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Abstract
Recent advancements in foundation models have significantly enhanced the robustness and 
scalability of traditional methods in a variety of domains. However, their application to 
specialized ecological environments, where challenges such as data scarcity, camouflage, 
and environmental noise persist, remains an area requiring further exploration. This study 
investigates the application of foundation models in species monitoring within complex 
ecological systems, with a focus on juvenile Tri-spine horseshoe crabs (Tachypleus triden-
tatus) in Hong Kong’s intertidal zones. Traditional methods for monitoring these endan-
gered species are labor-intensive, imprecise, and disruptive to fragile ecosystems, par-
ticularly in environments where juveniles exhibit excellent camouflage and small-scale 
behavioral markers. Unmanned aerial vehicles (UAVs) offer a promising solution, yet their 
use in these settings is hampered by tidal movements, water turbidity, and complex back-
grounds. To address these challenges, we apply a foundation model, Segment Anything 
Model 2 (SAM2), to UAV-based high-resolution imagery. By leveraging expert knowl-
edge to design and extract domain-specific features, we fine-tune SAM2 using a few-shot 
learning strategy, enhancing its ability to accurately segment foraging trails with limited 
data. The fine-tuned model incorporates interpretable morphological features, such as trail 
length, width, and continuity, to distinguish biological trails from environmental noise, 
thereby improving both model robustness and interpretability. This approach demonstrates 
the efficacy of adapting foundation models for domain-specific challenges, advancing both 
the interpretability and reliability of ecological monitoring systems. The resulting species 
distribution maps provide valuable insights into population patterns, offering a scalable 
and transferable solution for monitoring endangered species in dynamic, data-scarce envi-
ronments. This research highlights the potential of foundation models to revolutionize eco-
logical monitoring by improving model trustworthiness and extending their application to 
complex, real-world problems.
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1  Introduction

Agricultural production and aquaculture expansion have increasingly transformed inter-
tidal ecosystems to meet the growing global demand for food. In regions such as Hong 
Kong, where the dynamic interaction between the saline waters of the South China Sea 
and the freshwater of the Pearl River Delta creates ideal conditions for oyster cultiva-
tion, these changes are particularly pronounced (Chan et al., 2022). Oyster farming on 
the mudflats in Deep Bay in Hong Kong (which includes Ha Pak Nai) has a deep cul-
tural and historical significance and is recognized as part of Hong Kong’s intangible  
cultural heritage (ICHO, 2024). In Hong Kong a traditional method of oyster farming 
involves bottom planting using rock plates, concrete stakes or large stones deployed in 
rows as protruding arrays on intertidal flats.

The mudflat at Pak Nai/Ha Pak Nai is of conservation significance, because it hosts 
the largest population of juvenile Trispine horseshoe crabs (Tachypleus tridentatus) in 
Hong Kong. T. tridentatus is a benthic species classified as endangered on the IUCN 
Red List (Laurie et al., 2019), and it is one of the organisms that is adversely affected 
by oyster farming. Juvenile T. tridentatus depend heavily on sandy intertidal habitats 
for foraging and protection during their developmental stages. However, habitat loss, 
fragmentation, and pollution caused by intensive aquaculture practices (including oyster 
farming) have led to significant population declines. The alteration of sediment struc-
tures and tidal regimes further destabilizes these ecosystems (Nordlund et al., 2014).

To address these challenges, habitat restoration initiatives have been launched to 
rehabilitate degraded mudflats (Fig.  1(a)). Evaluating the success of these efforts 
requires accurate monitoring of vulnerable species like T. tridentatus. Traditional meth-
ods, including quadrat sampling and visual searches (Fig.  1(b)), face limitations in 
detecting camouflaged juvenile individuals, which burrow into sediments and leave only 
subtle foraging trails (Raffaelli, 1996; Wang et al., 2019). Intertidal environments fur-
ther complicate monitoring due to extreme abiotic fluctuations (e.g., tidal cycles, sedi-
ment shifts) that create microhabitat mosaics (Pennings et  al., 2005; Defeo & McLa-
chlan, 2013).

Fig. 1   a Oyster Reefs are under cleaning as the habitat for T. tridentatus; b The quadrat sampling experi-
ment and the quadrat is highlighted in blue (Color figure online)
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Unmanned Aerial Vehicles (UAVs) have emerged as a transformative tool for eco-
logical monitoring in such dynamic environments. By capturing high-resolution geo-
referenced imagery over large areas, UAVs enable non-invasive, spatially explicit data 
collection while minimizing ecological disturbance (Dujon & Schofield, 2019; Monteiro 
et al., 2021). Recent studies demonstrate that UAV-derived datasets can serve as criti-
cal inputs for training foundation models in remote sensing and biodiversity monitoring 
(Zhang et al., 2024; Hong et al., 2024). However, detecting small, camouflaged targets 
like juvenile T. tridentatus remains challenging due to their subtle visual signatures 
(e.g., faint foraging trails) within complex intertidal substrates (Tuia et al., 2022).

Foundation models pretrained on large-scale multimodal data offer potential solutions. 
Vision-language models like CLIP have achieved zero-shot recognition of species in camera 
trap imagery (Fabian et al., 2023), and remote sensing foundation models (e.g., SpectralGPT 
(Hong et  al., 2024)) show promise in habitat mapping. However, three critical gaps hinder 
their application to UAV-based intertidal monitoring:

•	 Domain adaptation: Most foundation models are trained on terrestrial or open-ocean 
datasets, lacking sensitivity to the spectral and spatial patterns of intertidal zones (e.g., 
tidal signatures, sediment textures) (Li et al., 2024).

•	 Small-target generalization: Generic object detection architectures struggle to localize 
cryptic organisms like juvenile T. tridentatus, whose visual features occupy limited pix-
els and blend with background substrates (Mou et al., 2023).

•	 Data efficiency: Endangered species monitoring often relies on small labeled data-
sets, which are insufficient for fine-tuning large foundation models without overfitting 
(Hasegawa & Nakano, 2024).

To address these challenges, we propose a UAV-driven framework that integrates high-res-
olution aerial imagery with a few-shot learning model specifically designed for juvenile T. 
tridentatus detection. Unlike conventional approaches, our method explicitly encodes ecologi-
cal prior knowledge (e.g., foraging trail morphology, spatial continuity) into the model archi-
tecture, aligning with recent advances in domain-adaptive foundation models (Wang et  al., 
2025). The framework leverages UAVs’ capability to capture fine-grained environmental con-
text (e.g., sediment texture, tidal moisture gradients) that is critical for distinguishing cryp-
tic targets. By combining few-shot learning with interpretable feature engineering, the model 
achieves robust detection accuracy even with limited annotations, addressing the data scarcity 
challenge.

This study advances the integration of UAV technology and foundation models in ecologi-
cal monitoring by: (1) Demonstrating how UAV-derived high-resolution data can enhance 
foundation models’ spatial and spectral awareness in intertidal environments; (2) Proposing 
a hybrid paradigm that embeds domain-specific ecological knowledge into few-shot learning, 
bridging the gap between generic pretraining and specialized conservation tasks; (3) Providing 
a scalable solution for monitoring endangered species in dynamic ecosystems, with implica-
tions for biodiversity preservation under anthropogenic pressures.
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2 � Related works

2.1 � T. tridentatus conservation

T. tridentatus is an inshore, coastal species with five key stages related to spawning, larval 
development, juvenile development, sub-adult and adult (Laurie et  al., 2019). It is a liv-
ing fossil with significant ecological and evolutionary value and is now endangered due 
to habitat degradation, overharvesting, and coastal development (John et al., 2018). Rec-
ognized by the IUCN Species Survival Commission (SSC) as a priority for conservation, 
efforts to protect this species have focused on preserving key habitats such as intertidal 
spawning and nursery areas (John et  al., 2021). These habitats are crucial for reproduc-
tion and the early development of juvenile horseshoe crabs, which are vital for maintaining 
population stability. However, effective conservation measures require reliable population 
data to understand species distribution and abundance (Wang et al., 2019). In this context, 
monitoring juvenile T. tridentatus in intertidal nursery habitats is particularly important. 
These individuals are often concentrated in specific areas, making them ideal indicators for 
assessing overall population health and guiding conservation efforts (Wang et al., 2020). 
Accurate population assessments can also provide critical insights for coordinating govern-
ment policies and habitat management strategies.

Based on studies in Hong Kong, including at Ha Pak Nai, juvenile T. tridentatus nursery 
grounds occur on intertidal flats (Chiu & Morton, 2000), where they prefer living on sand 
dominated mudflats (Kwan et al., 2016). They emerge from the sediment when the substra-
tum is exposed during low tides, where they proceed to forage on the intertidal flat areas 
covered with a thin layer of surface water, or in pools of standing water in seagrass beds 
(Zhou & Morton, 2004). The shape of their foraging trails is irregular and distinctive (Chiu 
& Morton, 2004).

Juvenile T. tridentatus exhibit behaviors that make them highly sensitive to habitat char-
acteristics and challenging to monitor. Their tendency to bury themselves in sand for self-
protection and their preference for specific sediment types mean that their presence is often 
concealed (Watanabe et al., 2022). Additionally, surface features such as oyster racks, mud-
flat patterns, and other environmental factors can interfere with visual detectability (Chan 
et  al., 2022). These behavioral traits may complicate population survey using traditional 
methods. Volunteer-based monitoring approaches, such as systematic quadrat sampling, 
belt transects, or random visual searches, are typically employed during spawning seasons 
but have significant limitations (John et al., 2012; Wang et al., 2019; Wisnewski & Tana-
credi, 2022). These methods are time-consuming and prone to errors due to the difficulty 
of distinguishing juveniles from their surrounding environment. Moreover, the physical act 
of surveying can disturb the habitat, altering surface features and potentially impacting the 
behavior of the very species being studied.

The challenges associated with traditional methods underscore the need for more 
advanced and less invasive monitoring techniques. Juvenile T. tridentatus’ behavioral and 
morphological characteristics demand innovative approaches that can address the inherent 
difficulties of detecting camouflaged species in dynamic intertidal zones. Recent advances 
in monitoring technologies provide new opportunities to overcome these challenges. Side-
scan sonar has been used to locate horseshoe crabs during migration, offering a non-inva-
sive alternative for large-scale surveys (Nagiewicz et al., 2022). However, its application 
is limited to detecting adult crabs and migration events. Acoustic methods have yet to be 
effectively adapted for juvenile monitoring in complex intertidal zones. The use of UAVs 
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offers another promising avenue, enabling high-resolution, non-invasive imaging of large 
intertidal areas while minimizing habitat disturbance (Gonzalez et al., 2016). UAV tech-
nology can address many limitations of manual surveys, including their inefficiency and 
observer bias, while providing georeferenced data for spatially explicit population mapping 
(Monteiro et al., 2021). In T. tridentatus conservation, Koyama et al. have deployed UAV 
imagery to build the map of habitat, but the recognition work is still conducted manually 
(Koyama et al., 2020). Automated processing of large volumes of aerial image data for the 
recognition of juvenile T. tridentatus remains an urgent task.

2.2 � Vision‑based approaches and the emergence of foundation models

Traditional computer vision methods have been pivotal in ecological monitoring tasks such 
as animal re-identification, habitat mapping, and population assessment (Rees et al., 2018; 
Schneider et al., 2019; Johnston, 2019; Ravoor & Sudarshan, 2020). Despite notable suc-
cesses in applying feature-engineering or deep learning techniques (Binder et  al., 2012; 
Unger et al., 2023), many scenarios still present considerable challenges. First, data scar-
city frequently arises in endangered-species monitoring, where the collection of extensive, 
high-quality datasets is impeded by logistical or ecological constraints. Second, environ-
mental complexity (e.g., camouflage, tidal movement, or dense vegetation) makes reliable 
detection and segmentation more difficult, often exacerbating false positives or negatives 
(Praveena et  al., 2024; Lopez-Marcano et  al., 2021). These issues underscore the need 
for adaptive, robust, and interpretable solutions that can operate effectively with limited 
domain-specific data.

In recent years, foundation models have shown promise in addressing these limitations 
by providing large-scale pre-trained representations that can be adapted to a multitude of 
downstream tasks (Lu et al., 2024; Zhang et al., 2024; Hong et al., 2024; Xiao et al., 2024). 
Within ecological monitoring, the ability of foundation models to learn generalized seman-
tic features has potential to alleviate data constraints and reduce the need for large, fully 
labeled training sets (Morera, 2024). For instance, multimodal foundation models have 
been leveraged for zero-shot recognition of animal species in camera trap imagery (Fabian 
et  al., 2023), while others have incorporated human knowledge to incrementally recog-
nize endangered wildlife with minimal data (Mou et al., 2023). In fisheries management, 
pre-trained architectures have demonstrated improved robustness in fish recognition tasks 
compared to conventional supervised methods (Hasegawa & Nakano, 2024), and similar 
efforts are emerging in smart agriculture for pest detection and plant health monitoring (Li 
et al., 2024). Beyond image analysis alone, some studies have further integrated textual or 
spectral modalities (e.g., CLIP-like approaches), broadening the scope for ecological and 
environmental applications (Wang et al., 2025).

Despite these advances, there remain significant gaps in applying foundation models 
to highly specialized use cases. Complex, fine-grained features-such as the subtle trails of 
a camouflaged species-may not be readily captured by broad, generic pre-training (Chen 
et  al., 2024; Kirillov et  al., 2023). Moreover, ensuring interpretability is a key concern: 
large, pre-trained models can behave as opaque black boxes, complicating efforts to vali-
date the correctness of predictions in conservation settings. Achieving robust performance 
under limited data, while providing transparent reasoning, remains an open challenge (Ravi 
et al., 2024; Doherty et al., 2024).

In this work, we address the pressing challenge of adapting foundation models for 
endangered-species monitoring in visually complex, data-scarce ecological settings, with 
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a particular emphasis on the adaptability of our methodology to intertidal environments 
characterized by diverse and complex conditions. Focusing on the juvenile tri-spine horse-
shoe crab (T. tridentatus), our approach extends recent research directions on few-shot 
segmentation and recognition in demanding intertidal habitats. Traditional methods fail to 
robustly detect subtle, camouflaged trails under varying conditions like algal beds, muddy 
terrains, and sandy substrates. By building on a high-resolution UAV imaging pipeline, we 
develop a fine-tuned foundation model Tt-SAM2 through an expert-guided strategy that 
integrates morphology-informed features specifically designed for these challenging sce-
narios, thereby achieving robust, interpretable segmentation of subtle foraging trails. We 
then couple this segmentation with an explainable classification framework that effectively 
filters environmental noise, ultimately providing accurate distribution maps to support con-
servation initiatives. Although additional validation in varied ecological settings is essen-
tial for broader scalability, our results underscore the exceptional adaptability and reliabil-
ity of our method specifically within the intricate and dynamic conditions encountered in 
intertidal monitoring of juvenile horseshoe crabs.

The main contributions of this work are:

•	 We develop a systematic annotation pipeline for UAV-acquired imagery, underpinned 
by direct field investigations. This yields a carefully curated, small-scale dataset that 
captures the juvenile T. tridentatus’s subtle behavior and morphology-an essential 
resource for effective model training under data scarcity.

•	 Leveraging the annotated dataset, we introduce Tt-SAM2, an explainable few-shot 
learning approach that highlights biologically meaningful cues. This ensures precise 
segmentation of juvenile T. tridentatus trails-even in environments characterized by 
camouflage, tidal fluctuations, and other visual complexities.

•	 We propose an RBF-SVM classifier designed around morphological features, enabling 
transparent discrimination between genuine trails and environmental artifacts. This step 
reduces false positives and boosts overall accuracy, preserving the interpretability cru-
cial for ecological decision-making.

•	 We validate the automated system by cross-referencing UAV-based results with man-
ual field surveys, generating reliable spatial distribution models. These models provide 
actionable insights into juvenile T. tridentatus habitats, informing both targeted conser-
vation strategies and broader ecological research.

By uniting expert-guided feature engineering with a robust foundation model, our frame-
work delivers a replicable and explainable solution for monitoring endangered species in 
dynamic, real-world ecosystems.

3 � Methodology

3.1 � Problem description

T. tridentatus is an inshore, coastal species, native to East and Southeast Asia, whose juve-
niles forage on intertidal mudflats. It has suffered significant population declines due to 
habitat degradation, pollution, and overharvesting. In Hong Kong, the Ha Pak Nai area 
(illustrated in Fig. 2) has been proposed as a critical intertidal nursery site, hosting one of 
the most vital nurseries for juvenile T. tridentatus (Lee & Morton, 2016). These mudflats 
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provide the soft sediment and specific ecological conditions-such as tidal rhythms and 
grain size-necessary for their development. The protection of these habitats is crucial for 
the survival of this species, as juvenile horseshoe crabs rely heavily on these dynamic envi-
ronments during early life stages.

For over two decades, the Ocean Park Conservation Foundation has conducted annual 
surveys in Ha Pak Nai to monitor the population of juvenile T. tridentatus. These sur-
veys are performed using quadrat sampling methods (Fig. 1), where volunteers mark spe-
cific areas and manually search for horseshoe crabs. While this method has been integral 
to horseshoe crab research, it suffers from several limitations. First, the rarity and sparse 
distribution of juvenile horseshoe crabs result in high random and systematic errors, with 
many surveys yielding few to no observable specimens. Second, comprehensive sampling 
across the entire mudflat is impractical due to the labor-intensive nature of the method, as 
well as the temporal constraints imposed by the limited foraging activity periods of juve-
niles. Lastly, the physical disturbance caused by human presence, including trampling, can 
alter the surface features of the habitat, disrupt the behavior of juvenile crabs, and hinder 
conservation efforts.

The challenges of manual sampling are further amplified by the camouflaged behavior 
and small size of juvenile T. tridentatus, as shown in Fig. 3. Juveniles often bury themselves 
in the sediment as a protective mechanism, leaving only subtle foraging trails as markers 
of their activity (Fig. 3(b)). These trails, while distinct, are faint and easily obscured by the 
complex textures of the intertidal zone. The juveniles themselves are exceptionally small, 
with their body size and trail width often at the centimeter scale (Fig. 3(c)(d)). These fac-
tors, combined with the vastness of the habitat, make it exceedingly difficult to accurately 
and efficiently detect and monitor their populations using traditional methods.

To address these limitations, we propose a UAV-based approach to automate the data 
collection process and improve monitoring efficiency. As illustrated in Fig. 3(a), UAVs can 
systematically survey extensive areas of the Ha Pak Nai mudflats, capturing high-resolu-
tion aerial imagery without disturbing the habitat. This approach eliminates the need for 
direct human interaction, thus preserving the natural conditions of the intertidal zone. By 
leveraging computer vision techniques, including image segmentation and classification, 

Fig. 2   Horseshoe crab intertidal nursery area, located in Ha Pak Nai
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the UAV imagery is processed to identify juvenile horseshoe crabs and their behavioral 
markers, such as foraging trails. Our framework integrates expert domain knowledge into 
the annotation and algorithm design processes, ensuring that the system is capable of iden-
tifying subtle features that are often overlooked in traditional methods.

This workflow harnesses UAV-based high-resolution imagery and a foundation-model-
driven pipeline to address the limitations of traditional manual surveys (see Fig. 4). Specif-
ically, UAVs systematically collect aerial data over the intertidal habitat, forming the basis 
for identifying the juvenile T. tridentatus and their distinctive foraging trails. To process 
these data, we employ a fine-tuned foundation model, Tt-SAM2, which was tailored to a 
small yet highly specialized dataset representing the camouflaged behaviors and morpho-
logical nuances of this species. Tt-SAM2 leverages an image encoder, memory attention 
mechanism, and prompt/mask decoders to segment the potential targets. Subsequently, an 
explainable classification stage evaluates the segmented trails’ morphological attributes 
to confirm their biological authenticity. This post-segmentation filtering mitigates false 
positives and culminates in a robust species-distribution map for the intertidal nursery. By 
automating detection and mapping, our approach not only reduces the labor intensity inher-
ent in manual methods but also offers actionable spatial insights vital for the targeted con-
servation of T. tridentatus.

3.2 � Data collection

This study employs UAVs for data collection across the horseshoe crab intertidal nurs-
ery area in Ha Pak Nai, minimizing disturbances to the delicate intertidal mudflat 

Fig. 3   (a) Real scene of UAV-based data collection on mudflat area (UAV and juvenile T. tridentatus are 
marked with bounding box); (b) The camouflaged juvenile T. tridentatus with the typical trail in blue; (c) 
The measurement of the T. tridentatus; (d) The width of the trail at centimeter level (Color figure online)



Machine Learning         (2025) 114:158 	 Page 9 of 31    158 

environment. The use of UAVs eliminates the need for foot traffic, which could disrupt 
the surface features of the mudflat, potentially harming juvenile T. tridentatus and com-
promising the data quality. UAVs enhance the efficiency and automation of the data 
collection process, ensuring comprehensive coverage with minimal ecological impact.

To ensure the integrity and completeness of the collected data, the UAV is pro-
grammed to follow a carefully designed zig-zag flight path that guarantees full coverage 
of the designated area while maintaining an overlap rate of ro ≥ 20% between adjacent 
flight swaths, as in Fig. 4(a). This overlap ensures that no regions are missed and pro-
vides sufficient redundancy for stitching and image analysis. The UAV operates at an 
average flight altitude of h = 3m above ground level and maintains a constant speed of 
v = 5m∕s . To account for the uneven terrain of the mudflat, terrain-following technol-
ogy is incorporated, ensuring that the UAV maintains a consistent height relative to the 
surface. Considering the UAV’s limited battery life, the total flight distance per mission 
is planned as df ≤ dmax , where dmax represents the maximum flight distance achievable 
within the battery endurance. Upon reaching the battery limit, the UAV is programmed 

Fig. 4   Overall framework
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to return to the base for battery replacement before resuming subsequent missions, 
ensuring continuous and efficient data collection.

The zig-zag flight path is mathematically defined to optimize coverage and ensure data 
quality. The flight path can be described as a sequence of parallel swaths separated by a 
distance w, calculated as:

where s is the swath width determined by the UAV’s camera field of view, and ro is the 
overlap rate. The total flight distance for a single mission, df  , is given by:

where n is the number of swaths required to cover the target area, and � is the length of 
each swath. The total number of flights, N, needed to survey the entire area A is computed 
as:

The UAV is deployed with a camera oriented perpendicularly to the ground to capture 
high-resolution imagery suitable for environmental assessment and juvenile T. tridentatus 
detection. To ensure efficient use of resources, the UAV is programmed to return auto-
matically for battery replacement before resuming the survey. By maintaining a constant 
altitude and speed, combined with terrain-following capabilities, the UAV collects consist-
ent and high-quality data across the irregular terrain of the mudflat. The proposed path 
planning method ensures comprehensive coverage of the intertidal zone while minimizing 
ecological disturbance. The integration of overlap and terrain-following capabilities guar-
antees data completeness and consistency, even in challenging environmental conditions. 
This replicable and efficient UAV survey strategy enables periodic monitoring of the horse-
shoe crab habitat, providing valuable data to support conservation decision-making and 
long-term ecological studies.

3.3 � Few‑shot identification with a morphology‑centric foundation model

3.3.1 � Morphology‑guided dataset construction

A key aspect of our methodology involves building a dataset that encodes the distinctive 
morphological attributes of juvenile T. tridentatus foraging trails under data-scarce condi-
tions-a challenge inherent to endangered species monitoring. As shown in Fig. 5, we adopt 
a multi-phase approach that includes rigorous UAV data filtering, annotation guided by a 
morphology-oriented knowledge base, and expert verification.

We first preprocess and filter UAV imagery to eliminate low-quality frames (e.g., those 
blurred by motion or severely occluded). From the filtered images, domain experts iden-
tify biologically meaningful patterns, particularly the characteristic three-parallel-line trail 
structure formed by juvenile T. tridentatus. Trained annotators then use LabelMe to pre-
cisely delineate these trails, guided by criteria such as spatial continuity, consistent width, 
and discernible telson traces. Each annotation subsequently undergoes expert validation to 

(1)w = s ⋅

(

1 − r
o

)

,

(2)df = n ⋅ 𝓁,

(3)N =
A

dmax ⋅ w
.
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ensure ecological plausibility and to exclude ambiguous samples potentially resulting from 
environmental noise.

Although the resulting dataset currently consists of only 673 images, each annotation is 
carefully curated to capture nuanced features such as sediment displacement and fine-scale 
trail morphology. The dataset’s small size is a deliberate reflection of the real-world con-
straint of limited data availability in endangered species monitoring. Our few-shot learning 
framework is specifically designed to address this challenge by enabling robust model per-
formance from a limited number of high-quality samples.

Looking forward, we aim to systematically expand this dataset through ongoing UAV-
based fieldwork and expert-guided labeling. This planned enrichment will not only sup-
port more generalized model training across habitat variability but will also allow us to 
explore adaptation strategies for scaling our method to other species or intertidal condi-
tions, thereby improving overall robustness and ecological relevance.

3.3.2 � Adaptation of a foundation model via few‑shot learning

To leverage the representational capacity of large-scale pre-training while accommodating 
a small, morphology-focused dataset, we adopt the SAM2 (Ravi et  al., 2024). Although 
SAM2 excels in generic segmentation tasks, it requires fine-tuning to capture the nuances 
of intertidal mudflat imagery and the faint, camouflaged trails of T. tridentatus.

Figure 6 outlines the adapted architecture, which retains SAM2’s frozen image encoder 
and optimizes only its prompt encoder and mask decoder. This design minimizes compu-
tational overhead and preserves the model’s foundational ability to handle diverse visual 
domains. We incorporate additional morphology-based prompts, such as expected trail 
width and parallel-line constraints, to guide the segmentation process toward biologically 
relevant features.

Fig. 5   Illustration of the morphology-based dataset preparation. a The multi-phase annotation process, from 
UAV image filtering to expert validation. b Representative samples highlighting the three-parallel-line for-
aging trails of juvenile T. tridentatus 
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During fine-tuning, each image is divided into overlapping patches of size p × p to 
handle memory constraints associated with high-resolution UAV data. Let Ii,j denote the 
patch centered at pixel (i, j). Each patch is processed independently, and predictions are 
later fused to form a global segmentation mask. The training objective is defined by a 
composite loss function:

where Ŷ and Y denote the predicted and ground-truth masks for a given patch. The first 
term, LBCE , is the binary cross-entropy loss, expressed as

which penalizes pixel-wise classification errors. The second term, Ldice , measures overlap 
consistency between predicted and ground-truth segmentation masks, formulated as

and LKL aligns the predicted probability distribution with the ground-truth distribution, 
mitigating discrepancies in complex scenes.

We optimize the prompt encoder �prompt and mask decoder �mask:

(4)L = 𝜆BCE LBCE(Ŷ,Y) + 𝜆dice Ldice(Ŷ,Y) + 𝜆KL LKL(Ŷ,Y),

(5)LBCE = −
1

N

N
∑

n=1

[

yn log(ŷn) + (1 − yn) log(1 − ŷn)
]

,

(6)Ldice = 1 −
2 (Ŷ ∩ Y)

‖Ŷ‖ + ‖Y‖
,
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Fig. 6   Overview of the few-shot tuning strategy for the Tt-SAM2 model. The foundation model’s image 
encoder is frozen to preserve general segmentation capabilities, while the prompt encoder and mask 
decoder are fine-tuned with morphology-based prompts derived from expert knowledge
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where D is the morphology-driven dataset described above, and f (I;�prompt, �mask) repre-
sents the segmentation output.

Unlike traditional segmentation, where prompts may be generic (e.g., bounding boxes 
or random points), we incorporate knowledge of T. tridentatus morphology. For instance, 
we provide hints on expected trail continuity and approximate trail width to the model’s 
prompt encoder, thus guiding it to regions more likely to contain target cues. This approach 
is particularly advantageous for small datasets in which each image is carefully labeled but 
overall coverage remains limited.

Our methodology contrasts with typical foundation model usage by emphasizing spe-
cies-specific morphology at every stage. The integration of morphological prompts into a 
large pre-trained encoder allows Tt-SAM2 to detect subtle foraging trails that might other-
wise be overlooked in a generic pipeline. Moreover, patch-based training with overlapping 
windows ensures local details are captured without sacrificing global contextual cues-cru-
cial for separating authentic trails from environmental textures such as mud ridges or oyster 
shells.

The resulting Tt-SAM2 model exhibits strong segmentation performance in trials with 
camouflage or intense background variability, enabling a reliable foundation for down-
stream classification tasks. This few-shot strategy, grounded in morphology-aware prompts, 
illustrates how advanced foundation models can be adapted to niche ecological challenges 
under severe data constraints, providing a scalable template for future conservation-ori-
ented applications.

3.4 � Post‑segmentation classification

After segmenting potential foraging trails in the UAV imagery, the next crucial step is to 
confirm whether these segmented trails indeed correspond to juvenile T. tridentatus telson 
traces. This stage combines expert-driven feature engineering with a principled machine 
learning framework, culminating in an interpretable pipeline that bridges ecological 
domain insights and automated classification.

A core design principle of our classification framework is the construction of a special-
ized feature set that embeds domain knowledge about T. tridentatus movement and behav-
ior. Specifically, we represent each segmented trail as a five-dimensional feature vector,

where the five metrics-length (L), width (W), continuity (C), curvature ( � ), and shape con-
sistency (S)-together encapsulate the morphological cues that distinguish authentic telson 
traces from environmental artifacts. 

1.	 Length (L): To measure the overall scale of each foraging trail, we compute the mean 
length of its contours: 

(7)�prompt, �mask = arg min
�prompt, �mask

�(I,M)∼D

[

L
(

f (I;�prompt, �mask), M
)

]

,
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 where (xj, yj) denotes the coordinate of the jth point in the ith contour, Mi is the num-
ber of points in that contour, and N is the total number of contours for the trail. We 
further enhance this measurement by recording the minimum, maximum, and stand-
ard deviation of inter-point distances to capture irregularities or abrupt changes. Trails 
with sufficiently large mean length and small variance in segment length are more 
likely to correspond to consistent foraging paths.

2.	 Width (W): To quantify cross-sectional characteristics, we define 

 where Ai is the area (in pixels or real-world units) of the ith contour, and Li is its con-
tour length. This ratio provides a coarse approximation of the trail’s transverse dimen-
sion. In many cases, actual T. tridentatus trails exhibit relatively stable widths, making 
W and its variance sensitive indicators of authenticity.

3.	 Continuity (C): Juvenile T. tridentatus generally create near-continuous tracks as they 
traverse the sediment. We compute continuity by counting the number of connected 
components Ccomp in the segmented mask. Let Ccomp(M) be a function returning the 
component count of mask M . We then define 

 where 𝛼 > 0 is a scaling factor. If the segmentation yields exactly one connected com-
ponent ( Ccomp = 1 ), then C ≈ 1 . Trails with multiple disconnected blobs produce lower 
C values, indicating potential environmental noise or overlapping footprints.

4.	 Curvature ( � ): Local bending or turning in the contour can signal interruptions or irregu-
larities. We first compute the first and second derivatives (dxj, dyj) and (d2xj, d2yj) along 
the contour, then estimate the average curvature as 

 We also record the minimum and standard deviation of curvature values, as relatively 
smooth, consistent arcs align with genuine foraging movements, whereas high cur-
vature variability may indicate noise or sediment disruptions unassociated with crab 
behavior.

5.	 Shape consistency (S): To evaluate overall morphological coherence, we examine the 
difference between each contour’s centroid ci and its geometric center gi . Let 

 where max(⋅) and min(⋅) are computed over the contour coordinates (xj, yj) . The shape 
consistency for the entire trail is given by 
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 where a higher S value denotes a contour set whose centroids align well with their 
geometric centers, indicating a more uniform structure characteristic of a true crab 
trail.

Before feeding x = [L, W, C, �, S] into a classifier, we apply domain-specific con-
straints and statistical normalization. For example, trails with W or L beyond biologi-
cally realistic ranges are discarded, and a z-score transform is used to scale each feature 
to zero mean and unit variance. This procedure mitigates noise effects and ensures con-
sistent weighting across different metrics.

Unlike generic object detection tasks, our morphological feature design is fine-tuned to 
the idiosyncrasies of a specific endangered species. Each extracted parameter aligns with a 
documented biological trait, allowing the subsequent classification algorithm to make deci-
sions that are transparent to ecologists. This morphological encoding of domain knowledge 
stands at the core of our post-segmentation procedure, furnishing an explainable founda-
tion for identifying actual T. tridentatus foraging trails with high specificity.

3.4.1 � Design of an interpretable classification framework

To transform the extracted feature vectors into final class labels (true for juvenile T. triden-
tatus traces vs. false for irrelevant patterns), we employ a Support Vector Machine (SVM) 
with a Radial Basis Function (RBF) kernel. This choice strikes a balance between inter-
pretability, model capacity, and compatibility with our biology-driven features.

Let {(xi, yi)}ni=1 denote the dataset of segmented trails, where xi = [L, W, �, C, S] is the 
feature vector for the i-th trail, and yi ∈ {−1,+1} specifies whether the trail is genuine ( +1 ) 
or spurious ( −1 ). We learn an optimal decision boundary by solving:

where �(xi) is the mapping induced by the RBF kernel:

and � controls the kernel’s degree of nonlinearity. The parameters w , b , and � are learned to 
maximize the margin between the two classes while minimizing misclassifications.

We employ cross-validation to select optimal values for C and � . Once training is com-
plete, we examine the learned decision function and support vectors to interpret which 
morphological features most influence trail classification. Large positive weights for length 
or shape consistency, for instance, reinforce domain expectations that well-defined, con-
tinuous structures represent authentic T. tridentatus paths. Conversely, a higher reliance on 
curvature might suggest that sinuous patterns, sometimes caused by water flow or overlap-
ping traces, are more indicative of noise.

Compared to purely deep learning-based pipelines, this morphologically driven classifi-
cation architecture offers two main advantages: 

1.	 Transparency: By encoding domain knowledge into the feature design and using an SVM 
with interpretable weights, our model’s decisions can be easily traced back to tangible 
biological reasoning.
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2.	 Robustness under Data Scarcity: The relatively low data requirement for SVM training, 
combined with carefully curated features, suits rare-species applications where large 
labeled datasets are unattainable.

Moreover, the feature-engineering approach is adaptable to other camouflaged species or 
habitats, requiring only a redefinition of morphology-based attributes. Thus, our post-seg-
mentation classification framework not only yields a reliable, domain-consistent interpreta-
tion of juvenile T. tridentatus trails but also contributes a flexible methodology for broader 
ecological monitoring contexts.

In summary, the post-segmentation classification stage transforms raw mask outputs 
from Tt-SAM2 into ecologically valid findings. By synthesizing morphological insight 
with a margin-based classifier, we ensure high-precision identification of true crab foraging 
trails. This synergy across domain knowledge, feature design, and an interpretable learn-
ing model underpins the robustness and reliability of our overall system, thereby strength-
ening its potential for real-world conservation applications in dynamic, data-limited 
environments.

4 � Implementation and results

4.1 � Experimental setup

The field experiments were conducted in the Ha Pak Nai intertidal nursery area, Hong 
Kong, during low tide within three hours after the tide receded. This timing coincided with 
the peak activity of juvenile T. tridentatus, ensuring optimal visibility of their trails on the 
mudflat surface. UAV data collection played a central role in the survey, offering non-inva-
sive data acquisition and comprehensive spatial coverage of the intertidal area without dis-
turbing the habitat. The hardware platform included a UAV equipped with high-resolution 
imaging sensors and a high-performance workstation for data processing, as summarized 
in Table 1.

To validate the accuracy and reliability of the UAV-based framework, parallel field 
experiments were conducted using manual sampling methods. As shown in Fig. 7(b) and 
(c), experts employed sampling and direct measurements of the trails to verify the presence 
and dimensions of juvenile T. tridentatus activity patterns. These manual surveys provided 

Table 1   Specifications of the 
UAV and workstation used in our 
experiments

Category Component Specification

UAV Model DJI Mavic 2 Enterprise Advanced
Camera Resolution 48 MP RGB Camera
Flight Altitude 3 ms above ground level
Flight Speed 5 m/s
Overlap Rate 20%

Workstation GPU NVIDIA A6000
CPU Intel® CoreTM i9-14900 K
RAM 128 GB
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ground-truth data, enabling cross-verification of the UAV-derived results and ensuring the 
robustness of the automated detection system.

In terms of efficiency, we conducted a quantitative comparison between the UAV-based 
and traditional visual search approaches. The manual method relied on human visual 
search conducted by a team of three experts and several trained volunteers, covering the 
same survey area over 3.5 h. In contrast, the UAV system-operating autonomously at a 
flight speed of 5 m/s and an altitude of 3 m-required only 50 min to capture the full cover-
age of the designated area. The subsequent image segmentation and classification process 
took an additional 2 min, resulting in a total survey time of approximately 52 min. This 
reflects a 75.24% reduction in operational time compared to the manual process.

Furthermore, the UAV approach offers substantial cost and labour savings. Manual sur-
veys depend heavily on skilled personnel and coordinated team logistics, whereas UAV 
flights can be executed autonomously with minimal supervision. This operational advan-
tage is particularly beneficial in remote or expansive coastal zones where repeated field 
access is time-consuming and labour-intensive.

The integration of UAV-based and manual methods allowed for a comparative analysis, 
demonstrating not only the alignment of automated detection with traditional ecological 
survey standards, but also the clear practical benefits of adopting UAV technology in terms 
of both efficiency and scalability.

4.2 � Segmentation results

Our fine-tuned Tt-SAM2 model was evaluated against several state-of-the-art (SOTA) seg-
mentation approaches, including DINO-v2 (Oquab et  al., 2023), SOLO-v2 (Wang et  al., 

Fig. 7   a The UAV data collection in experiment; b The parallel study by expert manual method; c The 
measurement of the trails for validation
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Table 2   Performance metrics for segmentation models

Model Pixel Accuracy Dice Coefficient IoU Precision Recall F1-Score Result

DINO-v2 – – – – – – Failed
SOLO-v2 – – – – – – Failed
SAM-Auto – – – – – – Failed
SAM-Prompt – – – 0.0523 – – Failed
SAM2-Auto – – – – – – Failed
SAM2-Prompt – – – 0.1082 – – Failed
Ours 0.9621 0.9456 0.8128 0.9969 0.9621 0.9620 Successful

2020), and different variants of SAM (Kirillov et  al., 2023). As summarized in Table 2, 
none of these competing methods produced sufficiently accurate masks for the subtle T. 
tridentatus foraging trails. And the visual comparisons are as in Fig.  8 to illustrate the 
segmentation results. In contrast, our Tt-SAM2 achieved consistently high scores on key 
metrics such as Pixel Accuracy (0.9621) and Dice Coefficient (0.9456), underscoring its 
robustness and adaptability in the challenging mudflat context.

We also tested YOLO-based detection models (e.g., YOLOv10 (Wang et  al., 2024)), 
which reached a maximum mAP50 of only 0.0533, highlighting the inherent difficulty of 
detecting such faint, elongated features. These poor performances strongly indicate that 
traditional segmentation or detection frameworks struggle in data-scarce, visually noisy 
environments without explicit ecological or morphological insights. Our Tt-SAM2 solution 
overcomes these barriers by leveraging domain-specific knowledge, such as the signature 
three-line patterns and consistent trail continuity of juvenile horseshoe crabs, and embed-
ding these clues into the fine-tuning pipeline.

Figure 9 illustrates how Tt-SAM2 handles various foraging-trail configurations, includ-
ing curved, crossing, and hybrid patterns. Notably, the ability to capture these fine-grained 
structures stands as both a technical and ecological advancement: it reveals subtle behavio-
ral differences under varying mudflat surface conditions, potentially leading to new ecolog-
ical insights on T. tridentatus locomotion. These findings reinforce the utility of combining 
a powerful foundational segmentation model with well-curated, domain-driven fine-tuning 
strategies, particularly in small-scale ecological monitoring scenarios.

4.3 � Post‑segmentation classification results

After obtaining the segmented masks from Tt-SAM2, we further classified each trail to 
confirm whether it represented a valid juvenile T. tridentatus foraging pattern. This two-
stage approach-segmentation followed by classification-aims to reduce false positives, 
enhance interpretability, and provide high-resolution distribution maps. Figure 10 presents 
the correlation matrix for the five morphological features (length L, width W, continuity C, 
curvature � , and shape consistency S). Overall, C and S exhibit minimal correlation, signi-
fying their complementary roles in capturing different facets of crab foraging structures.

Figure 11 shows the distributions of L, W, � , C, and S for both true and false trails. True 
trails tend to exhibit relatively large L and near-unity C, which aligns with domain knowl-
edge indicating that juvenile crabs often leave continuous and comparatively long paths in 
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the sediment. Conversely, false trails reveal more irregular patterns in these features, often 
due to overlapping footprints or environmental noise like debris.

To evaluate the utility of each feature subset, we trained and tested our SVM-based 
classifier on progressive combinations of L, W, C, �, and S. As seen in Fig. 12, the full 
feature set offers the best performance, reaching a maximum accuracy of 93%. This out-
come validates our design decision to incorporate multiple domain-informed metrics 
rather than relying on a single morphological cue.

In addition, we conducted a systematic comparison between our RBF-kernel SVM 
classifier and several commonly used alternatives, including linear SVM, random forest, 
k-nearest neighbors (k-NN), logistic regression, and decision tree models. As shown in 
Table 3, RBF-SVM outperformed all competing classifiers, achieving the highest mean 
accuracy (94.74%) and F1-score (96.50%) under a 5-fold cross-validation scheme. The 
superior performance is attributed to the nonlinear mapping capacity of the RBF kernel, 

Fig. 8   Visual comparisons with existing segmentation methods. Models like DINO-v2 and SOLO-v2 fail to 
capture fine-grained foraging trails, while our Tt-SAM2 accurately segments the subtle telson traces
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Fig. 9   Exemplary results from Tt-SAM2 segmentation, showing three different trail morphologies: a 
curved trails, b crossed trails, and c combined morphologies

Fig. 10   Correlation matrix of the extracted features, illustrating pairwise relationships and highlighting 
potential collinearities
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which enables more flexible decision boundaries for complex trail morphologies and 
subtle feature interactions. In contrast, linear models or shallower tree-based classifiers 
showed reduced sensitivity to the domain-informed features, particularly in ambiguous 
or noisy regions. These findings further justify our choice of RBF-SVM as the optimal 
classifier in our pipeline.

To address the impact of hyperparameter tuning in RBF-SVM, we performed 
a comprehensive grid search over a wide range of values: C ∈ {1, 10, 100} and 
� ∈ {0.001, 0.01, 0.1, 1, �����} , using 5-fold cross-validation. This allowed us to explore 
the effects of both regularization and kernel smoothness on classification performance. 
The results, visualized in Fig. 14, show that the optimal hyperparameter configuration 

Fig. 11   Feature distributions for true and false trails, with marked separations in L, C, and S. These distinc-
tions highlight the importance of domain-informed feature engineering

Fig. 12   Classification accuracy achieved by various feature subsets. The complete set ( L, W, C, �, S ) 
yields the highest accuracy of 93%
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was C = 100 , � = 0.01 , under which the highest cross-validation accuracy was achieved. 
We therefore adopted this setting for all subsequent experiments.

Figure  13 illustrates the resulting decision boundary for the RBF-SVM in a two-
dimensional projection. Notably, there is a well-defined separation between true and 
false trails, which highlights the effectiveness of our morphology-focused feature 
engineering. The smooth gradients at the boundary suggest that the classifier handles 
instances of partial ambiguity-where trails share attributes of both classes-without 
abrupt misclassifications.

Finally, we incorporate a post-classification filtering stage to consolidate spatially 
and morphologically redundant trails, as shown in Fig.  15. This step helps maintain 
clean distribution maps, preventing overestimation of the T. tridentatus population and 
mitigating noise introduced by multiple UAV passes over the same region. While failure 
cases can arise under extreme turbidity, highly cluttered substrates, or in the presence of 
visually similar natural structures, our two-stage design improves generalizability across 
diverse intertidal environments. The segmentation stage localizes a broad set of candi-
date trails, including those partially obscured or less distinct, and the classification stage 

Fig. 13   Decision boundary visualized for the RBF SVM in a reduced feature space. True trails (red) and 
false trails (blue) show clear separability, underscoring the strength of our morphology-based features 
(Color figure online)

Table 3   Classification 
performance comparison using 
5-fold cross-validation

Classifier Mean Accuracy Mean F1-score

SVM (RBF) 0.9474 0.9650
SVM (Linear) 0.8842 0.9253
Random Forest 0.8737 0.9202
k-NN 0.7684 0.8449
Logistic Regression 0.8632 0.9090
Decision Tree 0.8105 0.8718
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effectively filters out most non-biological artifacts by enforcing morphological consist-
ency. Empirically, we observe that even in challenging scenarios where features like L 
and C are less prominent, the classifier maintains good accuracy and avoids systematic 
misclassifications. Overall, these classification experiments underscore both the accu-
racy and interpretability of our pipeline, which systematically weaves domain expertise 
into advanced segmentation and classification components. The end result is a robust, 

Fig. 14   Heatmap of cross-validation accuracy under different SVM hyperparameters (RBF kernel). Darker 
regions indicate higher accuracy. The best performance was achieved at C = 100 , � = 0.01

Fig. 15   Feature similarity filter-
ing applied post-classification to 
remove redundant or overlapping 
segments in final distribution 
maps
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ecologically aligned framework capable of identifying juvenile horseshoe crab foraging 
trails with high precision, even under constraints imposed by limited datasets and chal-
lenging intertidal environments.

4.4 � Spatiotemporal mapping and ecological data integration

To analyze and visualize the spatial distribution of T. tridentatus trails, we developed a 
comprehensive workflow that integrates UAV-acquired images, geospatial data, and seg-
mentation results. The workflow enables precise identification, mapping, and management 
of ecological data for conservation purposes. The final results, shown in Fig. 16, present 
the spatial distribution of juvenile T. tridentatus and provide access to detailed ecological 
records.

The proposed workflow extracts geospatial metadata, maps image coordinates to physi-
cal dimensions, reconstructs a 3D scene model, and annotates it with the identified T. tri-
dentatus trails. The following pseudocode describes the main steps of this process:

Fig. 16   T. tridentatus overlaid on the reconstructed intertidal zone model. Each marker represents an indi-
vidual trail, providing access to corresponding ecological data such as segmentation results and physical 
features
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Algorithm 1   Spatiotemporal mapping and data integration workflow

Each element of the pseudocode is designed to translate field-collected UAV data 
into a spatially indexed and semantically annotated ecological model. The UAV image 
dataset D consists of geotagged images that are first associated with metadata retrieved 
from the image EXIF, notably geographic coordinates (�, �) and flight altitude h. This 
metadata enables spatial registration of extracted features.

The segmentation model is then applied to each image I ∈ D to extract a set of mor-
phological descriptors: trail length L, width W, continuity C, curvature � , and shape 
consistency S. These features reflect ecologically meaningful aspects of T. tridentatus 
movement patterns. To convert image-based features into real-world dimensions, we 
compute a physical scale factor:

which accounts for the camera’s field of view and UAV flight altitude. This scaling allows 
pixel-based measurements to be projected onto geographic space.

The transformed records are organized in a structured database DB containing geo-
spatial and morphological attributes linked to each UAV frame. These entries serve as 
input to the final reconstruction stage, where UAV images are used to generate a 3D 
terrain model of the study site. This model can be reconstructed using standard photo-
grammetry software (e.g., Meshroom or Agisoft Metashape) or substituted with a geo-
referenced 2D map in practical scenarios where full 3D rendering is not required.

The database entries �, �, h, L,W,C, �, S, I are subsequently overlaid on the recon-
structed model to provide spatial context to trail annotations. Finally, the result is syn-
chronized with a centralized ecological knowledge base KB , supporting long-term 
storage, retrieval, and integration with other conservation datasets. This modular archi-
tecture ensures interpretability and scalability while facilitating the ecological interpre-
tation of spatial patterns in horseshoe crab behavior.

(16)PhysicalScale =
FOV

ImageResolution
× h,
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Figure  16 illustrates the spatial distribution of juvenile T. tridentatus overlaid on the 
reconstructed terrain model. This visualization provides critical support for conservation 
efforts by enabling comprehensive spatial analysis of T. tridentatus populations; access to 
individual trail data, including images, segmentation results, and feature metrics; and inte-
gration with the knowledge base to inform adaptive conservation strategies. To strengthen 
the validity of the study, parallel verification was conducted through manual field surveys 
in addition to UAV-based data collection. Expert-guided ground-truthing, using traditional 
methods such as direct visual inspections, was employed to cross-validate the segmenta-
tion and classification results obtained from UAV imagery. These parallel approaches have 
confirmed the accuracy of the UAV-based system in identifying juvenile T. tridentatus and 
distinguishing relevant features from environmental noise, ensuring that the results are 
robust and reliable. Additionally, the workflow accounts for redundancies caused by UAV 
data overlap. Redundant trails, representing the same individual, are identified and filtered 
based on geographic proximity and feature similarity, ensuring accurate population esti-
mates. The processed data is synchronized with a centralized ecological knowledge base, 
allowing seamless access to all recorded T. tridentatus information. The knowledge base 
supports long-term monitoring, adaptive habitat management, and decision-making for 
intertidal conservation.

By incorporating spatial, physical, and ecological dimensions, this integrated approach 
provides a robust foundation for studying and protecting juvenile T. tridentatus. The com-
bination of advanced UAV-based imaging, segmentation, and knowledge base updates 
ensures scalable and replicable conservation strategies for endangered intertidal species.

5 � Conclusion

This study presents a novel and comprehensive framework for monitoring the endangered 
juvenile T. tridentatus in visually complex, data-scarce intertidal environments. By uniting 
UAV-based data collection, a few-shot fine-tuning of the Tt-SAM2 foundation model, and 
an expert-informed SVM classification stage, we bridge recent advances in machine learn-
ing with the pressing needs of ecological conservation. In doing so, our approach not only 
surpasses the limitations of traditional, labor-intensive surveys but also establishes a mean-
ingful benchmark for leveraging foundation models in specialized ecological contexts.

A key contribution lies in our successful adaptation of the Tt-SAM2 model-a gen-
eral-purpose foundation model-for the subtle and nuanced task of segmenting T. triden-
tatus trails. Through targeted few-shot learning, guided by morphological and behavioral 
insights, we achieved robust segmentation performance despite a relatively small dataset 
of 673 high-resolution images. This underscores the adaptability of foundation models to 
niche domains when domain-specific knowledge is systematically integrated. Furthermore, 
the subsequent classification step, driven by an SVM that encodes biologically relevant 
features (e.g., length, width, continuity), ensures that genuine foraging trails are clearly dis-
tinguished from noise. This synergy of segmentation and post-processing exemplifies how 
computational methods can be harmonized with expert ecological knowledge to produce 
interpretable and accurate outcomes.

An additional innovation is the integration of segmentation outputs with a 3D ecologi-
cal knowledge base, enabling spatial visualization and broader contextual analysis of T. tri-
dentatus habitat use. This ecosystem-level perspective not only aids real-time monitoring 
but also fosters iterative knowledge refinement, wherein feedback from ecological experts 
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can further calibrate both the model and the underlying dataset. Such a bidirectional flow 
of information demonstrates the transformative potential of combining cutting-edge com-
putational frameworks with scientific field expertise, ultimately accelerating the discovery 
and preservation of threatened species.

Despite its demonstrated strengths, our framework still faces certain challenges that pre-
sent avenues for future work. Expanding the dataset to encompass multiple habitats and 
broader environmental gradients would enhance the generalizability of the foundation 
model, particularly in light of natural variations such as tidal fluctuations and sediment 
composition. Incorporating temporal monitoring components could also deepen insights 
into the long-term population dynamics of juvenile T.tridentatus, informing more adaptive 
conservation measures. We thank the reviewer for highlighting the importance of time-
series variation. As noted in Sect. 4.1, the current data collection is focused on low tide 
windows within three hours after tide recession, when juvenile T. tridentatus are known 
to exhibit peak foraging activity. This targeted strategy maximizes observed individuals 
during each field session. Nevertheless, we acknowledge that juvenile behavior and distri-
bution may vary across tidal cycles, seasons, and environmental rhythms. In future work, 
we plan to integrate temporal variation into our current spatially structured framework by 
designing systematic, long-term UAV monitoring schedules. This will enable us to capture 
behavioral dynamics over different timescales, leading to more comprehensive ecological 
insights and enhancing the utility of our system for conservation planning. Additionally, 
exploring multi-modal data sources-ranging from thermal and hyperspectral imaging to 
acoustic sensors-could further bolster model robustness against the diverse ecological fac-
tors that shape intertidal zones.

Looking ahead, our framework holds promise for broader application beyond T. triden-
tatus. Similar morphology-driven fine-tuning procedures can be applied to other endan-
gered species with cryptic behaviors or camouflaged appearances, highlighting the flex-
ibility and scalability of foundation models when reinforced by domain knowledge. In 
particular, any species requiring large-scale surveys-such as nesting sea turtles, migratory 
birds, or invasive coastal invertebrates-can benefit from the same pipeline. By incorpo-
rating species-specific ecological traits into the annotation phase (e.g., nest morphology, 
movement traces, or spatial clustering), the segmentation-classification workflow can be 
adapted to automatically detect and monitor target populations. In many cases, species with 
more distinct ecological markers may enable even higher automation performance than T. 
tridentatus. This highlights the potential of our approach as a generalized framework for 
biodiversity surveys, especially in challenging environments where manual data collection 
is costly or infeasible. Moreover, user-friendly interfaces for data processing and annota-
tion would lower the barrier to adoption, empowering local communities and conservation 
practitioners to operationalize these computational tools directly in the field.

In summary, this work advances both the methodological frontier of foundation model 
adaptation and the practical imperative of endangered-species monitoring. By interweaving 
UAV technology, explainable machine learning, and ecological expertise, we offer a sus-
tainable and high-precision solution for tracking cryptic species in harsh, data-limited habi-
tats. Our contributions pave the way for further integration of foundation models into eco-
logical studies, encouraging a future in which AI-driven insights and biological knowledge 
coalesce to protect biodiversity and deepen our understanding of complex natural systems.
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