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Abstract Visual-based defect detection efficiently monitors the health and quality of construction

and industrial products. However, current defect detection methods often improve detection accuracy

at the cost of lower inference speeds or more parameters, struggle with complex data representa-

tion, emphasize target features while neglecting environmental information importance, and utilize

convolutional or max pooling operations for downsampling, leading to more feature loss. To address

these issues, this work presents a low complexity, accurate defect detection network augmented by

environmental information-assisted and flexible activation functions to enhance the neural network

performance on complex data representation. Environmental information-assisted module is designed

for defect detection tasks to assist in accurately locating and predicting defects. Moreover, this work

restructure features post-downsampling to mitigate feature loss and design a simple feature module

called deep-global fusion that integrates deep and global features to enhance detection performance.

Extensive experiments validate the superiority of the proposed detection network. The deployment of

the network on edge computing devices confirms its competitive advantage in portability and reliability.
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1 Introduction

Defect detection in buildings and industrial products is crucial for safety evaluation and

quality control. These structures often exhibit various defects, such as cracks, corrosion, and

stains, whose progression can lead to significant losses. Traditional inspection methods, which

largely depend on human visual assessments, face challenges in inspecting tall structures due

to the need for high-altitude operations or specialized imaging equipment[1, 2]. Such methods

can compromise safety and suffer from inaccuracies caused by human fatigue and equipment

limitations[3]. Consequently, automated defect detection is vital for ensuring safety, maintaining

production and environmental standards, and facilitating efficient operations and maintenance

in large-scale construction and infrastructure management.

In recent years, significant advancements have been made in vision-based defect detection

methodologies. Extensive research has utilized deep learning-based image processing techniques.

Xie, et al.[4] introduced an industrial product defect detection dataset, facilitating algorithm

design and performance evaluation. FFCNN[5] introduces deep neural networks for surface

defect detection in magnetic materials, overcoming efficiency and cost limitations. Hu and

Wang[6] incorporated an object-level attention module into their training strategy for casting

defect detection method. However, detection speed may deteriorate when deployed on edge-

computing devices. Gu, et al.[7] proposed an improved fault diagnosis scheme for sensors,

which includes both fault detection and fault identification. Most existing methods primarily

detect cracks, though defects in infrastructures and industrial products can manifest as crazing,

spalling, and pitted, among others. Addressing this diversity of problems presents significant

challenges in defect detection. The prevalent use of convolutional neural network layers for

downsampling and feature extraction in many defect detection methods risks feature loss. These

operations have limited potential to enhance detection performance.

To improve the efficiency, Yang, et al.[8] introduced a convolutional neural network (CNN)

for defect detection that enhances efficiency by incorporating EIoU and modification loss func-

tions into YOLOv3. However, the proposed method’s inspection speed of 93.5 ms/image on the

NVIDIA GTX1050Ti GPU renders it impractical for edge-computing devices like the Nvidia

Orin NX. Similarly, YOLO-M[9] adapts YOLOv3 using an acceleration algorithm and a median

flow (MF) algorithm for crack counting. Yet, it suffers from low processing speed and limited

defect detection types, restricted to pavement cracks. Convolutional recurrent reconstructive

network (CRRN)[10] enhances the performance of defect detection by integrating convolutional

spatiotemporal memory (CSTM), and the effectiveness is validated across two public datasets.

Despite achieving relatively reliable performance in defect detection, the current algorithms

face the following challenges:

• Employing convolutional neural networks or max pooling operation for downsampling and

feature extraction inevitably leads to feature loss. Enhancing feature retention during

propagation is anticipated to improve detection performance.

• Predominantly focusing on target features often neglects the importance of environmental

characteristics. Incorporating environmental features, as certain targets are inherently
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linked to specific contexts, can enhance detection accuracy.

• Limited activation capabilities yield insufficient representation of complex defect data,

contributing to sub-optimal detection accuracy.

• Enhancing detection accuracy frequently involves adding more parameters; however, bal-

ancing detection accuracy with memory efficiency is crucial for the practical application

of memory-constrained devices.

Moreover, the high maneuverability of drones enables access to environments unreachable

by humans. Drone-mounted defect detection systems can enhance inspection efficiency and

mitigate accuracy degradation due to human fatigue. The advancement of highly accurate defect

detection methodologies promises to enhance inspection efficacy, while accelerated detection

rates contribute to overall inspection efficiency[11, 12].

Consequently, this work aims to develop a defect detection framework that balances pa-

rameters, speed, and accuracy. We introduce a novel detection network, Context-aware and

Activation Representation Network (CARNet), which offers accurate and fast defect detec-

tion with minimal parameters and computational cost. To achieve this objective, 1) this work

advocates using space-to-depth downsampling over convolutional layers to ensure complete fea-

ture propagation[13]. 2) We propose an environmental interaction module designed to enhance

detection performance. 3) We propose the Kilu activation function, which offers flexible non-

linear representation capabilities through adjustable parameters, thereby improving detection

performance. As depicted in Figure 1(a), the proposed CARNet achieves more accurate de-

tection than YOLOv9[14]. These visualization results underscore the practical effectiveness of

our method in defect detection. Figure 1(b) and Figure 1(c) confirm that our method achieves

higher accuracy with fewer parameters and the fastest speed. Specifically, our method attains

an accuracy of 52.3% with only 4.9 M parameters and delivers the fastest inference speed. This

level of performance is highly competitive for memory-constrained applications.
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Figure 1 These pictures illustrate the superior performance of our method. (a) The first row illus-

trates the visualization results from YOLOv9, while the second row presents those from our

method, which detect defects with higher confidence scores. (b) Trade-off performance of

inference speed versus accuracy. (c) Trade-off performance of parameters versus accuracy.

Please zoom in for the best view
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In summary, the main contributions of this work are:

1) A defect detection network (CARNet) that balances parameters and accuracy is proposed.

Introducing environmental interactive information in defect detection research marks an

advancement development that enhances defect localization and assessment, thereby im-

proving detection performance.

2) A novel, adaptable activation function is proposed to augment the nonlinear represen-

tation capabilities of neural networks, thereby enhancing detection accuracy without an

increase in parameters. The activation performance surpasses the other 20 activation

functions by comparative experiments.

3) Comprehensive ablation studies and feature map analysis illustrate the effectiveness of

the proposed strategies. The efficacy of CARNet is validated across three challenging

datasets. Deploying CARNet on an edge computing device with 1920 × 1080 resolution

videos confirms its real-time detection capabilities in UAV onboard applications.

The rest of this paper is structured as follows: Section 2 discusses related works, Section 3

explains the theoretical basis and establishment process of the model, Section 4 presents the ex-

perimental results and performance evaluation, and Section 5 concludes the article and outlines

future work.

2 Related Works

2.1 Feature Fusion

Researchers have proposed various techniques using feature fusion to enhance the detection

accuracy. Liu, et al.[15] introduced an adaptive parallel feature learning and hybrid feature

fusion-based deep learning approach for machining condition monitoring, which incorporates

handcrafted features enhanced by domain knowledge. Hu, et al.[16] introduced a hybrid multi-

dimensional feature fusion structure for thermography defect detection, which enhances both

accuracy and robustness. Gao, et al.[17] proposed an enhanced detection network for small

insulator defects that incorporates a batch normalization convolutional block attention module

(BN-CBAM) and a feature fusion module to improve detection accuracy. Li, et al.[18] intro-

duced a bidirectional fusion network (BiFNet) that integrates the image and BEV of the point

cloud through the dense space transformation (DST) module and the context-based feature

fusion module for road detection. However, most methods focus primarily on extracting fea-

tures related to the detected objects during feature fusion, often overlooking the significance

of environmental features. For instance, employing attention mechanisms to focus on target

features.

2.2 Activation Function

Activation functions are pivotal in transforming input data into an abstract feature space,

enhancing the nonlinear representation capabilities of deep neural networks (DNNs) to process
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intricate data sets[19]. In the initial phases of neural network research, traditional activation

functions such as Sigmoid and Tanh are widely used, despite their tendency to cause vanishing

gradients. The Rectified Linear Unit (ReLU)[20] is introduced to overcome this issue, effectively

addressing the vanishing gradient problem by setting negative inputs to zero and maintaining

positive values. However, ReLU still faces challenges with dying gradients for non-positive

inputs. Gaussian Error Linear Unit (GELU) can address this limitation using a probabilistic

approach for input processing[21]. However, we have observed a performance degeneration when

applying GELU to defect detection tasks. For a more detailed analysis, see Subsection 4.3.

To tackle the identified challenges, this study introduces a convolutional space-to-depth

approach for feature extraction and downsampling that maintains full convolutional feature

propagation. Context-aware information enhances defect localization and identification. Im-

proved detection results are obtained by merging depth and global features to clarify feature

representation. A novel activation function is proposed to strengthen the network’s capability

to represent complex data.

3 Methodology

3.1 Framework Overview

As depicted in Figure 2, The CARNet for accurate defect detection consists of two main

components: The encoder and the decoder. The encoder features a structured sequence of

five Convolutional Spatial-to-Depth (CSD) modules, illustrated by the orange block, and four

Combined Ambient Residual modules (CRM), depicted by the light green block. The Space-to-

Depth approach facilitates downsampling while ensuring the complete propagation of convolu-

tional features, and CRM integrates contextual interaction capabilities. The encoder sequence

culminates with the Depth Global Module (DGM), which orchestrates feature extraction and

integration, capturing depth and global feature dynamics.
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Figure 2 The defects detection framework begins with four rounds of downsampling applied to the

original input image. Next, the deep convolutional features are fused with global features

using the DGM. A top-down branch is followed by a bottom-up branch to perform feature

fusion. Finally, the fused features are passed to the detection head to generate the detection

results. Please zoom in for the best view
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The decoder is split into two pathways: The bottom-up and the top-down branches. The

bottom-up branch consists of two upsampling modules and one CRM module, with upsampling

modules increasing the feature scale and the CRM module refining convolutional residual fea-

tures. In contrast, the top-down branch employs two CRM modules and two CSD modules,

focusing on downsampling and extracting convolutional features, where each CSD operation

reduces the feature map dimensions by half. This branch selectively integrates features solely

from high-level CRM modules during extraction to conserve computational resources. En-

hancements in the bottom-up path integrate precise localization cues into lower feature layers,

thereby strengthening the hierarchical structure and minimizing the information propagation

distance from lower levels to the topmost features. The variable “N” indicates the number of

CA network in each CRM module, and the CSD module includes convolutional, normalization,

Kilu activation function layers, and space-to-depth operation.

3.2 CSD Module

As illustrated in Figure 3, the CSD module initially obtains convolutional features through

a convolutional layer, maintaining the same feature dimensions for both input and output.

Subsequently, spatial features are converted into depth features through pixel reorganization

manner. Through the CSD operation, the channels of the output features become four times

that of the input, while the dimensions of the features are halved. However, this operation

preserves more of the features. Let F ∈ R
C1×H×W represent the input; the operation of the

CSD can be described as follows:

F1 = Conv3×3(F ), F2 = Spacedepth(F1), (1)

where F1 ∈ R
C1×H×W is the output of convolution layer. F2 ∈ R

4C1×H/2×W/2 represents the

final output after the operations of the space-to-depth.
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Figure 3 Illustration of CSD. Following the convolution operation and subsequent downsampling,

the output dimensions are reduced to half of the input dimensions, while the number of

channels increases to four times that of the input

The space-to-depth operation can be formulated in two dimension scenarios as follows:

f0,0 = F1[0 : W : 2, 0 : H : 2], f0,1 = F1[0 : W : 2, 1 : H : 2],

f1,0 = F1[1 : W : 2, 0 : H : 2], f1,1 = F1[1 : W : 2, 1 : H : 2].
(2)
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Generally, for a given feature map F1, a sub-map fx,y comprises all entries F1(i, j) for which

i+ x and j + y are given by half, effectively downsampling F1 by this scale.

Compared to employing pooling layers or convolutional layers for downsampling, the CSD

operation preserves more feature information, which is beneficial for loss function calculation

and overall network weight optimization.

3.3 Proposed CRM Module

Neural networks typically extract features from objects for detection tasks, yet certain ob-

jects are inherently associated with specific environments; for instance, penguins are indigenous

to Antarctica. While challenging, the differentiation between turtles and tortoises can be fa-

cilitated by considering their habitats—sea turtles reside in aquatic environments, whereas

tortoises are terrestrial.

The types of building defects considered in this study include cracks, dampness, and spalling.

For the first two types of defects, this study suggests that their causes are closely related

to environmental conditions. For example, dampness typically occurs in environments with

high moisture levels, while cracks are often caused by environmental vibrations. Therefore, if

moisture is detected in the surrounding environment of a target, the detection network will be

more confident in identifying the target as dampness. Similarly, vibrations can lead to a higher

incidence of cracks, increasing the likelihood of finding another crack near an existing one.

Inspired by this observation, this study posits that incorporating environmental information

could enhance detection accuracy.

To capitalize on this, a module is proposed to leverage environmental context. As depicted

in Figure 4, features F ∈ R
C×H×W are first extracted via a convolutional layer and then

divided into two halves, Fs1,Fs2 ∈ R
C/2×H×W . These are input into the Contextual Inter-

action Module (CA), where feature enhancement occurs through an additional convolutional

layer. Contextual environmental features are extracted using a dilated convolution (i.e., DCBK

operation) with a dilation rate of 4. The features are subsequently fused, and a residual con-

nection integrates Fs with the enhanced features to produce Fa1 ∈ R
C/2×H×W . This output

is combined with Fs and further processed by another convolutional layer to generate the final

feature set. Multiple CA operations, if applied, involve a fusion step before the convolutional

output. Additionally, the CA module in the decoder does not include any addition operations.

As detailed in the operations of the Combined Ambient Residual module (CRM).

F = Conv1×1(Finput), Fs1,Fs2 = split(F ), Fa1 = CA(Fs1),

Fa2 = CA(Fa1), Ff2 = Concate(Fa1, Fa2, Fs2), Fout = Conv1×1(Ff2),
(3)

where Fa2 ∈ R
C/2×H×W is the output feature map from another CA module. Ff2 ∈ R

3C/2×H×W

denotes the concatenation feature map. Fout ∈ R
C×H×W denotes the final output feature map.

The operations of the Contextual Interaction (CA) module proceed as follows:

Fc1 = Conv3×3(Fs), Fc2 = Conv3×3(Fc1), Fd1 = DConv3×3(Fc1),

Ff1 = Concate(Fc2,Fd1), Fa1 = Ff1 + Fc1,
(4)
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where Fc2 ∈ R
C/2×H×W denotes the convolutional feature map. Fd1 ∈ R

C/2×H×W denotes

the feature map from dilation convolutional layer. Fc2 ∈ R
C/4×H×W is feature map convoluted

to Fc1.
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Figure 4 Illustration of CRM. The CA module is capable of multiple serial connections. Here, only

a scenario with two serial connections is demonstrated

3.4 DGM Module

Figure 5 depicts the Deep Global Module (DGM) architecture. The input feature F ∈
R

C1×H×W undergoes an initial convolutional layer, generating the feature F1 ∈ R
C0×H×W .

Subsequently, F1 is enhanced through three successive 7× 7 global pooling layers, each refining

the features further. Concurrently, F1 passes through a separable convolution (indicated by the

green block), resulting in a nuanced feature set F2 ∈ R
C0×H×W . This feature set F2 is then

merged with the globally pooled features to form a composite feature matrix, which is processed

by another convolutional layer to produce the final output feature. This configuration leverages

separable convolutions to delve deeper into the feature space efficiently, and the 7× 7 pooling

size enhances global contextual capture by extending the receptive field.
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Figure 5 The structure of the proposed DGM. The three-channel global features are fused with the

deep convolutional features

3.5 Proposed Kilu Activation Function

Activation functions are nonlinear point-wise functions that introduce nonlinearity into the

linearly transformed input within a deep neural networks layer (DNN). The selection of the ac-

tivation function is crucial for gauging the network’s performance. Mathematically, the applica-

tion of an activation function in a neural network layer is expressed as z = φ(y) = φ(
∑

i wixi+b),

where z is the output of the activation function φ(y).
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Searching for an effective and robust activation function in DNNs poses considerable chal-

lenges, primarily due to the saturation characteristics of conventional functions. Saturation

refers to the tendency of the derivative of an activation function, δ(x), to approach zero in both

positive and negative domains, resulting in vanishing gradients. Classic activation functions

such as Sigmoid and Tanh are particularly susceptible to this phenomenon, often leading to di-

minished gradient propagation during training, especially when the inputs are excessively large

or small. The introduction of the Rectified Linear Unit (ReLU), defined as δ(x) = max(0, x),

marked a significant advancement in activation functions, facilitating more efficient training

dynamics. However, ReLU is not without its limitations, notably its susceptibility to the “dy-

ing neuron” problem, where neurons become inactive and only output zero if the inputs are

negative, thereby impeding the gradient flow across these neurons.

Therefore, we propose a flexible activation function called Kilu. As shown in Figure 6(a)

and Figure 6(b), like SiLU utilized in YOLOv9[14], the Kilu shares the similar unbounded upper

limits property on the right side of activation curve. The proposed activation function Kilu is

computed by multiplying the logarithm of the exponential function of Tanh with its input x

and defined as:

δ(x) = x log(1 + etanh(αx)), (5)

where α is the scaling parameter.

Figure 6 The graph of the function. (a) Kilu function’s graph for different values of α. (b) The first

derivative plot, and the second derivative plot of the Kilu function. (c) The first derivative

plot, and the second derivative plot of the SiLU function. Please zoom in for the best view

The first-row in Figure 6 depicts the graph of Kilu function for different values of α. It is

observable that the value of α affects the amplitude of the circular arc in the middle. As α

increases, the amplitude of the circular arc diminishes.

For substantial positive inputs, the Kilu function exhibits characteristics akin to SiLU, with

the output approximating a linear relationship to the input. Distinctively, the Kilu function

maintains a linear response even for negative inputs, unlike SiLU and other prevalent activation

functions. The first-order derivative of Kilu, denoted δ(x)′, is formulated as follows:

δ(x)′ = log(1 + etanh(x)) + x

(
etanh(x)(1−tanh2(x))

1 + etanh(x)

)

. (6)
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Similarly, the 2nd order derivative of Kilu with α=1 is given as follows:

δ(x)′′ =
2etanh(x) ∗ (1 − tanh2(x))

1 + etanh(x)
+

xe2tanh(x)(1− tanh2(x))2

(1 + etanh(x))2

+
xetanh(x)(1 − tanh2(x))2 − 2xtanh(x)etanh(x)(1− tanh2(x))

1 + etanh(x)
.

(7)

The second and third columns of Figure 6 depict the graphs of the first and second derivatives

of the Kilu and SiLU functions, respectively. Analyzing the first derivatives, it is evident

that the gradients of our activation functions do not approach zero as they extend towards

negative or positive infinity. Furthermore, they demonstrate consistent gradient values, which

suggests that our activation functions contribute to enhanced stability during network training.

Moreover, they facilitate activation across a broader spectrum of values. Notably, the second-

order derivative of the proposed Kilu function resembles the negative Laplacian operator, similar

to the second-order derivative of the Gaussian operator. This resemblance is advantageous for

function maximization.

3.6 Loss Function

Our framework employs two distinct loss functions: (i) Classification loss, which measures

the correctness of the class assigned to the detected object; and (ii) Regression loss, which

assesses the accuracy of the bounding box coordinates about the actual location of the object,

as detailed in [22].

3.6.1 Classification Loss

As detailed in Equation (8), the class-specific loss is calculated utilizing the cross-entropy

method:

Lcls = −
∑

i

M∑

c=1

gic log(pic), (8)

where g and p denote the ground truth and predicted values, respectively. M is the number of

categories. i denotes the i-th sample.

3.6.2 Regression Loss

Regression loss is consist of two parts: LDFL and Liou, LDFL can enhance the generality

capability and is formulated as:

LDFL = −((yi+1 − y) log(si) + (y − yi) log(si+1), si =
yi+1 − y

yi+1 − yi
, si+1 =

y − yi
yi+1 − yi

, (9)

where the yi and yi+1 are possible float vector. y is the ground-truth class.

Liou has two formations: Lciou and Lshape−iou
[23]. The Lciou formulations are defined:

Lciou = 1− IOU +
Dis2(b, b̂)

c2
+ ρk, IOU =

|B ∩ B̂|
|B ∪ B̂| , ρ =

k

(1− IOU) + k
,

k =
4

π2

(

arctan
ω̂

ĥ
− arctan

w

h

)2

.

(10)
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In the specified formulation, B̂ = (x̂, ŷ, ω̂, ĥ) denotes the coordinates of the ground-truth bound-

ing box, while B = (x, y, ω, h) corresponds to the predicted bounding box. The variables b and

b̂ represent the central points of B and B̂, respectively. The function Dis(·) is defined as the

Euclidean distance between these central points, and c represents the diagonal length of the

smallest enclosing box that covers both B and B̂.

The Lshape−iou is formulated as:

Lshape−iou = 1− IOU + distanceshape + 0.5ωshape, ww =
2(ŵ)scale

(ŵ)scale + (ĥ)scale
,

hh =
2(ĥ))scale

(ŵ)scale + (ĥ)scale
, distanceshape =

hh(xc − ĥc)
2 + ww(yc − ŷc)

c2
,

ωshape =
∑

t=w,h

(1− e−wt)θ, θ = 4, ww =
hh|w − ŵ|
max(w, ŵ)

, wh =
ww|h− ĥ|
max(h, ĥ)

.

(11)

We explore the influence of Lciou and Lshape−iou on a network in Subsection 4.3. The total

loss is expressed as follows:

Losstotal = 0.5Lcls + 1.5LDFL + 7.5Liou. (12)

4 Experiment

This section assesses the generalizability of the constructed defect detection framework

across three distinct datasets. We also experimentally validate the effectiveness of the pro-

posed module and activation function. Additionally, we evaluate the feasibility of deploying the

constructed framework on edge-computing devices.

4.1 Experimental Setup

4.1.1 Implementation Details

To expedite our training experiments, we employ two NVIDIA A40 GPUs, one of NVIDIA

RTX 3090 and NVIDIA GTX 4090 for independent training runs. All evaluations are conducted

exclusively on the NVIDIA GTX 3090 during the testing phase. The initial and final learn-

ing rates are 0.01. The optimizer uses stochastic gradient descent (SGD) with a momentum

parameter of 0.937 and weight decay of 0.0005. The value of epochs is 500.

4.1.2 Datasets

To illustrate the generalization performance of CARNet, we benchmark the constructed

CARNet on three challenging datasets: A self-collected dataset, SSGD[24] and NEU-Det[25].

SSGD is an open-source smartphone screen glass dataset that includes seven basic common

types of defects occurring on glass panels, while NEU-Det is a steel surface defect dataset

encompassing six types of defects. SSGD has an input resolution of 1500×1500, which helps

verify the computational efficiency of our method under high-resolution input conditions, while

its diverse detection targets contribute to validating the detection effectiveness of our approach.

NEU-Det is a classical dataset containing various types of defects, and due to its lower resolution
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and smaller defect sizes, defect features are difficult to extract. Using this dataset helps evaluate

the robustness of our method in detecting small defects and extracting their features.

We remove the images with resolution of 8000×6000 in CUIBIT[26] and capture additional

images using smartphone. As depicted in Figure 7, optical images are captured at a resolution

of 4624 × 3472 using both cameras and smartphones. This extensive defect dataset includes

5527 high-resolution images collected from various infrastructures such as pavements, roads,

buildings, and bridges, cataloging defects like cracks, spalling, and moisture. About 20% of

the images constitute the test set, with the remaining 80% split between training (72%) and

validation (8%). For training and testing, the input resolution is adjusted to 1024× 1024.
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Figure 7 The example images of self-collect datasets. Please zoom in for the best view

Figure 8 presents the distribution of dataset labels and the correlation among the target

classes. Figure 8(a) respectively represent the following: The number of instances for each cat-

egory in the dataset, the distribution of object bounding box sizes, the distribution of bounding

box center positions relative to the entire image, and the ratio of bounding box width and height

to the overall image dimensions. Figure 8(b) illustrates the modeling of label correlations by

the object detection algorithm during the training process. Each matrix cell represents a label

used by the model during training, and the shading of the cells reflects the degree of correlation

between the corresponding labels. Darker cells indicate that the model has learned a stronger

association between the two labels, while lighter cells suggest a weaker correlation. The color

along the diagonal represents the self-correlation of each label, which is typically the darkest,

as the model finds it easier to learn the relationship of a label with itself. The dataset poses

a challenge due to the considerable variation in the physical characteristics of the targets, in-

cluding size and shape. Figure 8 underscores the imbalanced and biased nature of the dataset,

as indicated by the significant disparities between the defect classes.
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(a) Label distribution (a) Label histogram

Figure 8 Correlogram of the target classes with their (a) corresponding label distribution and (b)

the size and location of the labels in the dataset

4.2 Comparison with Prior Works

Self-collected dataset. From Table 1, our CARNet performs best in mAP0.5 and

mAP0.5:0.95 with fewer parameters. Specifically, our CARNet-n surpasses YOLOv10-x in accu-

racy by 3%, while achieving nearly 86% reduction in parameters and 93% reduction in com-

putational costs. Additionally, with a model size that is not much less than YOLOv8-l (83.7

vs. 87.7), our CARNet-m exhibits a 2% higher accuracy (mAP0.5:0.95) than YOLOv8-l (57.9

vs. 56.9). Our CARNet-n shows an accuracy similar to YOLOv8-m at mAP0.5 (81.3 vs. 81.4),

whereas surpasses YOLOv8-m by nearly 1% at mAP0.5:0.95 (56.3 vs. 55.8), while also reducing

the model size by 82% (9.3 vs. 52.1). Similarly, our model achieves higher accuracy with signif-

icantly lower computational overhead. Even our most computationally expensive CARNet-m

is 56% less than the best-performing YOLOv8-x in computational cost (289.4 vs. 660.8). The

visual comparison in Figure 9 demonstrates that our method has a low miss detection rate and

high confidence, highlighting the practical utility of the proposed approach. Figure 10 demon-

strates that our approach offers a better balance between computational cost and accuracy, as

well as between model size (parameters) and accuracy.

SSGD. From Table 2, we can clearly observe that our CARNet achieves the best perfor-

mance on all five evaluation metrics, where our CARNet-n obtains 4.9, 42.2, 83.3, 25.2, and 51.1

on parameters, FLOPs, FPS, mAP0.5:0.95, and mAP0.5, respectively. The best performance on

the five metrics fully illustrates the advantages of the proposed network.

The proposed CARNet-n only has 4.9 M parameters and runs at 83.3 FPS for the 1500

image resolution input. Our method is 7.6×, 6.8×, 5.3× and 4.6× faster than ScalableViT-

S, PVT-S, UniFormer-Sh14h14, and Swin-T, respectively. CARNet achieves its best detection

performance with lower computational overhead without either sacrificing inference speed or

increasing parameters. Figure 1(b) and Figure 1(c) also demonstrate that our method does

not increase accuracy by adding parameters or sacrificing speed to enhance accuracy. Instead,
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it maintains an excellent balance between the number of parameters and accuracy, as well as

between speed and accuracy. The competitive performance fully illustrates the advantages of

the proposed network for UAV applications.

Table 1 Quantive benchmarking results on self-collected datasets

Model
mAPall (%)↑ mAPcrack (%)↑ mAPspalling (%)↑ mAPmoisture (%)↑Model size (M)↓FLOPs (B)↓

- mAP0.5mAP0.5:0.95mAP0.5mAP0.5:0.95mAP0.5mAP0.5:0.95mAP0.5 mAP0.5:0.95 - -

YOLOv6-n[27] 76.5 49.8 77.8 48.4 87.3 60.8 57.6 31.7 10.0 29.0

YOLOv6-s[27] 78.5 52.7 80.8 51.3 88.9 63.7 66.0 43.0 38.7 115.6

YOLOv6-m[27] 79.8 54.4 81.3 53.0 91.1 67.6 66.8 42.5 72.5 210.4

YOLOv6-l[27] 82.0 54.9 82.1 53.5 92.3 66.0 71.5 45.2 111.6 368.6

YOLOv7-t[28] 72.6 42.9 73.8 40.0 86.4 56.9 57.6 31.7 12.3 13.0

YOLOv7[28] 77.2 49.7 80.8 49.0 87.6 59.8 63.0 40.3 74.9 264.3

YOLOv8-n[22] 79.5 53.0 81.5 51.9 90.9 63.5 65.9 43.6 6.4 21.0

YOLOv8-s[22] 80.8 55.2 82.5 53.1 88.3 65.3 71.7 47.1 22.6 73.3

YOLOv8-m[22] 81.4 55.8 83.3 54.5 90.4 67.0 70.5 46.0 52.1 202.4

YOLOv8-l[22] 81.8 56.9 84.4 55.7 91.8 68.9 69.2 45.9 87.7 423.4

YOLOv8-x[22] 82.4 57.5 82.7 55.7 92.8 69.9 71.5 46.8 136.8 660.8

RT-DETR-l[29] 78.4 48.9 77.8 45.5 85.7 60.7 71.8 40.6 66.1 -

RT-DETR-x[29] 79.2 49.9 79.2 46.5 86.0 60.6 72.4 42.7 135.4 -

YOLOv9-t[14] 77.4 52.4 77.9 50.6 88.2 64.7 66.2 41.9 6.2 17.2

YOLOv9-c[14] 82.4 57.0 84.8 55.9 92.2 68.9 70.3 46.2 98.3 263.2

YOLOv10-n[30] 77.8 50.6 80.3 49.9 87.3 62.1 65.8 39.8 5.9 17.2

YOLOv10-s[30] 79.1 52.4 81.7 52.9 90.1 63.6 65.7 40.5 16.6 55.3

YOLOv10-m[30] 79.5 53.3 81.4 52.9 90.6 64.8 66.5 42.3 33.6 151.3

YOLOv10-b[30] 81.1 54.4 83.4 54.0 90.5 66.0 69.6 43.2 41.6 235.5

YOLOv10-x[30] 81.7 54.6 83.3 54.4 90.0 64.2 71.6 45.1 64.2 410.6

CARNet-un 80.9 55.4 83.9 54.8 90.9 67.0 67.9 44.4 9.3 29.2

CARNet-us 81.8 56.6 84.2 55.9 91.1 67.7 70.2 46.1 34.7 108.2

CARNet-n 81.3 56.3 83.8 54.9 90.4 66.4 69.6 47.6 9.3 29.2

CARNet-s 81.6 57.2 83.5 56.2 91.8 69.3 69.6 46.2 34.7 108.2

CARNet-m 82.8 57.9 84.6 57.6 91.7 68.9 72.1 47.3 83.7 289.4

Note: CARNet-un indicates that the regression loss function used is shape-IOU. ↑ (↓) indicates that larger

(smaller) values lead to better (worse) performance.
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Figure 9 Qualitative visualization. Our method achieves high detection confidence with a low miss-

detection rate. Please zoom in for the best view
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Figure 10 (a) Trade-off performance of model size versus accuracy. (b) Trade-off performance of

BFLOPs versus accuracy
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Table 2 Quantive benchmarking results on SSGD-part1

Method Parameters (M)↓ FLOPs (B)↓ FPS↑ mAP0.5:0.95 (%)↑ mAP0.5 (%)↑
Faster R-CNN[31] 41.2 303.8 26.2 19.3 41.5

Casecade R-CNN[32] 68.9 331.6 21.7 20.9 42.3

RetinaNet[33] 36.2 311.2 25.0 16.4 37.5

FCOS[34] 31.9 296.2 28.1 19.4 41.9

ATSS[35] 31.9 303.3 24.2 22.3 46.1

GFL[36] 32.1 307.9 25.0 19.6 43.2

YOLOv5-m[37] 19.9 266.7 59.5 16.2 38.9

YOLOX-m[38] 48.3 405.1 36.9 13.4 36.2

Swin-T[39] 44.8 308.2 18.1 19.2 42.6

PVT-S[40] 78.4 281.3 12.3 16.0 36.7

ScalableViT-S[41] 43.3 297.7 10.9 21.2 46.4

UniFormer-Sh14h14
[42] 38.2 276.4 15.8 18.9 45.0

YOLOv8-m[22] 27.4 432.3 71.8 21.7 46.2

CARNet-un 4.9 42.2 83.3 24.2 52.3

CARNet-n 4.9 42.2 83.3 25.2 51.1

Note: ↑ (↓) indicates that larger (smaller) values lead to better (worse) performance.

NEU-Det. We opt to compare our approach with the latest method, BDDN[43], and as

shown in Table 3, our method surpasses BDDN in mAP0.5. While our method underperforms

BDDN in the categories of Crazing and Rolled, it significantly outperforms this method in

the remaining three categories regarding detection accuracy. Notably, our method exhibits a

20% higher accuracy on Pitted than BDDN, demonstrating the suitability of our method for

detecting industrial defects.

Table 3 Quantive benchmarking results on NEU-Det

Method Backbone mAP0.5 Crazing Inclusion Rolled Scratches Pathes Pitted

SSD512[44] VGG16 72.1 39.9 79.6 61.9 84.4 86.7 79.8

RetinaNet[33] Darknet53 68.0 43.7 76.2 58.1 76.0 74.3 79.6

BDDN[43] DRN+DA+FPN 76.2 48.3 82.4 74.9 90.4 89.3 71.7

CARNet-um - 76.9 44.0 82.9 65.9 95.1 91.9 81.6

CARNet-m - 76.4 42.9 83.6 60.5 96.0 90.2 85.3

Note: The bold values represent the experimental results from the proposed method.

4.3 Ablation Study

Table 4 presents the results of the ablation study on the self-collected dataset. The advanced

method YOLOv8 is chosen as baseline. By conducting ablation experiments on the baseline

through the integration of various modules and methods, we aim to validate the contribution

and performance improvement of each component relative to the baseline. Here, mAP1 and

mAP2 respectively represent mAP0.5:0.95 and mAP0.5.
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Table 4 Effects of various components on performance

Components Ablation study

space-depth � � � � � � �
Shape-IOU � � � �
DGM � � � � �
CRM � � �
Kilu � �
Gelu �
mAP1/ mAP2 53.0/79.5 52.5/79.9 53.0/78.7 53.9/80.5 54.1/79.6 54.2/81.4 54.8/81.5 55.5/81.2 56.3/81.3 55.4/80.9

Improvement - -0.5/+0.4 NI/-0.8 +0.9/+1.0 +1.1/+0.1 +1.2/+1.9 +1.8/+2.0 +2.5/+1.7 +3.3/+1.8 +2.4/+1.4

Note: The�denotes that the module is integrated into this ablation study. NI denotes “no improvement”.

4.3.1 Baseline+Shape-IOU

In the baseline configuration using CIoU, substitution with Shape-IoU yields mAP0.5:0.95

and mAP0.5 of 53.0 and 78.7, respectively, with mAP0.5 experiencing a decline of 0.8. Analysis

of Tables 1 and 3 reveals Shape-IoU’s sensitivity to bounding box shapes, affecting dimensions

and leading to performance reductions in mAP0.5:0.95 with larger inputs. Conversely, smaller

inputs, as demonstrated in Table 2, improve outcomes, highlighting the necessity for rigorous

validation of Shape-IoU across different detection scenarios, with Table 1 indicating superior

performance of CARNet-us in mAP0.5. In summary, while Shape-IoU may impact localization

performance, it positively affects detection efficacy in mAP0.5; however, its effectiveness requires

experimental validation.

4.3.2 Baseline+Space-to-Depth

After integrating the baseline with space-to-depth, the performance mAP0.5:0.95 and mAP0.5

respectively increased by 0.9 and 1.0. This enhancement is attributed to the space-to-depth

operation effectively preserving the complete transfer of features.

4.3.3 Baseline+GeLU

The baseline accuracies are 53.0 and 79.5, respectively, compared to 52.5 and 79.9 after

incorporating the GeLU function, with mAP0.5:0.95 decreasing by 0.5 and mAP0.5 increasing by

0.4. This suggests that GeLU inadequately enhances the data representation capabilities of the

neural network, necessitating the exploration of a more effective activation function to improve

model performance.

4.3.4 Baseline+Space-to-Depth+Shape-IOU

Although the sole integration of Shape−IoU[23] did not enhance performance, its combi-

nation with space-to-depth improves the mAP0.5:0.95 by 1.1. However, mAP0.5 experiences

a degradation of 0.9 compared to the scenario with only space-to-depth. Therefore, further

optimization is required.

4.3.5 Baseline+Space-to-Depth+Shape-IOU+DGM

Due to the degradation observed in mAP0.5 during the previous ablation study, we design

the DGM by integrating global and depth features to enhance performance further. The results

show improvements in mAP0.5:0.95 and mAP0.5 by 1.2 and 1.9, respectively, compared to the

baseline. This indicates the effectiveness of the DGM and aligns with our initial intent for

designing this module.
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4.3.6 Baseline+Space-to-Depth+DGM

Due to the performance degeneration observed with Shape-IoU and the enhancements

achieved with space-to-depth and DGM, we are prompted to conduct an ablation study on

space-to-depth and DGM. We discover that the combination of space-to-depth and DGM im-

proved mAP0.5:0.95 and mAP0.5 by 1.8 and 2.0, respectively. This further confirms the effec-

tiveness of the involved DGM and the space-to-depth.

4.3.7 Baseline+Space-to-Depth+DGM+CRM

We observe that moisture detection performance is the poorest by evaluating the existing

methods. By incorporating environmental semantics, we design a Contextual Residual Module

(CRM), and the results of integrating CRM are shown in Table 5. The accuracy for moisture

detection improved by 3.6% and 3.2%. Cracks are often caused by environmental vibrations,

so it is common to find additional cracks in the vicinity of an existing one. On the other hand,

spalling is typically a result of material quality issues in construction or industrial products,

and is less related to environmental factors. Therefore, as shown in Table 5, the detection

accuracy for cracks improves, but environmental information introduces redundant data for the

spalling category, leading to a decrease in spalling detection accuracy. Additionally, the overall

mAP0.5:0.95 increased by 1.3%. These results are consistent with our initial intent for designing

this module.

Table 5 Ablation study on CRM

Method mAPall (%)↑ mAPcrack (%)↑ mAPspalling (%)↑ mAPmoisture (%)↑
- mAP0.5 mAP0.5:0.95 mAP0.5 mAP0.5:0.95 mAP0.5 mAP0.5:0.95 mAP0.5 mAP0.5:0.95

w/o CRM 81.5 54.8 83.7 53.3 91.6 66.3 69.3 44.8

w/ CRM 81.2 55.5 82.5 53.5 89.6 65.6 71.5 47.3

4.3.8 Baseline+Space-to-Depth+DGM+CRM+Kilu

In the previous ablation study, while mAP0.5 show improvement, mAP0.5:0.95 experience a

slight regression. To enhance the neural network’s ability to represent complex data without

additional parameters, we propose a flexible activation function. This function allows the

adjustment of the parameter α, improving the network’s nonlinear representation capabilities

at varying depths, as shown in Table 6. Initial experiments with α values ranging from 0.3 to

1.0 indicate optimal accuracy at α = 0.5. Further testing focused around α = 0.5 reveal that

accuracy peaks at α = 0.55. The comparative experiments shown in Table 4.3.8 demonstrate

that the proposed activation function, Kilu, outperforms 20 other activation functions, including

Mish[45], SiLU, and ReLU, in terms of activation performance.

Table 6 Ablation study on Kilu

α 0.3 0.4 0.45 0.5 0.54 0.55 0.56 0.57 0.6 0.7 0.8 0.9 1.0

mAP0.5:0.95 55.2 55.6 56.1 55.6 54.9 56.3 55.1 55.4 54.4 55.5 54.6 54.7 54.9

mAP0.5 80.0 80.6 81.1 80.8 79.7 81.3 80.3 80.4 80.6 80.5 80.7 80.7 79.7
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Table 7 Activation function comparison

Activation function mAP0.5:0.95 (%)↑ mAP0.5 (%)↑
RReLU[46] 54.8 80.5

Mish[45] 54.2 80.0

LeakyReLU[47] 55.2 80.9

Tanh 49.6 75.4

Tanhshrink 48.2 73.8

Hardshrink[48] 10.1 22.8

ReLU[20] 53.7 79.7

GeLU[21] 53.8 78.1

SiLU 55.5 81.2

PReLU 54.0 79.3

CELU 54.6 79.7

Hardtanh[49] 49.0 75.7

ReLU6[50] 54.2 79.6

Hardswish[51] 55.2 79.8

ELU[52] 55.5 81.0

SELU[53] 53.5 78.1

Sigmoid[54] 47.2 73.1

Softsign[55] 49.3 74.0

LogSoftmax 40.8 64.5

Softshrink 48.9 74.4

Kilu(ours) 56.3 81.3

4.3.9 Baseline+Space-to-Depth+DGM+CRM+Kilu+Shape-IOU

Although prior experiments indicate that Shape-IoU might impair performance, we decided

to reevaluate it as a regression loss function based on findings from an earlier ablation study.

This reevaluation indeed confirms a reduction in accuracy, yet an increase in accuracy (MAP0.5)

is observed on the NEU-Det dataset with an input size of 640. This indicates that Shape-IoU’s

effectiveness is sensitive to variations in bounding box size and shape, which are influenced by

changes in input size, underscoring that its efficacy is contingent upon input dimensions.

4.4 Analysis of Activation Feature Maps

The visualization of activation maps across various layers in a deep neural network is a

critical technique for elucidating the internal mechanics of model learning processes. To dissect

the impact of each component on the extraction and learning of salient features, we present the

activation maps associated with different non-linear functions in Figure 11. The set comprises

32 distinct activation maps. An observable phenomenon in Figure 11 is the prevalence of

deeper blue hues in certain maps, indicative of the dying neuron issue, which stems from the

non-linearities inability to effectively manage negative values during activation.

The space-to-depth downsampling method is engineered to transmute spatial features into

depth features while ensuring the integrity of feature transmission is maintained. This method-

ology results in a distinctly refined feature map in Figure 11(c) compared to Figure 11(b).
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Furthermore, this approach adeptly mitigates the influence of non-pertinent features. For ex-

ample, although the water pipe is conspicuous in both the input image and Figure 11(b), it is

markedly subdued in Figure 11(c). Additionally, it can be observed that the feature maps are

more refined and smooth, facilitating the computation of loss. The DGM specifically enhances

the representation of critical target features.

The CRM is specifically designed to exploit the contextual semantics of the ambient envi-

ronment to augment the detection capabilities concerning moisture. This is evidenced in Fig-

ure 11(e), where the CRM broadens the activation regions pertinent to the environmental

context, thereby yielding more pronounced features relative to those seen in Figure 11(d).

(b) Baseline (c) +Space-to-depth

(d) +Space-to-depth+DGM

(a) Input

(f) + Space-to-depth+DGM+CRM+Kilu(e) + Space-to-depth+DGM+CRM

Figure 11 Visualization of feature map for different components

Kilu tends to generate fewer non-learnable filters compared to other activations. This char-

acteristic fosters more expansive activation zones and a more homogeneous feature map dis-

tribution. Such uniformity in the output feature maps is beneficial to easier optimization and

better generalization[56]. This factor contributes to the superiority of Kilu over SiLU and GeLU.

4.5 Deployment for Edge-Computing: NVIDIA Jetson Orin NX

To demonstrate the deployability of our method on edge-computing devices mounted on

unmanned aerial vehicles (UAVs), we conduct experiments to validate its effectiveness in such

a setting. In practical applications of UAV-based building or industrial product inspection, it is

sufficient to simply mount edge computing devices equipped with the detection system on the

drones for use. Consequently, we implement CARNet on an NVIDIA Jetson Orin NX device

with 16 GB GPU memory and 8 CPU cores. The Orin NX is equipped with a USB camera.

We test the exterior walls, bridge rails, and bridge piers of Cheung Shu Tan Village in Hong

Kong on-site. We are using input frames at a resolution of 1024× 1024. The CARNet-n model

effectively detects defects and achieves an enjoyable real-time detection of 15.0 FPS. Figure 12

displays the on-site detection results on edge-computing device. We conduct detections on four

buildings, with each column representing the results of defect detection at different locations of

the same building.
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Through the simulations above and real-world experiments, we have thoroughly demon-

strated that our method can be deployed on edge-computing devices while ensuring high ac-

curacy, confirming the reliability and feasibility of our approach, and aligning with our initial

expectations.

(a) Bridge pier (b) Façade-1 (c) Bridge rail (d) Façade-1

Figure 12 Field test results for edge computing devices. Please zoom in for the best view

5 Conclusion

In this article, we have presented a environmental information-assisted and activation repre-

sentation network for accurate and fast defect detection. Our network named CARNet employs

convolutional space-to-depth for extracting features and downsampling. The proposed DGM

and CRM for feature enhancement and fusion. The environmental information can assistant

locate the defect target and defect prediction. Novel and flexible activation functions further

stimulate the network’s capacity for nonlinear representation, thereby enhancing its detection

performance. Our approach enhances accuracy while reducing parameters by 82% for CNN

methods. Additionally, it surpasses Transformer-based methods in accuracy with an 89% re-

duction in parameters and an 86% decrease in computational cost, achieving nearly eight times

faster inference speed. The real-time detection of 15 FPS deployed in edge computing validates

the portability and reliability of our approach.

In the future, we will extend our method to larger datasets to validate its effectiveness

and apply a weighted loss function to address the common issue of data imbalance in large-

scale datasets. Additionally, we plan to integrate extra sensors to capture more environmental

information to aid defect detection, such as using infrared sensors and acoustic sensors to gather

additional signals, enhancing the robustness of model training and improving defect detection

accuracy.
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