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Abstract— This article focuses on the challenge of accurate
microaerial vehicle (MAV) detection under memory-constrained
and lower computational cost conditions. A miniature MAV
detection framework, DRNet, is proposed to address this issue.
DRNet incorporates a dual skip concatenation (DSC) network
and squeezing excitation residual (SER) networks for feature
extraction, which enhances the model’s representation capacity.
Additionally, spatial attention computation improves object local-
ization and representation capabilities. A lightweight network
facilitates efficient feature fusion, further optimizing DRNet’s
performance. DRNet’s superior performance over other methods
is validated across four challenging datasets. DRNet achieves
a comparable accuracy-matching heavyweight method while
saving 99.97% parameters, and a compact model size of just
309 kB makes it the smallest high-accuracy, low-computational-
requirement MAV detector to date. Furthermore, DRNet can
reduce computational costs by 95.3% and GPU memory usage
by 50% when processing high-resolution images with dimensions
of 1280 × 1280. Challenging real-world tests and experimental
deployments on edge-computing devices further confirm DRNet’s
feasibility and portability.

Index Terms— Edge computing, energy-efficient, microaerial
vehicle (MAV), miniature deep learning.

I. INTRODUCTION

VISION-BASED microaerial vehicle (MAV) detection and
confidence measurement are crucial in various applica-

tions, such as flight safety, collision avoidance, autonomous
navigation in air transportation, multi-MAV visual formation,
and privacy protection [1]. The ability to detect small targets
such as MAVs is a critical performance metric for assessing
detection methods [2]. Existing advanced detectors require
significant computational resources and memory footprint,
challenging their implementation on memory-constrained
edge-computing devices, while low-power consumption detec-
tors typically suffer from insufficient accuracy. A compact
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MAV detection framework that ensures efficient and accurate
detection with reduced computational overhead and memory
usage can facilitate its application in edge-oriented microdeep
learning systems.

Several innovative detectors reduce the computational cost
by downscaling the input size by a large ratio. For example,
TinyDet employs a 320 × 320 input size and a 5 × 5 feature
map [6] for detection. ThunderNet [7] uses a 320 × 320 input
but relies solely on a 20 × 20 feature map for detection.
Pelee [8] processes a 304 × 304 input, with the largest fea-
ture map for detection being 19 × 19. The smallest variant
within TinyDet, TinyDet-S, still has a larger model size of
19.8 MB. While employing smaller input images reduces
computational overhead, it results in less detailed feature maps,
thereby diminishing the effectiveness of small object detection.
Conversely, larger detectors like Faster R-CNN [9] utilize an
input size of 800 × 1333, yielding a larger feature map of
200 × 333 to enhance detection accuracy for small targets.
However, the substantial model size of Faster R-CNN imposes
a burden on memory-constrained devices and increases com-
putational complexity. In summary, while smaller input sizes
enhance efficiency, they diminish detection accuracy; larger
models, though more accurate, increase computational costs
due to higher complexity [10]. Therefore, exploring a frame-
work that balances the accuracy of large models with the
low complexity and low memory usage of small models will
enhance the deployment and application of MAV detection
methods on memory-constrained devices.

This work proposes a network for MAV detection, namely,
DRNet, an end-to-end detector optimized for memory-efficient
and accurate detection of MAVs with high-resolution feature
maps. We utilize squeezing excitation residual (SER) networks
followed by a dual skip concatenation (DSC) network for
feature extraction and incorporate a feature fusion network
for enhancing the feature map. The dropout operation in
each SER can mitigate the risk of overfitting, and channel
attention computation can enhance the feature representation
ability [11]. The DSC network design can enhance small
object detection performance; however, it may also increase
computational overhead. To balance computational overhead
and efficacy, only one DSC network is integrated after the
SER networks in DRNet. A max-pooling layer connects
the SER to the DSC, acting as a downsampling mecha-
nism. A lightweight feature fusion network is designed to
enhance multiscale object detection. Spatial attention compu-
tation is applied before the fusion operation to improve MAV
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Fig. 1. (a) Model size versus accuracy on NPS-Drone [3]. The numerical values within the brackets indicate the model size, while the numbers above
the bars represent the accuracy. Our DRNet achieves higher mAP with significantly fewer parameters compared with other detectors [4], [5]. (b) Qualitative
real-world detection visualization results. DRNet can detect MAVs with higher confidence than VDTNet and LENet. Please zoom in for the best view.

localization and representation ability by filtering redundant
information [12]. The carefully designed feature extraction and
fusion networks enjoy fewer channels to reduce parameters
and computational costs. The detection head employs five
anchors per grid cell, covering a broader detection area and
enhancing overall accuracy. Performance evaluations on four
challenging datasets confirm the proposed method’s detection
capabilities.

As shown in Fig. 1(a), the proposed DRNet’s accuracy
is compared with advanced methods such as VDTNet [4]
and LENet [5]. The number in square brackets indicates
the model size, with accuracy numbers displayed above the
bars. DRNet surpasses VDTNet’s accuracy by 3% with a
significantly smaller model size (309 kB versus 3994 kB),
just one-tenth of its size. Similarly, DRNet exceeds LENet’s
accuracy by 4%, with less than one-tenth of the model size
(309 kB versus 4608 kB), making it highly suitable for
deployment on memory-constrained devices.

Fig. 1(b) shows effective MAV detection visualizations,
where each row represents the same frame from a video, and
each column represents detection results from DRNet, VDT-
Net, and LENet, respectively. The first row displays frame 780
of video 39, and the second row displays frame 45 of
video 40. Red numbers indicate target detection confidence.
DRNet detects targets with higher confidence than VDTNet
and LENet, establishing it as the smallest and most accurate
MAV detection method with superior practical performance.

In summary, the contributions of this work are as
follows.

1) We propose DRNet for accurate and efficient MAV
detection on high-resolution feature maps. DRNet
achieves modeling capability comparable to the
advanced TransVisDrone [13] without many parameters,
while maintaining lower memory usage and latency.
Specifically, DRNet saves 99.97% parameters compared
to TransVisDrone.

2) We design an SER network and a DSC network for
enhancing feature extraction and representation ability,
utilizing spatial attention calculation to filter redundant

information and then design a lightweight feature fusion
for enhancing the multiscale object detection.

3) Detailed ablation experiments on multiple challenging
datasets validate the effectiveness of the SER and DSC
networks and the rationale of DRNet. Qualitative visu-
alizations further confirm that the designed strategies
achieve the expected results.

4) Extensive comparisons on four challenging datasets
show that the method balances accuracy and speed
with reduced computational cost, achieving state-of-the-
art performance on high-resolution images. Evaluations
across various scenarios, including small MAV detec-
tion, low-light, and camouflage, confirm its practical
effectiveness.

5) Deployment experiments on edge devices demon-
strate portability and feasibility for practical applica-
tions. Comparative results show inference speeds of
14.4 frames/s on GPU and 2.7 frames/s on CPU, indicat-
ing efficiency even on CPUs with the attention operation.
The inference speed on the CPU is ten times faster than
that of advanced methods.

The remainder of this article is structured as follows.
Section II discusses related works. Section III provides a
detailed introduction to the model. Section IV presents the
experimental results and evaluates the performance. Finally,
Section V provides the conclusion and describes future work.

II. RELATED WORKS

A. Lightweight Object Detector

In recent years, publicly accessible lightweight mod-
els for object detection have developed rapidly. Advanced
lightweight design methodologies have propelled the evolution
of these approaches [14]. Lightweight detection networks
frequently serve as feature extractors. For example, integrating
MobileNet [15] into Faster R-CNN [9] reduces the model
size by 171 MB compared to using ResNet50 [16] as the
feature extraction network. Similarly, applying MobileNet
to Cascade R-CNN [17] reduces the model size by

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 23,2025 at 15:01:41 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: DRNet: A MINIATURE AND RESOURCE-EFFICIENT MAV DETECTOR 5015014

approximately 200 MB. However, this reduction in model
size can compromise accuracy, which may not justify the
tradeoff for accurate object detection. Many lightweight detec-
tors adopt specialized backbones tailored to the specific
demands of detection tasks, inspired by established classifi-
cation networks. Additionally, well-structured object detection
pipelines provide a solid foundation for developing lightweight
detection mechanisms. Predominantly, these lightweight detec-
tors [8], [18], [19] adopt a streamlined one-stage architecture.
For example, PeleeNet [8] exclusively employs traditional
convolutions, foregoing the popular mobile convolutions.
YOLObile [19] is specifically designed for mobile real-time
processing in resource-constrained environments, featuring
optimizations for such scenarios. On the other hand, while
two-stage detectors are generally more complex and slower,
some research indicates they can rival the efficiency of
one-stage models when the second stage is designed to be
lightweight [6], [20]. Although this two-stage method excels
in detecting small objects due to its intricate design, its exten-
sive parameters and complex strategies often lead to higher
computational complexity and memory footprint, which poses
challenges for deployment on memory-limited edge devices.

B. MAV Detection

Traditional detection methods such as radar and radio fre-
quency are limited in their ability to detect MAVs due to the
weak reflection signal [21]. Computer vision technology can
overcome the limitations of traditional detection methods. The
Dogfight [22] method accurately detects MAVs and performs
excellently across two public datasets. However, its inference
speed of 1 frames/s on the advanced processor NVIDIA
RTX A6000 limits practical deployment on edge-computing
devices. TransVisDrone effectively detects MAVs on edge-
computing devices, with its performance validated across three
datasets. However, TransVisDrone’s nearly 1-GB model size
imposes a substantial memory burden on detection systems.

Cheng et al. [23] improve memory efficiency by adopting
MobileViT as the feature extractor and PANet refinement
to increase detection accuracy. Modifications to the SAG-
YOLOv5s [24] reduce the input resolution of YOLOv5
to 96 × 96, resulting in a compact 15M model that min-
imizes computational demands and accelerates inference.
However, SAG-YOLOv5s manages an inference speed of only
15 frames/s on an advanced processor RTX 2070 SUPER.
Meanwhile, DTD-YOLOv4-Tiny [25] incorporates ShuffleNet
for feature extractor and applies k-means clustering to
fine-tune anchor configurations, thereby enhancing throughput
and diminishing parameters. However, DTD-YOLOv4-Tiny
falls short of the desired accuracy levels. Sun et al. [26]
improve the lightweight EXTD [27] by integrating spatial
attention modules, creating TIBNet, which surpasses DTD-
YOLOv4-Tiny in accuracy with a smaller 697-kB model size.
Nevertheless, TIBNet’s substantial 290-ms inference delay
poses challenges for practical deployment. Fang et al. [28]
propose an infrared drone detection method based on depth-
wise separable residual dense network and multiscale feature
fusion, but it still faces higher computational complexity and
slower inference speed.

We identify a gap in the literature concerning lightweight
detectors that have low memory and computational costs
yet match the performance of heavier detectors, highlighting
an urgent issue for further exploration. This article aims to
achieve accurate MAV detection with limited computational
resources and a reduced memory footprint.

III. METHODOLOGY

Motivation: This study aims to resolve the tradeoff between
low parameters and high accuracy by designing a method
that can be accurately deployed on devices with extreme
memory constraints. It addresses high memory and computa-
tional demands when processing high-resolution inputs. The
method achieves high accuracy and edge deployability for
MAV detection, matching the accuracy of larger models while
reducing parameters and computational overhead. The specific
design methodology will be detailed in Sections III-A–III-C.

A. DRNet Framework

As illustrated in Fig. 2, the DRNet framework is com-
posed primarily of the SER module, convolutional layers
with diverse activation functions, Dropout layers, max-pooling
layers, upsampling layers, a DSC network, and two detection
branches. One detection branch employs a spatial attention
mechanism to filter redundant information. The notation 2×

signifies that two modules are cascaded sequentially. The SER
module augments the model’s perceptual capabilities by adap-
tively assigning weights to feature channels, thereby enhancing
feature representation across varying scales. In particular, the
SER module aggregates global information from the input
feature map through global average pooling to generate a
compact global feature vector. This vector subsequently passes
through two fully connected layers and, utilizing a Sigmoid
activation function, produces weights for each feature chan-
nel. These weights are then applied to the original feature
map, enabling dynamic adjustment of feature responses across
channels as needed, thus reinforcing the model’s representation
power.

In DRNet, convolutional layers are employed to progres-
sively extract input features, forming a hierarchical structure
of abstract semantic representations. The activation func-
tions associated with these convolutional layers include
LeakyReLU, Linear, Mish [29], and Sigmoid. For the detec-
tion of small objects—where target information is limited
and redundant information is plentiful—an initial extraction
of more features is necessary, followed by suppression and
filtering of redundant information in a coarse-to-fine manner.
Consequently, early convolutional layers predominantly utilize
the LeakyReLU activation function, which retains a gradient
in the negative direction. While the Mish function also retains
a gradient in the negative direction, it simultaneously restricts
some gradient propagation, thus filtering out portions of the
redundant information. By stacking these convolutional layers,
a deep network architecture is constructed, enabling the model
to capture intricate spatial information and structural details.

To further enhance the network’s discriminative power,
DRNet incorporates a DSC network, as depicted in the blue
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Fig. 2. DRNet framework. The framework comprises a total of 47 layers, primarily including the SER module, convolutional layers with various activation
functions, dropout layers, a max-pooling layer, an upsampling layer, a DSC module, and two detection heads.

block at the bottom left of Fig. 2. This module fuses features
from two different convolutional layers, thereby preserving
finer details. The channel count in each DSC layer is generally
limited to 1 or 2, with a maximum of 256, optimizing memory
usage and reducing the model’s overall footprint.

In the final stage of the framework, two detection branches
are implemented to extract features at different scales, with
each branch tailored to handle features of a specific resolu-
tion, thereby enhancing the accuracy of multiscale detection.
Notably, the first branch incorporates a spatial attention calcu-
lation, which is essential for filtering redundant information
and improving localization quality. By selectively focusing
on the most relevant regions within the feature map, the
spatial attention calculation effectively suppresses irrelevant
noise and enhances the representation of key features, ulti-
mately contributing to improved detection accuracy. This
approach enables the framework to capture significant patterns
across various scales while preserving overall detection per-
formance. The channels in each CBL2 layer (a combination
of convolutional, layer normalization, and linear activation
function) adjacent to the detection head are represented
as C = (N + 5) × 5, where N denotes the number of
categories to be detected. Each grid generates five prior boxes,
compared to the typical detection method that produces only
three prior boxes. By generating five prior boxes, the model
achieves greater coverage of target ranges, thereby enhancing
detection accuracy.

Table I details the specific network layers and parameters
of DRNet. DRNet comprises a total of 47 layers, where
“CBX” denotes a convolutional layer with “X” representing
the activation function. The remaining layers are explained as
follows.

1) C: Channels.
2) K/S:3/1: Kernel or pooling size is 3 × 3, and the stride

is 1.
3) Route: Single parameter i indicates that a network

branch is derived from the i th layer. Multiple parameters
i, . . . , j indices the features of the i th to j − 0 layers
are concatenated.

Fig. 3. SER module.

4) Shortcut: Single parameter i , indicates that the current
layer is elementwise added with the i th layer.

5) Scale: Single parameter i , indicates that the current layer
is connected with the the i th layer.

6) Sam: Spatial attention computation.
7) Upsample: Increase the spatial dimension of the input

data with a given factor using interpolation.
8) Head: Output the detected objects’ confidence scores,

labels, and bounding boxes.

B. SER Module

As depicted in Fig. 3, each SER module comprises six con-
volutional layers and a Dropout layer, with channel attention
computations interconnecting the convolutional and Dropout
layers. ReLU serves as the activation function. The Dropout
layer employs a neuron dropout probability of 0.15 to miti-
gate overfitting, thereby enhancing the model’s generalization
capability by randomly deactivating certain neurons during
training. Notably, within the SER module, a linear activation
function follows the addition operation, bolstering the model’s
robustness in feature processing. The feature extraction pro-
cess of SER can be formulated as follows:

Fc1 = CBL2(CBL1(CBL1(Fin)))

Fc2 = CBL2(CBL1(CBL1(Fc1)))

Fcc = CA(Fc2)

Fout = Dropout(Fcc) + Fc1 (1)
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TABLE I
NUMBER OF CHANNELS AND FILTERS OF THE DRNET

in this context, Fin ∈ RC×W×H represents the input feature
maps, Fc1 ∈ RC/2×W×H denotes the output feature maps
from the first three convolutional layers, Fc2 ∈ RC/2×W×H

represents the output feature maps from the sixth convolutional
layer, Fcc ∈ RC/2×W×H indicates the output feature maps after
applying attention calculation to Fc2, and Fout ∈ RC/2×W×H is
the final outputs of the SER.

The channel attention calculation primarily augments the
performance of convolutional neural networks (CNNs) by
adaptively adjusting the weights of each feature channel. This
calculation involves three main steps.

1) Global Average Pooling: Spatial features for each chan-
nel are compressed into a global feature descriptor,
reducing high-dimensional spatial features to 1-D chan-
nel features that capture global information for each
channel.

2) Adaptive Learning via Fully Connected Network: The
compressed channel features undergo adaptive learning
through a fully connected network to generate weights
for each channel, reflecting the relative importance of
various channels.

3) Weight Application: These weights are subsequently
applied to the original feature channels, amplifying
essential feature channels while suppressing irrelevant
or less important ones.

The feature extraction process of attention computation can
be formulated as follows:

Fap = GlobalAvgPool(Fc2)

Fcbr = CBR(Fap)

A = σ(FC(Fcbr))

Fcc = A ⊙ Fc2 (2)

where GlobalAvgPool(Fc2) is the global average pooling of
the feature map Fc2 ∈ RC/2×W×H . FC is a fully connected
layer. σ is the sigmoid activation function to obtain attention
scores in the range of [0, 1]. ⊙ denotes the elementwise
multiplication between the attention map A ∈ RC/2×1×1 and
the feature map Fc2.

By implementing these steps, channel attention calcula-
tion effectively enhances the network’s feature representation
capacity, allowing the model to focus on channels with

significant information. This approach improves the accuracy
and efficiency of tasks, such as classification and detection
while maintaining low computational costs.

C. DSC Module

The blue module at the bottom left of Fig. 2 represents the
DSC module, which comprises four convolutional layers and
two concatenation layers. This module efficiently extracts and
processes input feature information through a combination of
multiple convolutional layers and a feature fusion mechanism.
Given the shallow network design of this study, issues, such
as gradient vanishing, which are prevalent in deeper networks,
are less likely to arise, and the network has a limited number
of channels. To better preserve feature information, the DSC
employs concatenation rather than addition. Specifically, the
first feature fusion layer merges the outputs of the first and
fourth convolutional layers along the channel dimension, pro-
ducing a more representative intermediate feature. The second
feature fusion layer then combines the outputs of the second
and third convolutional layers, allowing deeper features to
interact with shallower ones and thereby enhancing feature
representation.

The Mish function is selected as the activation function for
the convolutional layers within the DSC. As a nonlinear activa-
tion function, Mish maintains gradient flow and enhances the
neural network’s capacity to learn complex features. Compared
to traditional activation functions (e.g., ReLU and Tanh), the
Mish function significantly elevates the network’s nonlinear
representation ability. This enhanced nonlinearity enables the
network to capture finer distinctions within the data, thereby
improving overall model performance and prediction accuracy.
By utilizing the Mish activation function, the DSC mod-
ule retains a high level of feature representation, making it
well-suited for handling complex pattern recognition tasks.

If define Fdin ∈ RC×W×H as the input of DSC, the feature
extraction process of the DSC network is formulated as
follows:

Fdc1 = CBM(Fdin)

Fdc2 = CBM(Fdc1)

Fdc3 = CBM(Fdc2)

Fcon1 = Concate[Fdc3, Fdc2]
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Fdc4 = CBM(Fcon1)

Fcon2 = Concate[Fdc4, Fdc1] (3)

where Fdc1 ∈ R256×W×H , Fdc2 ∈ R1×W×H , Fdc3 ∈ R1×W×H ,
and Fdc4 ∈ R1×W×H represent the convolutional features,
respectively. Fcon1 ∈ R2×W×H and Fcon2 ∈ R257×W×H , respec-
tively, represent the fusion feature from different layers.

D. Loss Function

Our framework is optimized using three distinct loss func-
tions: 1) objectness loss, assessing the probability that a
predicted bounding box contains an object; 2) classification
loss, evaluating the accuracy of the predicted class for the
detected object; and 3) localization loss, quantifying the pre-
cision of the bounding box coordinates relative to the true
object location, as outlined in [30].

1) Objectness Loss: The feature map, denoted as F, is par-
titioned into a grid consisting of G × G cells. Within each
cell, S bounding boxes are predicted. The objectness loss,
which evaluates the likelihood that each predicted bounding
box accurately contains an object, can be mathematically
formulated as follows:

Lobj =

G2∑
a=0

S∑
b=0

Vobj
ab

(
pa − ĝa

)2

+ βnbj

G2∑
a=0

S∑
b=0

(
1 − Vobj

ab

)(
pa − ĝa

)2
. (4)

In the aforementioned formulation, Vobj
ab signifies a binary

indicator function, wherein the value is set to 1 if the j th
bounding box within cell a encapsulates the object. The
coefficient βnbj is assigned a value of 5. The terms pa and
ĝa correspond to the predicted confidence scores and the
ground-truth confidence scores, respectively.

2) Classification Loss: As delineated in the following
equation, the class-specific loss is calculated utilizing the
binary cross-entropy method:

Lcls =

S2∑
i=0

B∑
j=0

Vobj
i, j

∑
c∈classes

ĝi (c) log(pi (c)

+ (1 − ĝi (c)) log(1 − pi (c))). (5)

In this context, pi (c) and ĝi (c) represent the probability score
associated with the predicted class and the actual class label
from the ground truth, respectively.

3) Localization Loss: Similarly, the localization loss can be
formulated as follows:

L loc = 1 − IOU +
Dis2(b, b̂)

c2 + ρk

IOU =
|B ∩ B̂|

|B ∪ B̂|
, ρ =

k
(1 − IOU) + k

k =
4
π2

(
arctan

ω̂

ĥ
− arctan

w

h

)2

. (6)

In the specified formulation, B̂ = (x̂, ŷ, ω̂, ĥ) denotes
the coordinates of the ground-truth bounding box, while

Fig. 4. This statistical data shows the sizes of target MAVs in NPS-Drone [3],
TIBNet [26], Det-Fly [31], and DUT [32]. The blue points represent MAV
images where the width and height are less than 5% of the total image size.
The purple points indicate MAV images, where the sizes are less than 10%
of the image size. The remaining red points correspond to samples, where
the sizes are greater than 10% of the image size. (a) NPS-Drone. (b) TIBNet.
(c) Det-Fly. (d) DUT.

B = (x, y, ω, h) corresponds to the predicted bounding box.
The variables b and b̂ represent the central points of B and B̂,
respectively. The function Dis(·) is defined as the Euclidean
distance between these central points, and c represents the
diagonal length of the smallest enclosing box that covers both
B and B̂. The total loss is expressed as follows:

Losstotal = Lobj + Lcls + L loc. (7)

IV. EXPERIMENT

A. Dataset Analysis

To enhance the practicality of the trained model, the four
datasets used encompass a diverse range of scenarios. Among
these, NPS-Drone [3] and Det-Fly [31] are air-to-air MAV
detection datasets, TIBNet [26] is a ground-to-air MAV detec-
tion dataset, and DUT [32] contains images sourced from the
Internet. The varying distances of MAVs from the camera
result in a broad distribution of target sizes, closely reflecting
real-world detection conditions. The distribution of target sizes
across the four publicly available datasets is illustrated in
Fig. 4. Blue points indicate targets with both length and width
under 5% of the entire image; purple points denote targets
with both dimensions under 10%; and red points represent
targets whose length and width exceed 10% of the image size.
Targets with a length and width smaller than 10% of the image
are classified as small targets [31]. In the figure, the bottom
right corner displays the quantities of blue, purple, and red
points, respectively. From this statistical chart, it is apparent
that NPS-Drone and TIBNet consist entirely of small targets,
while Det-Fly and DUT predominantly fall within the small
target range. The following is a more detailed description of
the four datasets we used.
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1) NPS-Drone: This dataset is released by the Naval
Postgraduate School (NPS) and is publicly available.
It contains 50 high-definition videos (with resolutions of
1920 × 1080 and 1280 × 760), recorded using a GoPro-3
camera mounted on a custom triangular-wing MAV. The min-
imum, average, and maximum sizes of the MAV are 10 × 8,
16.2 × 11.6, and 65 × 21, respectively, with the average
MAV size being 0.05% of the average frame size. The dataset
consists of a total of 70 250 frames/s. In the experiments, the
first 40 videos are used for training and validation, while the
last ten videos are used for testing.

2) TIB-Net: The dataset contains 2860 images of various
types of MAVs, such as multirotor and fixed-wing MAVs.
The collected images have a resolution of 1920 × 1080 pixels.
The images are captured using a camera fixed on the ground,
approximately 500 m away from the MAV. The scenes cover
a variety of lighting conditions, including both daytime and
nighttime. Additionally, each image is annotated with bound-
ing box information in Pascal VOC format.

The dataset also includes some challenging samples, such as
very small MAVs, blurred MAVs, and complex environments.
Visual information alone is insufficient for accurate detection,
as the size of the MAV in the dataset is much smaller than that
of other common objects. Most MAV occupy less than 0.1%
of the image area. In the experiments, following the original
article’s partitioning rule [26], 75% of the collected data are
selected as the training set, with the remaining portion used
as the test set.

3) Det-Fly: Det-Fly consists of 13 271 images of tar-
get MAVs (DJI Mavic). Each image has a resolution of
3840 × 2160 pixels. Some of the images in the dataset are
sampled at a rate of 5 frames/s from videos, while others are
captured from desired relative poses. Professionals manually
annotate all images.

Det-Fly covers a variety of scenes, including different
viewpoints, background settings, relative distances, and light-
ing conditions. Specifically, Det-Fly features four types of
environmental backgrounds: sky, urban, field, and mountain.
Each background type occupies roughly the same proportion
of the dataset (approximately 20%–30%). Regarding relative
viewpoints, Det-Fly can be categorized into three types: front
view, top view, and bottom view. The data distribution for
these three viewpoints is 36.4% (front view), 32.5% (top
view), and 31.1% (bottom view).

4) DUT: The DUT Anti-UAV dataset is divided into train-
ing, testing, and validation sets. Specifically, the detection
dataset contains a total of 10 000 images, with 5200 images
in the training set, 2200 images in the testing set, and
2600 images in the validation set. Considering that each image
may contain multiple objects, the total number of objects in the
dataset is 10 109, with 5243 objects in the training set, 2245 in
the testing set, and 2621 in the validation set. To enrich the
diversity of objects and prevent model overfitting, the DUT
dataset includes more than 35 types of MAV.

B. Implementation Details

1) Training Phase: We conduct the training of our
DRNet model utilizing publicly datasets from NPS-Drone [3],

TABLE II
BENCHMARKING RESULTS ON NPS-DRONES

TIBNet [26], Det-Fly [31], and DUT [32], respectively. The
model is trained on a single GTX 3090 GPU employing the
stochastic gradient descent (SGD) optimizer, and the training
iterations are 200k. The initial learning rate is set at ηinitial =

1.3 × 10−3. The learning rate schedule includes reductions
by a factor of ten at both 80% and 90% of the planned
iterations. We set the weight decay = 0.0005 to prevent
overfitting and used a momentum = 0.949 to accelerate the
optimization process. Regarding data augmentation, we do
not apply rotation (angle = 0), but set the saturation = 1.5,
exposure = 1.5, and hue = 0.1.

2) Test Phase: The method trained on TIBNet employs
the TITAN XP to measure latency. Due to this device
being somewhat outdated and difficult to procure, based on
DTD-YOLOv4-Tiny [25] comparisons, the performance of
the TITAN XP is equivalent to that of the RTX 2080Ti.
Consequently, we also opt to measure latency on the RTX
2080Ti. Similarly, the latency tests for DUT are conducted on
the RTX 3060, which offers performance that intersects that
of the RTX 2080 Super. Each billion floating point operations
(BFLOPs) and latency test is conducted using the same input
resolution.

C. Comparison With Prior Works

1) NPS-Drone: In the experiments, the training process
took approximately ten days. DRNet exhibits significant
advantages across various performance metrics, as outlined in
Table II, particularly excelling in model size, inference speed,
and accuracy.

First, DRNet achieves excellent results in recall, F1-score,
and mean average precision (mAP), attaining values of 94%,
88%, and 95%, respectively, positioning it among the top-
performing models. In comparison, newer models such as
LENet and VDTNet achieve comparable results to DRNet
in precision and recall but fall slightly short in mAP, reach-
ing only 91% and 92%, respectively, against DRNet’s 95%.
Although Dogfight [22] holds a slight edge in precision and
F1-score, its mAP is six points lower than DRNet’s, and it
operates at an inference speed of just 1 frames/s on an RTX
A6000, making it impractical for deployment on low-end edge
devices.

A key advantage of DRNet is its lightweight model struc-
ture. The DRNet model occupies only 309 kB, while other
high-performance models, such as TransVisDrone and VisTR,
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Fig. 5. Comparison of the computational complexity and memory usage
between DRNet, LENet, and VDTNet. (a) Comparison of computational
complexity. (b) Comparison of memory usage. The horizontal axis represents
the input resolution, while the vertical axis indicates BFLOPs and GPU
memory usage, respectively.

have model sizes of 939 and 218 MB, respectively. Although
the recent model VDTNet is relatively compact at 3.9 MB,
DRNet remains one-tenth of its size while surpassing it
in accuracy by 3% (95% versus 92%). This demonstrates
that DRNet delivers exceptional performance while retaining
a substantial efficiency advantage, rendering it particularly
well-suited for resource-constrained application scenarios.

Furthermore, DRNet’s inference speed of 24.8 frames/s
is outstanding compared to other models, nearly matching
YOLOv5-tph’s 25.0 frames/s, thus meeting the requirements
for real-time detection. YOLOv5-tph [40] and De-DETR [38]
have model sizes of 119 and 389 MB, respectively, both
much larger than DRNet’s 309 kB. To the authors’ knowl-
edge, YOLOv5-tph exhibits a substantial memory requirement
of up to 4.7 GB and a computational complexity reach-
ing 557 BFLOPs, which presents significant challenges for
deployment on resource-limited devices. Consequently, DRNet
achieves superior performance and exhibits remarkable effi-
ciency, positioning it as a highly competitive model for
NPS-Drones scenarios.

Compared to the lightweight models VDTNet and LENet,
the proposed DRNet demonstrates substantial advantages
in terms of computational complexity and memory usage.
As illustrated in Fig. 5(a), DRNet exhibits significantly
lower computational complexity than the two methods, with
this difference becoming more pronounced when processing
high-resolution images. Fig. 5(b) further indicates that DRNet
requires considerably less GPU memory for large-sized
images. Notably, DRNet not only achieves higher detection
accuracy, but also demonstrates memory efficiency and
reduced complexity when handling high-resolution images.
For instance, with images at a resolution of 1280 × 1280,
DRNet reduces computational complexity by 95.3% and
memory usage by 50% compared to VDTNet and LENet.
This substantial performance improvement enables DRNet
to process large images efficiently while maintaining low
computational and memory requirements, making it a practical
and cost-effective solution for real-world applications.
Furthermore, as depicted in the figures, LENet and VDTNet
show marked increases in memory usage and computational
complexity, underscoring DRNet’s ability to achieve

TABLE III
BENCHMARKING RESULTS ON TIBNET

accurate MAV detection with lower computational and
memory demands.

2) TIBNet: In the original study [26], the number of training
iterations on this dataset is 300k. However, we only train for
200k iterations. The training process takes approximately ten
days for our network. On the TIBNet dataset [26], which is
tailored for small object detection, the proposed DRNet is
benchmarked against other state-of-the-art models in terms of
accuracy (mAP), latency, and model size. DRNet consistently
achieves the smallest model size while maintaining superior
accuracy in Table III.

In detail, compared to the smallest model, EXTD, DRNet is
less than half the size (309 kB versus 699 kB), surpasses it by
4% in accuracy (89.5% versus 85.1%), and achieves nearly
three times faster inference speed (93 ms versus 274 ms).
Additionally, when measured against the most accurate small
model, TIBNet [26], DRNet demonstrates superior perfor-
mance across all three evaluation metrics (89.5% versus
89.2%, 93 ms versus 290 ms, and 309 kB versus 697 kB).

Compared to traditional two-stage models, DRNet exhibits
outstanding performance across various evaluation metrics.
For example, when compared with Faster R-CNN using
ResNet50 as the backbone, DRNet reduces the number of
parameters by 99.9%, achieves double the speed, and enhances
accuracy by 2% (89.5% versus 87.2%). Even in comparison
with Faster R-CNN employing the lightweight MobileNet
backbone, DRNet still conserves parameters by 99.8% (309 kB
versus 162.5 MB) and remarkably boosts accuracy by 32.0%
(89.5% versus 67.5%). Moreover, the largest two-stage model,
Cascade R-CNN, with a model size of 384.9 MB, falls
significantly short in terms of accuracy (89.5% versus 78.0%).

Compared to YOLOv4 and YOLOv3, although our DRNet
shows a slight disadvantage in speed, DRNet continues to
excel. DRNet improves mAP by 3.5% (89.5% versus 86%),
while its model size is only one-thousandth that of YOLOv4
(309 kB versus 256 MB). Similarly, DRNet maintains a
considerable advantage over the single-stage YOLOv3 model
in both accuracy and model size.

As illustrated in Fig. 6, DRNet achieves an impressive
balance between accuracy and speed, indicating that it not only
detects small aerial vehicles with greater speed and accuracy,
but also minimizes memory usage. DRNet surpasses existing
state-of-the-art models across multiple metrics, demonstrating
exceptional performance and efficient detection capabilities,
particularly in resource-constrained environments.

3) Det-Fly: The DRNet method is comprehensively com-
pared to other state-of-the-art models on the Det-Fly dataset,
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Fig. 6. Tradeoff performance for accuracy (mAP) versus speed. (a) NPS–
Drone. (b) TIBNet. Our method DRNet superiors other methods in tradeoff
performance. Please zoom in for the best view.

TABLE IV
BENCHMARKING RESULTS ON DET-FLY

TABLE V
BENCHMARKING RESULTS ON DUT

evaluating accuracy (mAP), latency, model size, and FLOPs.
The Det-Fly dataset, designed for small object detection,
serves as a benchmark for assessing model performance in
practical applications. DRNet demonstrates significant advan-
tages across multiple dimensions.

Table IV presents the benchmarking results for various mod-
els on the Det-Fly dataset. DRNet showcases high accuracy,
extremely low latency, model size, and computational com-
plexity substantially smaller than those of competing models.
Specifically, DRNet achieves an mAP of 86.6%, a latency
of 53 ms, a model size of only 309 kB, and FLOPs of
just 0.9 B. These results surpass several advanced models,
including Cascade R-CNN, RetinaNet, and Faster R-CNN.
Notably, Grid R-CNN, with a model size of 493.0 MB, attains
an accuracy of 82.7%, which is lower than DRNet’s 86.6%,
underscoring DRNet’s ability to significantly reduce model
size and computational complexity while maintaining high
accuracy. Furthermore, compared to the single-stage model
SSD, DRNet reduces parameters by 99.7% and achieves nearly
20% higher accuracy.

4) DUT: YOLOX is a robust object detection method,
known for its strong generalization capabilities and rapid
processing on the DUT dataset. Table V presents a comparison
between DRNet and YOLOX with various backbone net-
works. In the original DUT dataset article [32], latency is

TABLE VI
ABLATION STUDY 1

measured on an RTX 2080 Super GPU, whereas DRNet’s
latency is recorded on an RTX 3060 GPU, which has a
lower performance profile than the RTX 2080 Super. Notably,
the model size of ResNet18 is 21.4 MB, indicating that the
YOLOX (ResNet18) model size exceeds 21.4 MB, and simi-
larly, the YOLOX (ResNet50) model size exceeds 46.8 MB.

Compared to YOLOX (ResNet18), DRNet achieves a
four-point accuracy improvement (44.3% versus 40.0%), while
conserving at least 98.6% of the parameters and offering
faster inference (10.5 ms versus 18.6 ms). In comparison to
YOLOX (ResNet50), DRNet is four times faster in infer-
ence speed (10.5 ms versus 46.1 ms) and achieves nearly
a two-point accuracy improvement (44.3% versus 42.7%)
while reducing parameters by 99.4%. These results underscore
DRNet’s capability to provide high efficiency and perfor-
mance, particularly in resource-constrained settings.

D. Ablation Study

1) Part One of the Ablation Study: To demonstrate the
rationale and superiority of the methods designed in this study,
an ablation study is conducted using a baseline network struc-
ture that excludes channel attention calculations but includes
residual connections between SER modules. The ablation
study consists of two parts: the first part focuses on the Det-
Fly dataset, while the second part evaluates performance across
four datasets. The first part of the ablation study comprises the
following experiments:

1) replacing concatenation in the DSC module with an
addition operation;

2) removing the residual connections between SER mod-
ules (not shown here as residual connections are
ultimately removed);

3) removing both the residual connections between SER
modules and one SER module lacking integrated channel
attention calculation;

4) adding DSC after the existing DSC in the network.
The results from the first phase of the ablation study are

presented in Table VI. When concatenation in the DSC module
is replaced with an addition operation, the computational cost
(BFLOPs) slightly decreases without affecting model size, but
accuracy drops by 1.2%. This drop is due to the reduction in
the number of channels from the addition operation, which
lowers the parameter count. However, since the baseline
network has relatively few channels, both concatenation and
addition have minimal impact on model size. Nevertheless,
concatenation better preserves features, yielding a more sig-
nificant accuracy benefit.

Eliminating the residual connections between the SER mod-
ules decreases the number of network layers, which, in turn,
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TABLE VII
ABLATION STUDY 2

reduces the parameter count. Consequently, the model size
shrinks by 4 kB, and the computational requirements fall to
0.872 BFLOPs. However, this reduction also diminishes the
model’s representation capacity, resulting in a 0.7% drop in
accuracy.

When an SER module without channel attention calculation
and its residual connection are removed, the parameter count
and network structure are notably simplified. This simpli-
fication severely impacts the model’s representation power,
leading to substantial reductions in both model size and
accuracy. Additionally, the removal of these layers causes
an increase in the feature map size output by the model,
which raises the computational burden required to pro-
cess these larger feature maps, resulting in BFLOPs rising
to 2.37.

As shown in the last row of Table VI, since the number of
channels in the DSC module can reach up to 256, adding
an additional DSC layer significantly increases the model
size without proportionately enhancing its representational
capacity, leading to a noticeable decline in accuracy. This
finding suggests that reintroducing another DSC module can
result in over-representation. While adding an extra DSC has
a limited impact on the output feature map, the computational
cost remains high at 2.61 BFLOPs. Therefore, this work
utilizes only a single DSC layer in DRNet.

Although the baseline model performs well on the Det-Fly
dataset, its performance is suboptimal on other datasets, such
as NPS-Drone, TIBNet, and DUT. Consequently, a combined
ablation study on these four datasets is conducted to determine
the model with the best overall performance, which is then
presented as the final detection method, referred to as DRNet
in this work.

2) Part Two of the Ablation Study: The results from the
second phase of the ablation study are presented in Table VII,
where mAP1, mAP2, mAP3, and mAP4 denote the model’s
detection accuracy on the Det-Fly, NPS-Drone, TIBNet, and
DUT datasets, respectively. In this experiment, channel atten-
tion calculation is integrated into the residual network to form
the SER module. To reduce parameters, the residual connec-
tions between SER modules, which contain convolution and
Dropout layers, are removed due to the additional convolution
operations introduced by channel attention.

This ablation experiment improves detection accuracy
on the NPS-Drone and TIBNet datasets though accuracy
decreases on the Det-Fly and DUT datasets. According to
the target size distribution analysis shown in Fig. 4, the
TIBNet and NPS-Drone datasets predominantly consist of
small targets, while the Det-Fly and DUT datasets contain
relatively fewer small targets. Consequently, channel attention
calculation proves more effective for enhancing the detection
accuracy of small targets.

Fig. 7. Visualization of the ablation study models. Each column represents
the same scene, and each row shows the detection results for a specific method.
The red rectangles indicate magnified detection targets. The first and second
rows of the third column mistakenly detect a single MAV as two separate
objects.

Fig. 8. Reorg layer information processing principle.

To improve detection capabilities on the TIBNet and
NPS-Drone datasets and enhance performance on the Det-Fly
and DUT datasets, further experiments are conducted. Since
channel attention strengthens the model’s representation capa-
bility but is less effective for target localization, a spatial
attention calculation is introduced in the feature fusion section
to suppress redundant information and improve localization
accuracy. As indicated by the results in Table VII, the intro-
duction of spatial attention calculation enhances detection
accuracy and localization quality across all datasets.

Fig. 7 presents the detection visualization results for the
baseline model, the model with integrated channel attention
calculation, and the model incorporating the spatial attention
calculation within identical scenes. Each column represents
the same scene, while each row displays the detection visual-
ization results corresponding to each model.

The baseline model exhibits low detection confidence and
limited modeling capability. While channel attention cal-
culation enhances the model’s representational capacity, its
localization performance remains inadequate, resulting in con-
siderable discrepancies between predicted bounding boxes
and actual target boundaries. By introducing spatial attention
calculation, the model further improves its representational
capacity and enhances localization accuracy, resulting in
bounding boxes that are better aligned with target boundaries
and a substantial increase in detection confidence. These
visualizations further validate the effectiveness of the strategies
employed in this work.

Additionally, this experiment explores the use of the Reorg
layer [48]. As shown in Fig. 8, the Reorg operation supports
downsampling while preserving complete information transfer.
Specifically, the Reorg layer extracts alternate features from
the input tensor and concatenates them along the channel
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Fig. 9. Detection results under various challenging conditions. The cropped images from the top right of the second and third columns are for the best
views of the targets, whereas the cropped images in the bottom right corner depict the target and its background. Please zoom in for the best view. (a) Small
MAVs. (b) Low-light scenes. (c) Camouflage scenes.

dimension, thereby enhancing the depth of the feature rep-
resentation. Following the Reorg layer’s transformation, the
spatial resolution of the feature map is reduced by half, while
the number of channels increases to four times the initial
count. To reduce the model size, the original 256-channel
convolution layer is decreased to eight channels. The fourth
row of Table VII presents the results of the Reorg operation,
demonstrating a significant reduction in model size with only
a minor decrease in detection accuracy.

In conclusion, the comprehensive approach outlined in the
third row of Table VII is selected as the final detection method,
namely, DRNet.

E. MAV Detection Evaluation Under Various Real-World
Conditions

As illustrated in Fig. 9, we evaluate DRNet across various
scenarios, with each column representing the same scenario.
Specifically, the first column depicts the small MAV scenario,
the second column features small MAVs under low-light
conditions, and the third column represents camouflage scenes.
Enlargements of the objects are shown in the red boxes
within the first column. In the second and third columns, the
top right corner contains a cropped image of the detected
target, while the bottom right corner shows a screenshot of

the target within its environment. Camouflage, a common
survival and predatory tactic in the biological world, aims
to blend an organism’s body color with its surroundings to
achieve invisibility, making it difficult for predators or prey
to detect. Similarly, in MAV detection, camouflage scenarios
arise where the MAV blends seamlessly with its environment
due to its color or external factors, such as lighting or weather
complicating its detection. To the authors’ knowledge, this is
the first that MAV detection in camouflage scenarios has been
considered.

In small MAV scenarios, the detection system is often
positioned considerably from the MAV, resulting in extremely
small pixel representations of the detected targets. Such
conditions pose significant challenges for feature extraction.
However, our method can detect MAVs, thanks to incorpo-
rating channel attention within our SER architecture, which
focuses on the detected targets. The extracted features are
fused with convolutional features. Furthermore, our use of the
spatial attention calculation helps the network pay attention to
the positional information of the MAV, which proved to be an
effective strategy for detecting small MAVs.

In low-light and camouflage scenarios, DRNet continues to
detect MAVs, confirming the feasibility and effectiveness of
our approach. Especially in camouflage situations, such as in
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Fig. 10. Detection results on edge-computing device. The red rectangles
indicate magnified detection targets.

the first and fourth rows, where the MAV blends extremely
well with its surroundings, it becomes difficult to discern the
target even from the bottom-right corner screenshots with the
naked eye. However, our method still detects the MAV without
false positives.

F. Actual Experiments on Edge-Computing Device

In this section, DRNet is deployed on an NVIDIA Orin
NX device equipped with a 16-GB GPU and eight CPUs
for real-world MAV detection scenarios. To comprehensively
assess system performance, metrics such as detection speed,
the operating temperature of the Orin NX, and power con-
sumption were monitored throughout the experiment, with
detection results displayed on a computer terminal.

As depicted in Fig. 10, the video input resolution is set
at 1920 × 1080. During real-world MAV detection testing,
DRNet achieves a throughput of 14.4 frames/s. The sensor
temperature generally remains below 49.5 ◦C (acceptable oper-
ating range: −25 ◦C to 105 ◦C), with a power consumption
of 2.6 W. Fig. 10 illustrates detection visualizations from two
video sequences, where each row corresponds to the detection
visualizations for the same scene. The scene in the first row
is overcast, and the detected MAV is a handmade model
rather than a commercial MAV, which results in morphological
differences compared to commercial MAVs. During detection,
the MAV is located farther from the detection system, leading
to fewer pixels and a blurred appearance. The scene in the
second row shows three MAVs flying laterally in a horizontal
formation. Compared to the first row, this scene involves
a greater distance and more detection targets. These detec-
tion results demonstrate that, even with high-resolution video
input, the proposed method performs fast and accurate MAV
detection effectively, affirming the portability and reliability of
DRNet.

Further, DRNet is compared with new methods, VDTNet
and LENet, with all models configured to an input size
of 640 × 640. The evaluation metrics include power con-
sumption, inference speed, and temperature. As shown in
Table VIII, it is observed that the proposed method, DRNet,
exhibits lower power consumption, achieves inference speeds
twice as fast as the other two methods (14.4 frames/s versus
7.2 frames/s), and operates at a lower temperature.

Additionally, to further test model performance, DRNet is
deployed on a CPU for real-world MAV detection. Results
indicate a throughput of 2.7 frames/s for DRNet on the
CPU, which is nearly ten times faster than the other two

TABLE VIII
EDGE DEVICE EXPERIMENT

methods (2.7 frames/s versus 0.2 frames/s). Interestingly,
DRNet exhibited higher CPU throughput than a model without
integrated attention calculation. This preliminary experiment
suggests that although attention calculation may typically
increase the computational burden on GPUs, they do not
negatively impact processing speed on the CPU; rather, they
facilitate improved detection efficiency.

Overall, DRNet’s edge deployment on the NVIDIA Orin
NX device and the testing results on the CPU demonstrate the
method’s efficiency and practicality in real-world applications.
DRNet can reliably and rapidly execute MAV detection tasks
on GPU or CPU platforms, verifying its broad applicability
and superior performance across different computational envi-
ronments.

V. CONCLUSION

In this study, we have proposed the miniature MAV detec-
tion network (DRNet) to accurately detect MAVs with limited
computational costs and memory resources. The detection
performance of different methods for MAV detection was
compared. Subsequently, multiple challenging scenarios test-
ing and actual edge-computing device experiments validate
the efficacy and efficiency of our method, respectively, and
the following conclusions were drawn.

1) DRNet demonstrates efficacy and efficiency in MAV
detection. DRNet achieves accuracy comparable to the
transformer-based TransVisDrone [13], yet with a faster
inference speed. Notably, the parameters are reduced
by 99.97% compared to TransVisDrone. DRNet also
demonstrates a better balance between accuracy and
latency. This improvement in parameters coupled with
high accuracy highlights the superiority of DRNet
for MAV detection deployment on memory-constrained
devices.

2) DRNet demonstrates low complexity and low mem-
ory usage when processing high-resolution images.
Specifically, when the input resolution increases from
256 × 256 to 1280 × 1280, the computational cost
(FLOPs) increases by no more than 4 billion, while the
GPU memory usage increases by no more than 822 MB.
In contrast, VDTNet and LENet [4], [5], with a model
size of only 3.9 and 4.5 MB, experience increases
of 72 billion in FLOPs and 1894M in GPU memory
usage. At a resolution of 1280 × 1280, DRNet reduces
computational complexity by 95.3% and GPU memory
usage by 50% compared to VDTNet and LENet.

3) The feasibility and portability of DRNet have been
demonstrated through MAV testing in scenarios involv-
ing small targets, low light, and camouflage. DRNet is
capable of detecting MAVs in these three scenarios with
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high confidence. Deploying DRNet on the Orin NX GPU
for MAV detection experiments achieved a detection
speed of 14.4 frames/s, demonstrating its capability for
fast detection. Additionally, in deployment experiments
utilizing only the CPU, DRNet achieved a detection
speed of 2.7 frames/s. Although lower, this still indicates
that DRNet can provide a reasonable level of detection
efficiency without GPU support. These results high-
light DRNet’s potential for real-time MAV detection on
edge-computing devices, particularly under constrained
computational resources.

In summary, DRNet introduced in this study exhibits notable
advantages in MAV detection under memory-constrained con-
ditions. Given the relatively small size of the DRNet model,
there is still room for improvement in inference speed. The
proposed method demonstrates the feasibility of detecting
objects in low-light, small-object, and camouflage scenarios.
However, its performance tends to degrade under adverse
weather conditions, such as rain, snow, or fog. Future research
endeavors could explore network architectures more suit-
able for deployment on edge devices to further enhance
detection efficiency and expand its deployment scope. Fur-
ther exploration of image enhancement techniques to support
object detection methods would also contribute to achieving
all-weather MAV detection.
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