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 A B S T R A C T

In deep learning-based anomaly detection, performance degradation often results from feature loss caused 
by downsampling and the limited nonlinear representation capacity of conventional activation functions. 
Moreover, improving detection accuracy often demands substantial computational resources, thereby hindering 
practical deployment in real-time and resource-constrained collaborative multi-robot inspection settings. To 
address these challenges, this paper proposes DEANet, a memory-efficient and real-time anomaly detection 
methodology with four key components, designed to achieve high accuracy at low computational cost. 
First, a lightweight feature aggregation neck improves feature fusion efficiency while reducing computational 
overhead. Second, a contextual feature extraction module leverages environmental semantics to enhance both 
detection and localization accuracy. Third, to alleviate the feature degradation introduced by hierarchical 
downsampling, two enhancement modules are designed to facilitate a better trade-off between accuracy 
and computational cost. Fourth, we propose a parameterized activation function (ACLU) that enhances 
the network’s nonlinear representational capacity. ACLU achieves higher accuracy and demonstrates faster 
convergence compared to recent advanced activation functions. Experiments on three benchmark datasets 
confirm that DEANet achieves state-of-the-art accuracy with only 2.8 million parameters, while reducing 
training data demands by 70%, parameter count by 87.8%, and computational cost by 92.6%, demonstrating 
its strong efficiency–performance trade-off under resource-constrained conditions. Edge-computing deployment 
tests validate DEANet’s real-time performance at 52.1 FPS. These results highlight DEANet’s practicality and 
scalability for deployment in real-world, resource-constrained settings. The source code will be available at 
https://github.com/chriszxk/surface-detection.git.
1. Introduction

Surface anomaly detection or fault diagnosis plays a vital role 
in construction and industrial products by enhancing lifecycle man-
agement, facilitating timely maintenance, and ensuring quality assur-
ance [1,2]. In recent years, deep learning-based methods for anomaly 
detection have advanced rapidly. Multi-robot collaboration system 
equipped with these techniques has improved the efficiency of surface 
anomaly detection in large-scale buildings and industrial facilities, 
while also enhancing operational safety. However, achieving high 
detection accuracy under constrained computational resources remains 
a major challenge. This limitation highlights the need for anomaly 
detection methods that are both accurate and computationally efficient, 
thereby extending the operational lifespan of resource-constrained 
systems. Consequently, efficient and reliable surface anomaly detection 
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has emerged as a critical research priority for collaborative multi-robot 
inspection systems.

Despite significant progress in deep learning-based anomaly detec-
tion, several challenges persist. First, most detection methods reduce 
computational costs (computational complexity) by performing fea-
ture downsampling through convolutional or pooling layers [3,4]. For 
fine, elongated architectural cracks with minimal pixel occupancy, 
such downsampling methods often lead to a degradation in detection 
accuracy due to feature loss or insufficient representation capacity. 
While increasing the parameter count (space complexity) can enhance 
feature representation capability, it also leads to higher memory con-
sumption and increased computational costs. Therefore, achieving an 
effective trade-off between computational cost, parameter count, and 
detection accuracy remains a critical challenge for anomaly detection 
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Fig. 1. Left: accuracy vs. parameter count; Right: accuracy vs. computational 
cost. The proposed method (red dot) achieves a favorable trade-off between 
low complexity and favorable performance, making it suitable for deployment 
on resource-constrained platforms, especially in multi-agent settings.

networks, particularly when deployed on edge-computing devices in 
robotic systems.

Second, contextual environmental semantics are often overlooked in 
existing approaches [5]. As certain damages tend to occur under spe-
cific environmental conditions, incorporating contextual environmental 
information can significantly enhance both anomaly detection accuracy 
and localization performance, particularly in few-shot anomaly detec-
tion scenarios. Leveraging such contextual cues contributes to more 
robust and accurate anomaly detection.

Third, lightweight detection methods often lack effective informa-
tion fusion mechanisms, which can lead to uneven feature representa-
tion, particularly for slender crack defects. Effectively integrating the 
information extracted by the backbone network is a critical step in en-
hancing feature visibility and, consequently, improving detection per-
formance. Employing deeper neural networks for feature fusion signifi-
cantly increases the parameter count (space complexity) and imposes a 
heavy burden on storage and computation in resource-constrained plat-
forms [6]. Designing an effective lightweight feature fusion network 
can alleviate storage capacity constraints while improving detection 
performance.

Furthermore, our evaluation of several advanced activation func-
tions indicates that their representational capacity is often limited, 
in some cases even leading to degraded detection performance [7–
9]. However, certain activation functions have shown effectiveness 
in specific neural networks; our experiments identified instability of 
activation failure [10], which compromises the representational ca-
pacity for complex anomaly data and consequently reduces detection 
accuracy. Therefore, further improvements in the design of activation 
functions are necessary.

To address these challenges, this work proposes a surface anomaly 
detection framework, termed the Downsampling-Enhanced and Activa-
tion Representation Network (DEANet), which aims to achieve a bal-
ance between computational cost (computational complexity), param-
eter efficiency (space complexity) and detection accuracy, thereby en-
abling deployment on edge-computing platforms. To achieve accurate 
and real-time anomaly detection while maintaining memory efficiency, 
we utilize a contextual feature extraction module (CFM) that captures 
contextual semantics to enhance detection accuracy. A downsampling 
enhancement module (DEM) is also introduced to strengthen feature 
extraction capability, thereby improving detection performance.

Lastly, we propose a novel activation function that enhances the net-
work’s nonlinear representation capability without increasing memory 
overhead. To further reduce computational cost and parameter count, 
a lightweight feature aggregation network is employed for efficient 
feature fusion. In addition, a lightweight downsampling module (LDM) 
is integrated alongside the downsampling enhancement module (DEM) 
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to maintain an optimal trade-off between computational cost and de-
tection accuracy. As illustrated in Fig.  1, DEANet demonstrates clear 
advantages in the trade-off between detection accuracy and parameter 
count (left) and computational cost (right). In the figure, the vertical 
axis represents detection accuracy. In contrast, the horizontal axis 
corresponds to the number of parameters and the computational cost 
(measured in billion floating-point operations per second, or BFLOPs), 
respectively. Notably, DEANet attains competitive accuracy compared 
to state-of-the-art networks while requiring significantly fewer training 
samples (See Section 4.2).

In summary, the main contributions of this paper are as follows:

(1) We propose an accurate and real-time anomaly detection net-
work that incorporates environmental context information to en-
hance both localization and detection performance. Furthermore, 
a lightweight feature aggregation module is employed to improve 
the efficiency for feature fusion, enabling practical deployment on 
resource-constrained robotic edge computing devices.

(2) To alleviate the performance degradation caused by feature loss 
during hierarchical downsampling, we introduce two downsam-
pling enhancement modules. Their combined integration facili-
tates a favorable balance between detection accuracy and compu-
tational cost, thereby supporting practical deployment in resource-
constrained settings.

(3) We develop an activation function that adapts to the specific 
activation requirements of diverse neural network architectures. 
Experimental results demonstrate that it outperforms 20 state-
of-the-art activation functions in terms of both accuracy and 
generalization capability, and achieves a faster convergence rate 
compared to the advanced activation function.

(4) Extensive qualitative and quantitative evaluations demonstrate 
that the proposed network outperforms existing methods in sur-
face anomaly detection. Notably, it achieves a 70% reduction in 
required training samples while maintaining superior detection 
performance. Edge-computing deployment confirms real-time in-
ference at 52.1 FPS, underscoring its practical applicability in 
industrial settings.

The remainder of this paper is organized as follows. Section 2 
reviews related work and existing literature. Section 3 outlines the theo-
retical foundation and details the model development process. Section 4 
presents the experimental setup, results, and performance evaluation. 
Section 5 discusses the limitations of our study and outlines future 
work. Finally, Section 6 summarizes the key findings and discusses the 
main conclusions.

2. Literature review

2.1. Deep learning-based anomaly detection

Anomaly detection in high-rise infrastructure and large-scale indus-
trial facilities remains a critical challenge for maintaining structural 
reliability and product integrity [11]. Extensive research efforts have 
focused on addressing this issue using deep learning-based image pro-
cessing techniques. For instance, Block et al. [12] proposed a frame-
work for detecting and classifying anomalies on stamped metal surfaces 
by exploring temporal coherence in consecutive frames through track-
ing detected regions. Xie et al. [13] introduced FFCNN, a deep neural 
network designed for detecting surface anomaly in magnetic materials, 
effectively addressing both efficiency and cost concerns. Sun et al. [14] 
presented a deep learning-based approach for weld anomaly detection, 
although the method is limited by relatively slow inference speed. At-
tention mechanisms have also been incorporated to improve detection 
accuracy, as they selectively emphasize discriminative features and 
suppress irrelevant information, thereby strengthening feature repre-
sentation. For example, Hu et al. [15] integrated an object-level atten-
tion module into their training strategy for accurate casting anomaly 
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detection. However, many of these approaches overlook a key limita-
tion: the degradation of accuracy caused by aggressive downsampling 
operations. To address robustness, Zhou et al. [16] combined a visual 
attention model with wavelet transforms. Nevertheless, the method em-
phasizes detection accuracy at the expense of computational efficiency, 
which hampers its deployment on resource-constrained devices.

Furthermore, the majority of existing techniques focus predomi-
nantly on crack detection. In real-world applications, however, anoma-
lies in infrastructure and industrial systems can manifest in more di-
verse forms, such as spalling, delamination, and moisture intrusion. De-
tecting a broad spectrum of anomalies increases spatial and computa-
tional complexity, necessitating generalizable and efficient frameworks 
to manage the challenges of real-world scenarios.

2.2. Feature fusion

Numerous techniques have been proposed to enhance automated 
anomaly detection, among which multi-scale feature fusion combined 
with attention mechanisms has proven particularly effective [17]. For 
example, fusion strategies based on forgotten inputs have demon-
strated potential in mitigating class imbalance by reinforcing contextual 
semantics without degrading spatial resolution [18]. However, such 
methods often introduce considerable computational overhead, limiting 
their applicability in resource-constrained settings. BDDN [19] lever-
ages ResNet-50 as a backbone and employs a dual-attention feature 
pyramid network for feature fusion; however, the model comprises over 
25 million parameters, posing a significant challenge for deployment 
on memory-constrained devices. Similarly, DMF-Net [20] employs a 
dual-encoded multi-scale fusion strategy to enhance anomaly detection 
for variable shapes and sizes, thereby improving feature representation. 
Despite these strengths, the applicability of DMF-Net remains limited, 
as it primarily targets road surface cracks.

Moreover, most existing fusion approaches fail to incorporate the 
environmental context in which damages occur, despite certain damage 
types being strongly correlated with specific environmental conditions. 
Integrating environmental semantics into feature fusion strategies has 
the potential to improve both the localization and identification of 
diverse anomalies, especially in complex operational scenarios.

2.3. Activation function

Activation functions, as essential elements of neural networks, in-
troduce nonlinearity and thereby facilitate the modeling of complex 
relationships. Among them, the Rectified Linear Unit (ReLU) is widely 
adopted due to its ability to improve inference efficiency and facilitate 
the training efficiency of deep neural networks. However, ReLU suffers 
from the issue of ‘‘dead neurons’’, wherein neurons become inactive and 
cease to update during training. To mitigate this, several ReLU variants 
have been proposed [21–26], which typically introduce a slight non-
zero gradient for negative inputs or incorporate trainable parameters to 
adapt the slope. Despite these advances, gaps remain in the activation 
landscape that affect learning dynamics in anomaly detection networks.

TinyReLU [9], a function specifically designed for fine crack detec-
tion, introduces a modified derivative behavior tailored to the charac-
teristics of such defects. However, our analysis of its derivative reveals 
that it approaches zero at both negative and positive infinity. According 
to the chain rule, this vanishing gradient effect impedes effective 
gradient backpropagation, particularly in deeper architectures, thereby 
limiting the activation range and network convergence. Experimental 
evaluations further confirm that TinyReLU can lead to training insta-
bility. These observations indicate the necessity for more generalizable 
activation functions that maintain gradient flow and support effective 
learning across diverse input distributions.

In addition to the limitations above, most existing studies have not 
systematically evaluated the few-shot learning capabilities of anomaly 
detection methods. This gap is particularly significant in real-world 
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scenarios, where data availability is inherently limited and annotation 
processes are costly. Assessing detection performance under few-shot 
conditions offers critical insights into a model’s generalization ability 
and robustness in data-scarce environments, which are essential in 
industrial and infrastructure monitoring applications.

3. Methodology

3.1. Overview of framework

As illustrated in Fig.  2, the proposed anomaly detection framework 
comprises two main components: feature extraction and feature fu-
sion. In the feature extraction stage, three custom-designed modules 
are introduced: the Contextual Feature Extraction Module (CFM), the 
Lightweight Downsampling Module (LDM), and the Downsampling 
Enhancement Module (DEM). Two convolutional layers initially process 
the input image to extract low-level features, which are subsequently 
refined through the sequential application of these modules.

To enhance multi-scale object detection, a SPPF module is inte-
grated to extract hierarchical features at multiple scales [27]. In par-
allel, the C2PSA module [28], incorporating both channel and spatial 
attention mechanisms, is employed to enrich the feature representa-
tion. These processed features are then passed through an aggregation 
network for fusion. Finally, the detection head outputs the object’s 
confidence score, predicted class, and bounding box coordinates.

3.2. Contextual feature extraction module (CFM)

In remote sensing imagery, object classification can be challenging 
when distinct object categories share similar visual characteristics. For 
example, cars and ships often exhibit comparable shapes and colors, 
making them difficult to differentiate based solely on appearance. 
However, incorporating contextual information such as the surrounding 
environment can significantly enhance classification accuracy. A car 
typically appears on roads or in urban areas, while a ship is generally 
located in water regions.

Analogously, certain types of anomaly occur preferentially in spe-
cific environments. For instance, moisture-induced anomalies are com-
monly found in humid or water-exposed areas. Recognizing this as-
sociation, we design the Contextual Feature Extraction Module (CFM) 
to incorporate environmental semantics into the feature representation 
process.

As shown in the central lower region of Fig.  2, CFM comprises 
two submodules: the Dual Convolutional Module (DCM) and DCM1. 
The DCM employs two convolutional branches with a dilation rate 
of 4 to expand the receptive field without increasing parameter com-
plexity, as opposed to conventional large-kernel convolutions. DCM1 
includes three convolutional layers and one DCM unit. Specifically, 
the input features are evenly divided into two parallel branches in 
DCM1. The first branch consists of a convolutional layer followed by 
a DCM unit, while the second branch includes a single convolutional 
layer. The outputs from both branches are concatenated and further 
processed by a convolutional layer to generate the final contextual 
feature representation. As illustrated in Fig.  3, our CFM effectively 
enlarges the receptive field (right), thereby enhancing the represen-
tation of fine-grained anomalies and complex backgrounds, improving 
the sufficiency of feature extraction, and ultimately boosting anomaly 
detection accuracy.

3.3. Downsampling enhancement module (DEM)

Downsampling operations in convolutional neural networks often 
lead to information loss, resulting in a degradation in detection ac-
curacy and localization accuracy. To mitigate this issue, we propose 
the Downsampling Enhancement Module (DEM). As illustrated in Fig. 
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Fig. 2. Anomaly detection framework. This framework conducts feature extraction and enhances feature representation through the extractor. Subsequently, the 
Aggregation Neck facilitates enhanced feature fusion (CBA, Conv + BN + ACLU).
Fig. 3. The Effective Receptive Fields of without CFM (left) and with 
CFM (right). Our CFM achieves the largest field. This improves the extractor’s 
ability to capture low frequencies.

4, the DEM architecture is designed to preserve both high- and low-
frequency features during spatial resolution reduction.

Specifically, the input feature map 𝑋in ∈ R𝑊 ×𝐻×𝐶 is split along the 
channel dimension into two equal parts, denoted as 𝑌1 and 𝑌2, each 
with a size of R𝑊 ×𝐻× 𝐶

2 . The bottom branch applies max-pooling and 
then a 1 × 1 convolution to 𝑌1, which enhances the capture of high-
frequency components. The upper branch processes 𝑌2 using average 
pooling and a 3 × 3 convolution to emphasize low-frequency features. 
Motivated by the observation that small convolution kernels are more 
effective at extracting fine-grained, high-frequency details, while larger 
kernels are better suited for low-frequency patterns, we design each 
branch accordingly. The resulting features 𝑂1, 𝑂2 ∈ R0.5 𝑊 ×0.5𝐻×0.5𝐶

are concatenated and passed through a final 3 × 3 convolutional layer 
to generate the output feature map 𝑌out ∈ R0.5 𝑊 ×0.5𝐻×𝐶1 , where 𝐶1
denotes the output channel dimension.

The overall computation process of the DEM can be expressed as: 
𝑌1, 𝑌2 = 𝑆𝑝𝑙𝑖𝑡(𝑋𝑖𝑛)
𝑂1 = 𝐶𝐵𝐴1×1(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑌1))
𝑂2 = 𝐶𝐵𝐴3×3(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑌2))
𝑌𝑜𝑢𝑡 = 𝐶𝐵𝐴3×3(𝐶𝑜𝑛𝑐𝑎𝑡[𝑂1, 𝑂2])

(1)

where 𝑌1 ∈ R𝑊 ×𝐻×0.5𝐶 and 𝑌2 ∈ R𝑊 ×𝐻×0.5𝐶 are the two parts separated 
from the input 𝑋𝑖𝑛. 𝑂1 ∈ R0.5 𝑊 ×0.5𝐻×0.5𝐶 and 𝑂2 ∈ R0.5 𝑊 ×0.5𝐻×0.5𝐶

are the outputs computed from the bottom and upper branches for 𝑌1
and 𝑌2, respectively. 𝑌out ∈ R0.5 𝑊 ×0.5𝐻×𝐶1 represents the final output 
feature of the DEM. CBA denotes a sequential module comprising a 
Convolutional layer, followed by Batch Normalization, and the ACLU 
activation function (See Section 3.6).
4 
Fig. 4. The architecture of the DEM module.

Fig. 5. The figure demonstrates that the DEM effectively mitigates feature 
degradation introduced by downsampling and improves the discriminative 
power of the extracted features. The arrow denotes the anomalous region.

Fig.  5 presents, from left to right, the input image, the feature map 
without DEM, and the feature map with DEM. Relative to the no-DEM 
case, the DEM-enabled features are more pronounced (second row) and 
exhibit improved representation quality (first row). In particular, in 
the first row, the model without DEM inadvertently highlights corner 
responses (marked by red box), whereas the model with DEM success-
fully suppresses these redundant features. The qualitative comparison 
indicates that DEM selectively enhances anomaly-relevant responses 
while suppressing spurious corner activations, thereby increasing the 
feature signal-to-noise ratio and improving representation quality and 
localization.
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Fig. 6. The architecture of the LDM module.

3.4. Lightweight downsampling module (LDM)

To reduce the computational cost of the model while further en-
hancing detection performance, we design a Lightweight Downsam-
pling Module (LDM) that operates in conjunction with the DEM to 
achieve a balance between computational cost and accuracy. As illus-
trated in Fig.  6, the LDM draws inspiration from multimodal feature 
fusion strategies, which aim to improve detection performance by 
capturing diverse and complementary information about the anomaly.

The input feature map 𝑋in ∈ R𝑊 ×𝐻×𝐶 is first split along the 
channel dimension into four equal parts: 𝑌0, 𝑌1, 𝑌2, and 𝑌3. Each part is 
processed through a distinct branch to extract complementary features. 
The two bottom branches (𝑌0 and 𝑌1) focus on spatial and contextual 
information using convolution layers, while the two upper branches (𝑌2
and 𝑌3) adopt the pooling strategies to capture high- and low-frequency 
features, respectively.

Specifically, 𝑌0 and 𝑌1 are each passed through a 3 × 3 convolution 
layer to retain detailed spatial features. 𝑌2 undergoes max-pooling 
followed by a 1 × 1 convolution to extract high-frequency information, 
whereas 𝑌3 is processed by average pooling and a 3 × 3 convolution 
to capture low-frequency context. The outputs from the four branches 
are then concatenated along the channel dimension to form the final 
output feature map 𝑌out.

The feature extraction process in the LDM is formally defined as: 
𝑌0, 𝑌1, 𝑌2, 𝑌3 = 𝑆𝑝𝑙𝑖𝑡(𝑋𝑖𝑛)
𝑂0 = 𝐶𝐵𝐴𝐷3×3(𝑌0)
𝑂1 = 𝐶𝐵𝐴3×3(𝑌1)
𝑂2 = 𝐶𝐵𝐴1×1(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑌2))
𝑂3 = 𝐶𝐵𝐴3×3(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑌3))
𝑌out = 𝐶𝑜𝑛𝑐𝑎𝑡[𝑂0, 𝑂1, 𝑂2, 𝑂3]

(2)

where 𝑌0, 𝑌1, 𝑌2 and 𝑌3 ∈ R𝑊 ×𝐻×0.25𝐶 are the four parts separated from 
the input 𝑋𝑖𝑛. 𝑂0, 𝑂1, 𝑂2 and 𝑂3 ∈ R0.5 𝑊 ×0.5𝐻×0.25𝐶 represents the 
features from different branches. 𝑌out ∈ R0.5 𝑊 ×0.5𝐻×𝐶 represents the 
final output feature of the LDM. CBAD denotes a dilated convolution 
with a dilation rate of 3.

3.5. Aggregation network for feature fusion

As illustrated in Fig.  7, we propose an aggregation module de-
signed to integrate multi-scale features with enhanced contextual sen-
sitivity. The module consists of four parallel branches, each com-
prising a concatenation operation followed by a Feature Aggrega-
tion Module (FAM). The notation within the concatenation function 
(e.g., Concat[P6]) refers to the specific feature level (e.g., 𝑃 6) from the 
backbone network to which the operation is linked. This configuration 
facilitates hierarchical feature fusion, allowing the model to capture 
anomaly of varying scales and complexities effectively.
5 
Fig. 7. The graph of the aggregation neck, ‘‘Up’’ and ‘‘L13’’ denote the 
upsampling operation and the 13th layer of the neural network, respectively.

The Feature Aggregation Module (FAM) contains four stacked CBA 
blocks (Convolution + BatchNorm + ACLU Function) and two AConv 
layers, which employ the proposed ACLU activation function. Incor-
porating additive pathways in deeper layers mitigates the vanishing 
gradient effect and strengthens feature representation.

The AConv module, depicted as the gray blocks in Fig.  7, is com-
posed of two convolutional layers activated by the ACLU function, 
followed by a concatenation operation, a reshape layer, and a channel 
permutation step. To address feature degradation caused by sequential 
downsampling and convolutional operations, two feature maps are 
merged early within the AConv block. This early fusion helps retain 
richer feature information before further transformations.

The subsequent operations are designed to restructure the fea-
ture channels and promote cross-channel interaction, thus maintaining 
strong feature representation while controlling the parameter complex-
ity (space complexity).

After the first reshape operation, the intermediate tensor shape 
becomes 𝑏1 = 𝑏 × 𝑐

2 . The following ‘permute‘ operation swaps the 
first and second channel dimensions. Assuming that the input to the 
second reshape operation is denoted as 𝐹 ∈ R2×𝑏1×ℎ×𝑤, the associated 
computation steps can be formally defined as: 
𝑦 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(2, 𝑡, 𝑐, ℎ,𝑤)
𝐹𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒(𝑦[0], 𝑦[1])

(3)

where 𝐹𝑜𝑢𝑡 denotes the final output of AConv. The parameter t can be 
derived from the other parameters (c, h, w). Similarly, Fig.  8 (third 
column) indicates that the aggregation neck improves the quality of fea-
ture representations, yielding clearer and more discriminative anomaly 
feature responses.

3.6. Design of the ACLU activation function

In deep neural networks (DNNs) comprising multiple nonlinear 
hidden layers, an input vector 𝑥in ∈ R𝑑 undergoes a series of non-
linear transformations across successive layers. This process can be 
mathematically formulated as: 
𝛽0 = 𝑥in,
ℎ𝑖+1𝑎 =

∑𝑀 𝑙

𝑏=1 𝜔
𝑖
𝑎𝑏 ⋅ 𝛽

0 + 𝛼𝑖𝑎,
𝛽𝑖+1𝑎 = 𝜙(ℎ𝑖+1𝑎 ),

(4)

where 𝛽 denotes the activation at a given layer, ℎ𝑖𝑎 is the pre-activation 
output, 𝜔𝑖

𝑎𝑏 and 𝛼𝑖𝑎 represent the weight and bias parameters respec-
tively, and 𝑀 𝑙 is the number of units in the 𝑖th hidden layer. The 
function 𝜙(𝑥) is the activation function applied to each layer’s output.
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Fig. 8. The figure demonstrates that the aggregation network enables more 
focused representation of target features, thus improving feature saliency.

Designing flexible and efficient activation functions remains a key 
challenge in deep network training, since conventional functions such 
as Sigmoid and Tanh are prone to saturation, where the derivative 
approaches zero as 𝑥 → ±∞, resulting in the vanishing gradient 
and hindered convergence. Although the ReLU function, defined as 
𝜙(𝑥) = max(0, 𝑥), mitigates this issue, it introduces gradient spar-
sity for negative inputs and the ‘‘dying neuron’’ phenomenon. Despite 
its widespread adoption, the SiLU activation function exhibits limita-
tions in convergence stability and nonlinear representational capacity, 
potentially hindering reliable and efficient learning in safety-critical 
applications.

To address these limitations, we propose a parameterized monotonic 
activation function, termed ACLU (Adjustable Activation Linear Unit). 
As illustrated in Fig.  9(a) and (b), ACLU preserves the unbounded be-
havior on the positive side, similar to the SiLU function, which is widely 
adopted in recent deep learning architectures such as YOLO [28–30]. 
The proposed activation function is formally defined as: 
𝜙(𝑥) = 𝑎 ⋅ 𝑥 ⋅ arctan(𝑒𝑏𝑥), (5)

where 𝑎 and 𝑏 are learnable or manually-tuned scaling parameters that 
control the contour of the activation curve.

The ACLU function is designed to balance nonlinear representation 
capability and gradient stability, both of which are essential for reliable 
learning in safety-critical systems. Its construction is motivated by the 
following considerations:

• Gradient flow: The linear term 𝑥 ensures effective gradient prop-
agation, particularly for large positive inputs, thereby mitigating 
vanishing gradient issues typically encountered with saturated 
activation functions.

• Nonlinear flexibility: The arctan(𝑒𝑏𝑥) term introduces a smooth, 
bounded nonlinearity that is both monotonic and gradually in-
creasing, facilitating robust convergence.

• Parametric adaptability: The parameters 𝑎 and 𝑏 enable dynamic 
adjustment of the function’s shape, allowing it to adapt to differ-
ent data distributions and training conditions, thereby improving 
generalization.

As shown in Fig.  9(a), varying the parameters 𝑎 and 𝑏 modifies 
the activation curve: the parameter 𝑎 adjusts vertical scaling (affecting 
upper/lower bounds), while 𝑏 controls the curvature intensity around 
the origin. Notably, larger values of 𝑏 tend to flatten the central portion 
of the curve. In the following, we analyze commonly used activation 
functions, including LogSigmoid and SiLU, as well as more recent 
ones such as NELU, Bi-SiLU, and TinyReLU. These functions can be 
formulated as follows: 
LogSigmoid(𝑥) = log

( 1 )

(6)

1 + 𝑒−𝑥
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SiLU(𝑥) = 𝑥
1 + 𝑒−𝑥

(7)

NELU(𝑥) =
⎧

⎪

⎨

⎪

⎩

𝑥, 𝑥 > 0,
−0.2
1 + 𝑥2

, 𝑥 ≤ 0,
(8)

Bi-SiLU(𝑥) = 𝑥 ⋅ 𝜎(𝑥) − 0.835 (9)

TinyReLU(𝑥) =
{

𝑥 − 𝑒−𝑥 + 1, 𝑥 ≥ 0,
2 (𝑒𝑥 − 1), 𝑥 < 0,

(10)

ACLU vs. LogSigmoid in Fig.  9(b): LogSigmoid is strictly non-
positive and saturates to 0− as 𝑥 → +∞, producing vanishing gradients 
on the positive tail and a persistent negative output bias, which is 
undesirable as a primary activation in regression/detection heads. By 
contrast, the ACLU is zero-crossing and smooth; it retains a linear 
positive tail with a tunable slope and applies soft suppression (rather 
than hard saturation) on the negative side, which improves gradient 
flow and reduces bias.

ACLU vs. SiLU and TinyReLU in Fig.  9(c): SiLU(𝑥) = 𝑥 𝜎(𝑥)
is smooth with a fixed shape: it softly suppresses negatives and is 
asymptotically linear for positives, but its curvature and slope are 
not tunable, which can limit convergence control in very deep stacks. 
TinyReLU strengthens near-zero responses and imposes a hard negative 
plateau (and a derivative jump at 𝑥 = 0), which may amplify aliasing or 
optimization instability. ACLU preserves smoothness and linear positive 
behavior while providing two degrees of freedom (𝑎, 𝑏) to shape cur-
vature and gradient magnitude; it also avoids TinyReLU’s non-smooth 
kink and hard negative saturation, yielding cleaner gradients and more 
stable training.

ACLU vs. NELU and Bi-SiLU in Fig.  9(d): NELU is piecewise (linear 
for 𝑥 > 0, rational for 𝑥 ≤ 0) with a fixed positive slope; Bi-SiLU 
introduces an offset that shifts the response but leaves the positive-
side slope essentially fixed. Both offer limited control over curvature 
and gradient scaling. ACLU, instead, lets one (i) match or exceed a 
ReLU/SiLU-like positive slope by setting 𝑎 ≈ 2∕𝜋 (or larger if needed) 
and (ii) tune the negative soft-saturation via 𝑏, improving robustness to 
background noise while maintaining recoverable gradients.

Stability and convergence: As shown in Fig.  10, we report the 
validation accuracy and loss trajectories for ACLU, LogSigmoid, SiLU, 
NELU, Bi-SiLU, and TinyReLU. The ACLU consistently achieves higher 
accuracy across epochs while maintaining lower validation loss, in-
dicating superior stability and more reliable convergence. Notably, 
Bi-SiLU exhibits an abrupt accuracy collapse around epoch 400, ac-
companied by a sharp increase in loss, revealing a sudden training 
instability that leads to pronounced degradation in performance.

3.7. Loss function

Our methodology employs two distinct loss functions: (i) Classifi-
cation Loss, which assesses the accuracy of the predicted class for the 
detected object, and (ii) Regression Loss , which evaluates the precision 
of the predicted bounding box coordinates relative to the ground truth 
object position.

3.7.1. Classification loss
As outlined in Eq.  (11), the classification loss is computed using the 

binary cross-entropy method: 
𝐿𝑐𝑙𝑠 = −𝑔 log(𝜎(𝑝)) + (1 − 𝑔) log(1 − 𝜎(𝑝)),
𝜎(𝑝) = 1

1+𝑒𝑝 .
(11)

where 𝑔 and 𝑝 denote the ground truth and predicted class probabilities, 
respectively.
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Fig. 9. The plots of the functions. (a) Graphs of the ACLU function for different values of 𝑎 and 𝑏. (b) Plots of the ACLU and LogSigmoid functions, including 
their first and second derivatives. (c) Plots of the SiLU and TinyReLU functions, along with their first and second derivatives. (d) Plots of the NELU and BSiLU 
functions, including their first and second derivatives.
Fig. 10. The left plot illustrates the progression of accuracy, while the right 
plot shows the corresponding loss. The inset plots can provide a clearer view 
of the differences in convergence behavior during the training phase.

Table 1
Detailed configuration of our method for training.
 Hyperparameter Value Hyperparameter Value 
 Epochs 500 DFL loss gain 1.5  
 Optimizer auto HSV hue augmentation 0.015 
 lr0 0.01 HSV saturation augmentation 0.7  
 lrf 0.02 HSV value augmentation 0.4  
 lr decay Linear Translation augmentation 0.1  
 Momentum 0.937 Scale augmentation 0.5  
 Weight decay 0.0005 Mosaic augmentation 1.0  
 Warmup epochs 3.0 Mixup augmentation 0.0  
 Warmup momentum 0.8 Paste augmentation 0.0  
 Warm up bias learning rate 0.1 Close mosaic epochs 10  
 Box loss gain 7.5 Hypergraph threshold 6  
 Class loss gain 0.5 Seed 0  
 Pretrained False Erasing 0.4  
 Crop fraction 1.0 Copy paste mode Flip  

3.7.2. Regression loss
The regression loss comprises two components: 𝐿𝐷𝐹𝐿 and 𝐿𝑖𝑜𝑢. 

The term 𝐿𝐷𝐹𝐿 enhances the model’s generalization capability and is 
formulated as: 
𝐿𝐷𝐹𝐿 = −((𝑦𝑖+1 − 𝑦) log(𝑠𝑖) + (𝑦 − 𝑦𝑖) log(𝑠𝑖+1)),
𝑠𝑖 =

𝑦𝑖+1−𝑦
𝑦𝑖+1−𝑦𝑖

,
𝑠𝑖+1 =

𝑦−𝑦𝑖
𝑦𝑖+1−𝑦𝑖

,
(12)

where 𝑦𝑖 and 𝑦𝑖+1 represent the discrete values bounding the ground 
truth 𝑦, and 𝑠𝑖 and 𝑠𝑖+1 are the corresponding softmax-normalized 
probabilities.

The regression loss is further defined as: 
𝐿𝑐𝑖𝑜𝑢 = 1 − 𝐼𝑂𝑈 + 𝐷𝑖𝑠2(𝑏,𝑏̂)

𝑐2
+ 𝜌𝑘,

𝐼𝑂𝑈 = |𝐵∩𝐵̂|
|𝐵∪𝐵̂|

,

𝜌 = 𝑘
(1−𝐼𝑂𝑈 )+𝑘 ,

𝑘 = 4
(

arctan 𝜔̂ − arctan 𝑤
)2

,

(13)
𝜋2 ℎ̂ ℎ
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In this formulation, 𝐵̂ = (𝑥̂, 𝑦̂, 𝜔̂, ℎ̂) represents the ground truth bound-
ing box coordinates, while 𝐵 = (𝑥, 𝑦, 𝜔, ℎ) corresponds to the predicted 
bounding box. The variables 𝑏 and 𝑏̂ denote the centers of 𝐵 and 
𝐵̂, respectively. The function 𝐷𝑖𝑠(⋅) computes the Euclidean distance 
between these two centers, and 𝑐 represents the diagonal length of the 
smallest enclosing box that contains both 𝐵 and 𝐵̂.

The total loss is a weighted combination of the classification and 
regression losses, expressed as: 
𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 0.5𝐿𝑐𝑙𝑠 + 1.5𝐿𝑑𝑓𝑙 + 7.5𝐿𝑖𝑜𝑢. (14)

This formulation ensures a balanced optimization of both classification 
accuracy and bounding box localization precision during training.

4. Experiment

4.1. Experimental setup

4.1.1. Implementation details
All experiments are conducted using a combination of 1 GPU of 

type GTX 3090 and 2 GPUs of type GTX 4090D. The working environ-
ment is configured with PyTorch 1.8.1 and Python 3.9 on an Ubuntu 
20.04 operating system. Automatic Mixed Precision (AMP) training 
is employed to enhance computational efficiency. During the training 
process, Mosaic data augmentation is applied to improve the robustness 
and generalization of the model. Detailed hyperparameter settings are 
provided in Table  1. Under the ‘‘auto’’ setting, the optimizer is selected 
by the expected training steps: SGD for more than 10,000 iterations and 
Adam otherwise.

4.1.2. Datasets
To demonstrate the generalization performance of DEANet, we 

evaluate the proposed framework on three challenging datasets: CU-
BIT [48], SSGD [49], and NEU-DET [50]. CUBIT [48] is a drone- 
and robot-collected anomaly dataset containing high-resolution images 
(8000 × 6000 and 4624 × 3472). To ensure resolution consistency, we 
excluded the few 8000 × 6000 images (primarily depicting cracks), 
which had minimal impact on the dataset’s overall composition. The 
dataset includes cracks, spalling, and moisture in an approximate ratio 
of 25∶5∶1, resulting in a diverse range of crack samples but relatively 
few moisture examples, thereby limiting the model’s ability to fully 
learn moisture-related features.

4.2. Comparison with prior works

CUBIT. A total of 20 state-of-the-art methods were trained for com-
parative analysis. As shown in Table  2, the quantitative results demon-
strate significant improvements in both detection accuracy and compu-
tational cost (BFLOPs). Our method achieves the highest (mAP0.5∶0.95) 
of 56.2%, while requiring only 2.8 million parameters and 16.6 BFLOPs 
of computation cost. 



X. Zhou et al. Advanced Engineering Informatics 69 (2026) 103891 
Table 2
Quantitative benchmarking results on CUBIT.
 Model Backbone mAP𝑎𝑙𝑙 (%)↑ mAP𝑐𝑟𝑎𝑐𝑘 (%)↑ mAP𝑠𝑝𝑎𝑙𝑙𝑖𝑛𝑔 (%)↑ mAP𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%)↑ Parameters (M)↓ FLOPs (B)↓
 – – mAP0.5 mAP0.5∶0.95 mAP0.5 mAP0.5∶0.95 mAP0.5 mAP0.5∶0.95 mAP0.5 mAP0.5∶0.95 – –  
 Faster R-CNN [31] ResNet50 69.4 41.7 68.4 37.8 83.9 53.8 55.9 33.5 41.8 220.2  
 YOLOv6-n [32] RepBlock 76.5 49.8 77.8 48.4 87.3 60.8 57.6 31.7 5.2 29.0  
 PVT-FPN [33] PVT-t 63.5 34.3 53.2 24.5 79.0 48.0 58.4 30.5 23.0 225.4  
 YOLOv7 [34] ELAN-Net 77.2 49.7 80.8 49.0 87.6 59.8 63.0 40.3 39.3 264.3  
 RetinaNet [35] ResNet18 58.5 30.4 51.1 23.8 73.0 41.4 51.4 26.0 21.4 197.9  
 Casecade R-CNN [36] ResNet50 67.4 39.6 63.0 34.2 81.0 51.2 58.2 33.4 69.4 256.9  
 RT-DETR-l [37] HGNetv2 78.4 48.9 77.8 45.5 85.7 60.7 71.8 40.6 34.7 264.7  
 RT-DETR-x [37] HGNetv2 79.2 49.9 79.2 46.5 86.0 60.6 72.4 42.7 71.0 569.6  
 RT-DETR-ResNet50 [37] ResNet50 71.9 45.8 73.6 40.7 86.6 60.2 55.4 36.5 41.9 321.5  
 RT-DETR-ResNet101 [37] ResNet101 73.0 46.1 73.8 42.0 89.1 61.3 41.7 35.2 60.9 476.7  
 YOLOv9-s [38] GELAN 79.2 49.9 79.2 46.5 86.0 60.6 72.4 42.7 7.1 68.4  
 FCOS [39] ResNet50 58.7 31.8 53.8 25.7 70.4 41.8 52.0 27.8 32.3 209.7  
 EfficientDet [40] Effficientb3 12.4 5.3 22.7 9.5 8 3.7 6.6 2.6 20.0 178.3  
 YOLOv10 [29] CSPNet 79.5 53.3 81.4 52.9 90.6 64.8 66.5 42.3 16.5 151.3  
 D-FINE [41] HGNetv2 73.0 48.8 – – – – – – 4.0 17.9  
 Hyper-YOLO [42] – 78.8 51.5 81.5 50.7 88.7 61.5 66.3 42.3 3.0 22.8  
 LSM-YOLO [43] – 76.2 49.3 74.7 44.9 89.5 61.6 64.3 41.5 2.9 32.3  
 FCM [44] – 70.8 42.9 72.0 40.0 84.1 53.5 56.2 35.1 2.9 58.6  
 MHAF-YOLO [45] – 80.2 54.4 83.6 54.1 88.3 64.7 68.7 44.4 7.4 68.4  
 DCAS [46] – 72.4 44.6 73.3 41.8 84.3 54.7 59.4 37.3 4.1 85.5  
 DEANet (Ours) – 80.7 56.2 83.5 54.7 91.5 67.8 67.9 46.0 2.8 16.6  
 DEANet-s (Ours) – 81.4 56.1 82.5 54.4 91.9 67.2 69.8 46.7 2.8 16.6  
The parameters of activation function in DEANet are 𝑎 = 0.6 and 𝑏 = 0.42. DEANet-s refers to the method of utilizing SDIOU [47] for bounding box regression.
↑ (↓) indicates that larger (smaller) values lead to better (worse) performance.
Fig. 11. Our method is compared qualitatively with the new methods, LSM-YOLO and MAHF-YOLO. Our method exhibits fewer missed detections and more 
accurate localization (third row), even under low-light conditions (fourth and sixth columns). Please zoom in for the best view.
Compared to the LSM-YOLO model, our approach reduces computa-
tional cost by 48.6% and simultaneously improves accuracy by 14.0%. 
Relative to accurate MHAF-YOLO, our DEANet still achieves a 75.7% 
reduction in computational cost and a 62.2% reduction in parameter 
count, along with a noticeable performance gain. These results under-
score the proposed method’s ability to achieve a favorable trade-off 
between accuracy and resource consumption, making it particularly 
suitable for deployment in resource-constrained settings.

Fig.  11 provides visual comparisons of detection outputs from our 
method, LSM-YOLO, and MHAF-YOLO. As shown, our model consis-
tently yields higher confidence scores and fewer missed detections, in-
dicating enhanced robustness and reliability in practical scenarios. No-
tably, our method continues to perform well under low-light conditions, 
as illustrated in the fourth and sixth columns.

Furthermore, Fig.  1 illustrates the superior trade-off achieved by our 
method with respect to both computational cost and detection accu-
racy, as well as parameter count and overall performance. Collectively, 
these results confirm the effectiveness and practicality of the proposed 
approach for real-world, deep learning-based anomaly detection tasks, 
particularly in domains where computational resources are limited.
8 
We further evaluated the few-shot learning capability of the pro-
posed method, as illustrated in Fig.  12. The left plot shows that our ap-
proach achieves accuracy comparable to PVT-FPN while substantially 
reducing resource demands, requiring 70% fewer training samples, 
87.8% fewer parameters, and 92.6% less computational cost. Compared 
with recent state-of-the-art methods such as Hyper-YOLO and D-FINE, 
it further reduces the required training data by 20%, confirming its 
robustness in data-scarce settings.

The right panel of Fig.  12 also presents accuracy trends across 
three anomaly categories under varying training sample ratios. Notably, 
for the moisture category (which includes relatively few training in-
stances), the rate of accuracy improvement plateaus once the training 
data exceeds 30%. In some cases (70 vs. 60; 40 vs. 30), performance 
with limited data even surpasses that achieved using the larger dataset, 
indicating that the method effectively leverages contextual information 
to improve detection accuracy in low-data scenarios.

While the method performs robustly under most configurations, 
the results also suggest that extremely limited data may constrain the 
capacity of direct feature extraction; for example, when only 10% of 
the training data are used, the detection accuracy for Moisture drops 
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Table 3
Quantitative benchmarking results on SSGD.
 Method Parameters (M)↓ FLOPs (B)↓ FPS↑ mAP1 (%)↑ mAP2 (%)↑ 
 Faster R-CNN [31] 41.2 303.8 26.2 19.3 41.5  
 Casecade R-CNN [36] 68.9 331.6 21.7 20.9 42.3  
 RetinaNet [35] 36.2 311.2 25.0 16.4 37.5  
 FCOS [39] 31.9 296.2 28.1 19.4 41.9  
 ATSS [51] 31.9 303.3 24.2 22.3 46.1  
 GFL [52] 32.1 307.9 25.0 19.6 43.2  
 YOLOv5-m [27] 19.9 266.7 59.5 16.2 38.9  
 YOLOX-m [53] 48.3 405.1 36.9 13.4 36.2  
 YOLOv8-m [28] 27.4 432.3 71.8 21.7 46.2  
 Swin-T [54] 44.8 308.2 18.1 19.2 42.6  
 PVT-S [33] 78.4 281.3 12.3 16.0 36.7  
 ScalableViT-S [55] 43.3 297.7 10.9 21.2 46.4  
 UniFormer-Sh14ℎ14 [56] 38.2 276.4 15.8 18.9 45.0  
 YOLOv9-t [38] 3.3 60.4 111.1 22.2 45.5  
 YOLOv10 [29] 16.5 351.6 50.3 10.3 29.8  
 LSM-YOLO [43] 2.9 69.2 142.9 16.6 38.6  
 FCM [44] 2.9 125.8 149.0 17.5 40.3  
 MHAF-YOLO [45] 7.4 146.7 52.4 13.8 32.1  
 DCAS [46] 4.1 183.5 147.0 14.3 32.9  
 DEANet(1, 0.7) 2.8 37.7 153.9 24.9 52.0  
 DEANet(1, 0.5) 2.8 37.7 153.9 21.9 56.2  
mAP1 and mAP2 represent mAP0.5∶0.95 and mAP0.5, respectively. The parameters in parentheses represent the values of 𝑎 and 𝑏 in the ACLU.
Fig. 12. Left: Comparison of accuracy performance under different sample 
proportions during training. Right: Accuracy variation of different target types 
under different training sample proportions. Please zoom in for the best view.

Fig. 13. Comparison of balanced performance across five evaluation metrics. 
The closer a point is to the direction indicated by the arrow, the better 
the corresponding metric. For example, for mAP0.5, the arrow points inward, 
indicating that higher values (closer to the center) are better. In contrast, for 
the parameter count, the arrow points outward, indicating that lower values 
(those farther from the center) are preferred.

to nearly zero. These findings highlight the complementary roles of ex-
plicit visual features and context-aware modeling in few-shot anomaly 
detection, offering insights for further optimization under severe data 
constraints.
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Overall, the results highlight the proposed method’s robustness and 
training data efficiency in few-shot learning scenarios, particularly in 
real-world settings where annotated data is limited or expensive to 
obtain.

SSGD. Similarly, as shown in Table  3, the proposed method consis-
tently outperforms competing approaches across five evaluation met-
rics. In the table, the upper block (above the YOLOv9-t demarcation) 
reports results from the original paper [49], whereas the remaining en-
tries correspond to our own training. Compared with YOLOv9-t, which 
has a comparable parameter count, our method achieves higher accu-
racy (24.9 vs. 22.2), faster inference speed (153.9 vs. 111.1 FPS), and 
significantly lower computational cost (37.7 vs. 60.4 BFLOPs). When 
compared to the state-of-the-art YOLOv10, our method reduces param-
eter size by 83% and computational load by 89.3%, while nearly dou-
bling accuracy and delivering a substantial improvement in inference 
speed.

In addition, our method outperforms the recently proposed LSM-
YOLO and DCAS, achieving higher accuracy with significantly lower 
computational requirements. Compared to MHAF-YOLO, it reduces the 
number of parameters by 62.2% and the computational load by 74.3%, 
while nearly tripling the inference speed and doubling the accuracy.

Fig.  13 further visualizes the performance distribution using a radar 
chart across five evaluation dimensions, normalized to a common scale 
(0–450). For reference, YOLOv8-m exhibits the highest computational 
cost in Table  3, with 432.3 BFLOPs.

These results collectively demonstrate that our method achieves 
a highly favorable balance between detection accuracy, speed, and 
resource efficiency. This trade-off is fundamental in real-world ap-
plications, where computational constraints and performance require-
ments often conflict. By significantly reducing resource consumption 
while maintaining or improving performance, the proposed approach 
offers a scalable and deployable solution for anomaly detection in 
resource-constrained environments.

Finally, the detection visualizations in Fig.  14 further validate the 
practical effectiveness and robustness of our method across diverse 
anomaly types and scenes.

NEU-Det. For subsequent training, we selected new models that 
achieved favorable performance on the first two datasets while main-
taining low computational requirements. For our comparative analysis 
in Table  4, we selected Hyper-YOLO, a state-of-the-art method, which 
utilizes hypergraph convolutions as its feature extraction module. Our 
proposed approach, DEANet, achieves superior accuracy while reducing 
the parameter count by 7% compared to Hyper-YOLO.
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Fig. 14. The detection visualization on the SSGD dataset shows that, although the defects in SSGD are relatively small, our method is still able to detect them 
successfully.
Table 4
Quantitative benchmarking results on NEU-Det.
 Method mAP0.5 Crazing Inclusion Rolled Scratches Pathes Pitted 
 RetinaNet [35] 68.0 43.7 76.2 58.1 76.0 74.3 79.6  
 LSM-YOLO [43] 73.2 39.3 79.9 56.5 91.6 91.7 80.6  
 Hyper-YOLO [42] 74.9 40.7 82.8 59.3 92.8 91.9 81.6  
 FCM [44] 72.9 46.2 77.2 52.3 91.7 91.0 78.8  
 MHAF-YOLO [45] 71.1 39.0 75.7 51.5 89.4 89.0 82.2  
 DCAS [46] 71.6 40.4 79.2 51.2 91.2 91.0 77.3  
 DEANet 76.5 45.0 84.4 59.9 94.8 92.7 82.4  
The bold values represent the experimental results from the proposed method.

Fig. 15. This figure illustrates that our method effectively isolates and extracts 
salient target features while disregarding redundant or non-informative fea-
tures. Additionally, our method exhibits a larger receptive field in the feature 
extraction phase when detecting moisture.

4.3. Ablation study and discussion

To assess the individual contributions of the proposed compo-
nents, we conduct comprehensive ablation experiments on the CUBIT 
dataset. All evaluations are performed with a fixed input resolution 
of 1024 × 1024 during the inference phase. We adopt YOLOv11, a 
widely used single-stage object detection model, as the baseline for 
comparison.

As shown in Table  5, each proposed module, namely anomaly 
detection and scale estimation, contributes to a notable improvement 
in detection accuracy. Integrating the two modules yields a substan-
tial performance gain, underscoring the effectiveness of our approach 
in addressing the challenges associated with anomaly variability and 
multiscale object representation.

These results highlight the crucial role of each component in achiev-
ing state-of-the-art accuracy while maintaining computational effi-
ciency. Furthermore, Fig.  15 visually confirms the superiority of our 
10 
method over the baseline, with enhanced feature extraction and more 
accurate anomaly localization.

4.3.1. Benefits of aggregation neck
The Aggregation Neck is designed to integrate multi-scale features 

and enhance the visibility of features more effectively (See Fig.  8), 
thereby improving the model’s representational capacity while main-
taining computational efficiency. As shown in Table  5, this module 
leads to a nearly 3% improvement in the mAP0.5∶0.95 metric, indicating 
superior performance under stringent evaluation criteria.

In addition to improved detection accuracy, the Aggregation Neck 
reduces the parameter count and computational cost by 19% and 11%, 
respectively. These results demonstrate that the proposed aggregation 
neck enhances multi-scale feature fusion and significantly improves 
model efficiency, making it particularly suitable for deployment in 
resource-constrained environments.

4.3.2. Benefits of CFM
As shown in Table  5, integrating the proposed CFM leads to im-

provements of 1.3 and 0.2 percentage points in mAP0.5 and mAP0.5∶0.95, 
respectively, compared to the baseline integrated aggregation neck. The 
CFM employs a dual-branch convolutional structure to separately ex-
tract anomaly features and environmental context information, thereby 
enabling a more robust feature representation.

While this design introduces a modest increase in parameters and 
computational cost, it significantly enhances contextual awareness, 
particularly benefiting anomaly types that are closely associated with 
environmental factors. For instance, moisture often occurs under humid 
conditions and exhibits spatial correlation with surrounding textures. 
Expanding the receptive field through CFM enables the model to cap-
ture contextual cues better, thereby improving localization accuracy.

Table  6 further highlights this advantage: the detection performance 
for cracks and spalling remains stable, while the mAP0.5 and mAP0.5∶0.95
for moisture improve by 6.0% (i.e., (73.4−69.6)∕69.6×100%) and 1.1%, 
respectively, with the integration of the CFM module. These results 
validate the effectiveness of CFM in enhancing detection performance 
under context-dependent scenarios.

Fig.  16 qualitatively compares detection results with and without 
the CFM module under simple (top two rows) and complex (bottom 
two rows) backgrounds. The results with CFM (second and fourth rows) 
exhibit fewer missed detections and higher confidence, demonstrating 
the performance gain of the proposed module.

4.3.3. Benefits of DEM
The DEM is designed to simultaneously preserve high-frequency and 

low-frequency information during the downsampling process, thereby 
mitigating the performance degradation typically caused by informa-
tion loss. In addition, the DEM can enhance feature discriminability 
by suppressing redundant features (See Fig.  5). This enriched feature 
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Table 5
Effects of various components on performance.
 Components Ablation study
 Aggregation neck ✓ ✓ ✓ ✓ ✓  
 CFM ✓ ✓ ✓ ✓  
 DEM ✓ ✓ ✓  
 LDM ✓ ✓  
 ACLU ✓  
 mAP1/mAP2 (%) 53.4/80.3 55.0/80.0 55.2/81.6 55.6/80.1 56.0/80.5 56.2/80.7  
 Improvement – +1.6/−0.3 +1.8/+1.3 +2.2/−0.2 +2.6/+0.2 +2.8/+0.4 
 Parameters (M) 2.62 2.12 2.32 2.80 2.76 2.76  
 Improvement – −0.5 −0.3 +0.18 +0.14 +0.14  
 FLOPs (B) 6.6 5.9 6.4 7.0 6.5 6.5  
 Improvement – −0.7 −0.2 +0.4 −0.1 −0.1  
The ✓denotes that the module is integrated into this ablation study.
The improvement is measured relative to the baseline.
Table 6
Ablation study on CFM.
 Method mAP𝑎𝑙𝑙 (%)↑ mAP𝑐𝑟𝑎𝑐𝑘 (%)↑ mAP𝑠𝑝𝑎𝑙𝑙𝑖𝑛𝑔 (%)↑ mAP𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%)↑
 – mAP2 mAP1 mAP2 mAP1 mAP2 mAP1 mAP2 mAP1  
 w/o CFM 80.0 55.0 81.7 53.1 88.8 65.9 69.6 45.9  
 w/ CFM 81.6 55.2 81.6 53.1 89.9 65.9 73.4 46.5  
 
 
 
 

 

 
 
 
 

 

 
 
 
 

 
 
 

Fig. 16. This figure demonstrates that the proposed CFM module consistently
enhances detection performance across both simple and complex backgrounds.
The first two rows depict simple backgrounds, and the last two rows depict
complex backgrounds, with the second and fourth rows presenting the results
obtained after integrating the CFM module.

representation contributes to improved detection accuracy, particularly
in object localization.

As shown in Table  5, the introduction of DEM leads to an increase in
localization performance from 55.2 to 55.6 mAP0.5∶0.95. Despite adding
only a marginal number of parameters and minimal computational
overhead, DEM demonstrates its effectiveness as a lightweight and
efficient enhancement to the detection framework.

4.3.4. Benefits of LDM
To further optimize DEANet, we introduce an LDM that operates

in conjunction with the DEM. The LDM is designed to capture multi-
level features of the anomaly by integrating shallow and deep semantic
information. Given that both low-level and high-level features may
be incomplete when extracted in isolation, the LDM is strategically
placed at intermediate stages to enhance representation through joint
utilization with DEM.

As shown in Table  5, the incorporation of the LDM leads to a
reduction of 0.04M parameters and 0.5 BFLOPs in computational cost,
while simultaneously improving detection accuracy from 55.6 to 56.0
in mAP0.5∶0.95. These results demonstrate that the LDM enhances perfor-
mance and contributes to a more computationally efficient architecture.
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Table 7
Ablation study of LDM.
 Position mAP0.5∶0.95 (%)↑ mAP0.5 (%)↑ 
 1, 2 54.3 79.4  
 1, 2, 3 54.3 78.5  
 2, 3 55.0 80.4  
 1 56.0 80.5  

We also conduct experiments by replacing different DEM modules 
with the LDM. Before integrating the LDM, the DEM exists in the P4 
and P6 stages, as shown in Fig.  2. Since P6 and P7 are repeated twice, 
the DEM appears at three positions. These positions are labeled from 
left to right as positions 1, 2, and 3. For example, the second row in 
Table  7 indicates that the LDM module exists at positions 1, 2, and 
3. The last row of experimental results demonstrates that applying the 
LDM at the first position, which corresponds to the intermediate stage 
of feature extraction, leads to a significant improvement in detection 
performance. Lower layers primarily capture edge and contour cues, 
whereas higher layers encode abstract semantics. Intermediate layers 
provide information-rich representations that integrate spatial detail 
with contextual cues, thereby enabling more multifaceted semantic 
modeling.

4.3.5. Benefits of ACLU
By tuning two specific parameters within ACLU, the function can 

effectively stimulate the nonlinear representational capabilities across 
diverse neural network architectures. As demonstrated in Table  5, 
ACLU enhances the model’s nonlinear representational power without 
increasing the number of parameters. The use of ACLU further improves 
the model’s mAP0.5∶0.95 performance by 2.8 percentage points. This also 
demonstrates that the proposed ACLU activation function outperforms 
SiLU in terms of accuracy.

Sensitivity analysis: We conduct a comprehensive sensitivity study 
of the ACLU’s parameters on CUBIT, SSGD, and NEU to assess their ro-
bustness and performance under both learnable and manually settings. 
Given that the parameter 𝑎 primarily controls the vertical amplitude 
of the ACLU curve, while 𝑏 governs its nonlinearity, our tuning experi-
ments focus on analyzing the sensitivity of activation performance with 
respect to 𝑏. The results are summarized in Table  8. Experimentally, 
optimal accuracy is attained for 𝑏 ∈ [0.3, 1.0].
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Table 8
Parameters sensitivity analysis on ACLU.
 𝑎 (CUBIT) learnable 0.8 1 1 1 1 1 1 1 1 0.6 1.2  
 𝑏 (CUBIT) Learnable 0.42 0.51 0.3 0.4 0.5 0.55 0.6 0.7 0.8 0.42 0.42 
 mAP0.5∶0.95 47.1 55.7 55.7 54.4 55.4 55.1 55.8 54.9 55.0 54.6 56.2 54.6 
 mAP0.5 73.8 80.5 81.0 79.6 80.1 80.4 81.2 80.4 81.2 79.8 80.7 81.5 
 𝑎 (SSGD) Learnable 0.8 1 1 1 1 1 0.6 1 1 1 1  
 𝑏 (SSGD) Learnable 0.5 0.75 0.65 0.4 0.5 0.6 0.42 0.7 0.8 0.9 1  
 mAP0.5∶0.95 20.1 20.7 24.5 20.3 22.3 21.9 19.0 22.9 24.9 18.6 21.0 21.3 
 mAP0.5 46.4 44.2 50.1 47.4 46.7 56.2 46.5 48.8 52.0 42.5 45.8 48.3 
 𝑎 (NEU) Learnable 1 1 1 1 1 1 1 1 1 1 2  
 𝑏 (NEU) Learnable 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0  
 mAP0.5∶0.95 43.9 42.0 43.9 44.1 44.4 43.3 43.8 44.1 44.5 44.0 43.8 44.7 
 mAP0.5 74.2 72.7 74.7 76.5 75.8 74.9 75.7 75.4 76.0 75.7 75.5 75.6 
This experiment is conducted to identify the optimal values for parameters 𝑎 and 𝑏.
Table 9
Activation function comparison.
 Activation function mAP0.5∶0.95 (%)↑ mAP0.5 (%)↑ Computational cost 
 Softplus 54.5 79.2 High  
 RReLU 53.2 78.8 Low  
 LeakyReLU [21] 53.7 79.2 Low  
 Tanh 48.7 73.3 High  
 PReLU [57] 53.9 80.8 Low  
 CELU [58] 53.3 78.4 Medium  
 LogSigmoid 54.2 78.8 High  
 TanhShrink 27.3 48.4 High  
 Hardtanh 47.4 73.7 Low  
 ELU [23] 53.3 78.4 Medium  
 SELU [24] 51.0 76.2 High  
 Sigmoid 48.3 73.4 High  
 Softsign [59] 40.7 64.1 Medium  
 Softshrink 41.7 65.4 Low  
 TinyReLU [9] 51.3 77.0 Medium  
 NELU [10] 52.9 78.3 low  
 BSiLU [10] 54.1 79.8 Medium  
 GeLU [8] 52.5 79.9 High  
 AGLU [7] 48.8 75.1 High  
 HardShrink 11.0 23.7 Low  
 ACLU (ours) 55.8 81.3 Medium  

We adopt a two-stage tuning protocol: first optimize 𝑏, which gov-
erns the degree of nonlinearity, and then adjust 𝑎 (typically fixed within 
{1, 2}), which scales the activation amplitude. This schedule improves 
numerical stability by reducing the likelihood of gradient explosion and 
enhancing the convergence properties. We observe that the learnable 
configuration attains lower accuracy than manual tuning, likely due to 
overfitting induced by the additional degrees of freedom introduced by 
the learnable parameters, which degrades generalization. In addition to 
the scalar self-learning reported in Table  8, we also conducted experi-
ments on channel-wise self-learning. The key distinction lies in the fact 
that, for channel-wise self-learning, each channel in a layer is assigned 
different parameters a and b. We observed that the performance of 
channel-wise self-learning is inferior to that of scalar self-learning. This 
is because channel-wise parameterization substantially increases the 
number of learnable parameters, leading to potential overfitting on 
limited data

Overall, we recommend a two-stage calibration of ACLU: first tune 
𝑏 (within 0–1), then adjust 𝑎 (typically 1–2). For rapid prototyping, a 
learnable activation paradigm can be adopted. Although the learnable 
variant underperforms the manually tuned configuration on the three 
datasets considered, we expect its advantages to emerge as the training 
data scale increases.

Activation performance comparison: Table  9 presents a com-
parative analysis between ACLU and 20 state-of-the-art activation 
functions. Across all results, ACLU consistently achieves higher accu-
racy. In particular, compared to the recently proposed AGLU function, 
ACLU improves mAP0.5 and mAP0.5∶0.95 by 8.3% and 6.3%, respec-
tively, demonstrating its enhanced nonlinear representational capacity 
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and stronger generalization for complex anomaly scenarios. Compared 
with TinyReLU, which is specifically designed for anomaly detection, 
our method achieves absolute gains of 5.6% in mAP0.5 and 8.8% in 
mAP0.5∶0.95.

In terms of computational complexity, ACLU exhibits moderate re-
source consumption, as defined in Table  10. Compared to PReLU [57], 
which achieves the highest accuracy among low-cost activation func-
tions, ACLU improves mAP0.5∶0.95 by 4.9%. Among activation functions 
with moderate complexity, CELU attains the highest baseline accu-
racy; however, ACLU surpasses it with an additional 4.7% gain in 
mAP0.5∶0.95. Similarly, Softplus, which achieves high accuracy among 
high-complexity activation functions, shows a 2.4% decline in
mAP0.5∶0.95 compared to ACLU. This further confirms the superiority 
of ACLU in activation performance.

Moreover, real-time inference evaluations confirm that ACLU main-
tains high-speed processing without introducing latency, reinforcing 
its suitability for deployment in time-critical and resource-constrained 
anomaly detection applications (See Section 4.4 for details).

4.4. Edge-computing device deployment evaluation

The effectiveness of the proposed detection method has been val-
idated using three publicly available datasets. To further assess its 
suitability for real-world deployment, DEANet was implemented on 
a memory-constrained edge-computing platform (Jetson Orin NX) to 
evaluate its practicality, portability, and lightweight design.

A total of 534 test images were used in the evaluation. The results 
show that DEANet achieves a real-time inference speed of 52.1 frames 
per second (FPS) on the edge-computing platform. As illustrated in 
Fig.  17, the model successfully detects anomalies with high confi-
dence, demonstrating its robustness and efficiency in resource-limited 
environments. These results further validate the model’s potential for 
deployment in industrial inspection scenarios requiring both speed and 
accuracy.

4.5. Robustness analysis: Paired t-Tests and CIs

We collected over 3700 challenging anomaly datasets under sunny 
weather and post-rainy sunny conditions. The dataset was split into 
10 disjoint, equally sized subsets for evaluation. The dataset will be 
publicly available for testing. For each subset, we evaluated three 
models (Ours, MHAF-YOLO, and DCAS) and obtained paired mAP0.5∶0.95
scores across subsets. We then ran two-sided paired Student’s 𝑡-tests 
comparing Ours with each baseline. We report the mean difference 
(𝛥, in percentage points), 𝑡-statistic, degrees of freedom (df = 9), two-
tailed 𝑝-value, 95% confidence interval (CI) for 𝛥, and Cohen’s 𝑑𝑧 (effect 
size for paired designs). To control for two pairwise comparisons, we 
additionally applied a Bonferroni correction (𝛼).

Descriptively, Ours achieved 36.81 ± 1.53 mAP, versus 35.09 ± 2.55
for MHAF-YOLO and 33.65 ± 2.27 for DCAS (mean ± Standard Devi-
ation (SD) across 10 subsets). Paired 𝑡-tests showed that Ours signifi-
cantly outperformed both baselines: 
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Fig. 17. The detection results on the edge computing device demonstrate that our method can identify anomaly with high confidence.
Table 10
Definition of computational cost levels for activation functions.
 Cost level Description Typical operations Examples Remarks  
 Low Involves only basic arithmetic or 

thresholding operations; highly 
parallelizable on GPU

Addition, multiplication, 
max, ReLU-like gating

LeakyReLU, PReLU, 
Hardtanh, RReLU

HardShrink also belongs here. 
Efficient single-kernel implementation 
with minimal overhead.

 

 Medium Contains one lightweight nonlinear 
operation; moderately efficient

Single exp, log, or arctan ACLU (ours), CELU, ELU, 
Softsign

Moderate runtime. Costlier than 
ReLU, but suitable for real-time 
inference.

 

 High Includes multiple complex functions 
or hard-to-fuse nonlinearities

exp+ log, tanh, erf, division Sigmoid, GeLU, Softplus, 
AGLU

TanhShrink is also included. Slow 
due to compound operations and 
poor GPU fusion.

 

Fig. 18. Training and validation curves under different few-shot settings. The 
inset on the right illustrates an enlarged view of the training dynamics within 
the range of 200 to 400 epochs.

• Ours vs. MHAF-YOLO: 𝛥 = 1.72 pp, 𝑡(9) = 3.86, 𝑝 = 0.0039, 95%
CI [0.71, 2.73], 𝑑𝑧 = 1.22.

• Ours vs. DCAS: 𝛥 = 3.16 pp, 𝑡(9) = 6.03, 𝑝 = 0.00020, 95%
CI [1.97, 4.35], 𝑑𝑧 = 1.91.

Both results remain significant after Bonferroni correction (𝛼 =
0.025), indicating a reliable improvement of our method over the base-
lines. The inference latencies of the three methods are 2.1 ms, 5.2 ms, 
and 3.2 ms, respectively, which further corroborates the efficiency of 
the proposed method.

5. Limitations and future work

Despite the strong performance demonstrated by DEANet, our
method still has certain limitations that offer avenues for future re-
search and enhancement. A primary concern is the potential risk of 
overfitting when trained on small-scale datasets, which are common 
in industrial anomaly detection scenarios. This overfitting can compro-
mise the model’s generalization ability, particularly when encountering 
rare or highly specialized anomaly types that are underrepresented in 
the training data.
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Fig. 19. Failure cases of the proposed method.

As shown in Fig.  18, we present the training curves (left) and 
validation curves (right) under different levels of few-shot settings, 
comprising a total of 13 curves. The numbers in the legend indicate 
the proportion of training samples used; for example, the number 10 
denotes that only 10% of the training samples are employed. Training 
is terminated if the performance remains stagnant or degrades within 
100 epochs. From the figure, it can be observed that while the training 
loss continues to decrease, the validation curve corresponding to 50% 
of the training samples (dark green) begins to rise around 400 epochs 
and terminates prematurely, exhibiting an overfitting phenomenon. 
Future research could explore diffusion-based generative augmentation 
tailored to industrial anomaly scenarios to expand data diversity or 
reducing channel dimensionality to achieve model compression, both 
of which can effectively mitigate overfitting and improve performance 
in few-shot regimes. Excessive parameterization often results in in-
sufficient feature extraction when training with limited data, thereby 
yielding suboptimal feature representations and increasing the risk of 
overfitting.

Although our experiments on the CUBIT, NEU-Det, and SSGD
datasets demonstrate robustness across diverse anomaly categories, the 



X. Zhou et al. Advanced Engineering Informatics 69 (2026) 103891 
model may still face challenges when dealing with previously unseen 
or novel anomaly patterns due to the limited size and diversity of 
available datasets. As shown in Fig.  19, our method also exhibits several 
failure cases. For instance, missed detections occur in the third column 
(highlighted with a red dashed box), while false detections appear 
in the first row of the second column. The first column illustrates 
inaccurate localization. These issues primarily arise from challenging 
scenarios, such as low contrast between the target and the background, 
severe occlusion, or scale variations. Potential strategies for future im-
provement include incorporating more robust feature representations, 
introducing adaptive mechanisms for scale and illumination changes, 
and leveraging multi-modal information or advanced attention modules 
to enhance model robustness.

In addition, while existing activation functions, including the one 
proposed in this study, demonstrate favorable activation character-
istics, there remains significant room for improving computational 
efficiency. Notably, when the two tunable parameters of our activa-
tion function are set to be learnable, its activation performance tends 
to degrade. A similar limitation has been observed in AGLU, which 
involves three learnable parameters but fails to consistently achieve 
stable improvements. This suggests a need for more robust and efficient 
parameterization strategies in activation design.

Moreover, DEANet experiences notable performance degradation 
under adverse environmental conditions such as rain, snow, and fog. 
Future work will focus on enhancing the model’s robustness in such 
dynamic and complex environments. For instance, in UAV-based de-
ployments, issues such as motion blur and vibration-induced image 
degradation could be mitigated through image enhancement or sta-
bilization techniques. Additionally, certain component-level anomalies 
exhibit visual variability based on the severity of structural damage. 
Future research will focus on severity-aware anomaly classification 
to enhance risk assessment and facilitate predictive maintenance in 
safety-critical applications.

6. Conclusion

This paper presents an anomaly detection framework that achieves 
a strong balance between detection accuracy and computational effi-
ciency. To address the degradation in accuracy caused by downsam-
pling, two complementary downsampling modules were designed to 
enhance the detection performance. Their joint integration enables a 
favorable trade-off between accuracy and resource consumption. In 
addition, we propose a novel activation function that outperforms 20 
existing alternatives in terms of accuracy, featuring tunable parame-
ters that enable adaptability across various anomaly detection neural 
network architectures.

A contextual feature extraction module was incorporated to lever-
age environmental semantics, particularly enhancing performance un-
der limited sample conditions. Furthermore, a lightweight feature fu-
sion network was introduced, improving accuracy while reducing the 
parameter count (only 2.8M) and computational load. Experimental 
results across three benchmark datasets demonstrate that the pro-
posed method significantly improves performance: achieving up to 
87.8% reduction in model size, 92.6% lower computational cost, and 
70% fewer training samples, without sacrificing accuracy. Real-time 
inference tests show that our method achieves 52.1 FPS on an edge-
computing platform, demonstrating its practicality for deployment in 
resource-constrained environments.
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