform is composed of carbon fiber plates
and rods with a durable Acrlonitrile Butadiene Styrene. The overall dimen-
sions are 35cm in height and 86 cm from tip-to-tip. The motors used for the
platform are 740kV T-Motors with Turnigy Plush - 25A Bulletproof speed
controller electronic speed controllers (ESCs). The propellers used are APC
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Figure 6: u, p -solid; v, q - dash; w, r - dot.
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Figure 7: δcol, δlon -solid; δlad, uped - dash.
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propeller setup could generate 15 kN static thrust. The final bare platform’s
main body weighs 1 kg. Its maximum total take-off weight reaches 3.3 kg with
a 4 cell 4300mAh lithium polymer battery. Our current platform including
the necessary sensor suite weighs 2.7 kg. We have tested that the platform
was able to fly at 8m/s for a period of 10 to 15 minutes depending on the
environmental factors.

Figure 9: The quadrotor utilized in the experiment - a platform developed by
NUS UAV Team

The inner-outer loop control capability is build for the system to track a
given feasible trajectory, such as the minimum-time trajectories found in the
previous section. The inner attitude loop is controlled by a DJI Naza multi-
rotor computer and the outer loop is controlled by a robust perfect tracking
(RPT) based controller. The quadrotor is capable of performing auto GPS way
point tracking mission. The flight test is performed at blackmall, Singapore,
28 Aug 2013. During the flight test, the wind gust is up to 2m/s and the GPS
condition is quite good, receiving up to 11 satellites signals. The trajectories
of position and velocities are shown in Figure 10. The autonomous trajectory
starts at t=207.2s and ends at t=226s.The quadrotor tracks the position and
velocities very smoothly. The performance of acceleration and deceleration is
like human control without causing extra shaking and jerking and still results
relatively high velocity which is hard to achieve by normal point to point
heuristic trajectory planning.

6 Conclusions

Galerkin method of optimal control is a new computational method developed
in [2]. The results in this paper show that the computational algorithm is
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Figure 10: Tractories from the flight test

applicable to the minimum-time trajectory planning for helicopter UAVs. It is
tested using two sets of different constraints based on the model of HeLion. In
both cases, the program converges to feasible trajectories. A such trajectory
is validated in laboratory experiments using a quadrotor unmanned helicopter
developed by NUS UAV Team. This work is a part of the effort of developing
a reliable computational method for nonlinear optimal control under nonlin-
ear constraints. For future work, more aggressive trajectories is planned to be
computed and tested using weaker constraints than those in this paper. In
addition, theoretical foundation are being developed for the feasibility, consis-
tency, and convergence of Galerkin optimal control method.
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