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Abstract—Visual inspection remains essential for inspect-
ing infrastructure surfaces. While there are cornerstones in
developing intelligent inspection systems, most existing solu-
tions are limited to small-scale infrastructures and components,
making them challenging to scale up for real-world applica-
tions. Leveraging deep learning and unmanned aerial vehicles
(UAVs), this article proposes Det-Recon-Reg, an intelligent
framework born for large-scale infrastructure inspection by
decomposing it into three complementary stages: detect for
defect detection, reconstruct for infrastructure reconstruction,
and register for defect registration. In the detect stage, we
introduce the first high-resolution dataset designed for defect
detection on large-scale infrastructure surfaces. State-of-the-art
real-time object detectors are evaluated on this dataset, and the
CUBIT-Net is proposed to strike a better balance between
accuracy and efficiency. In the reconstruct stage, we present a
scalable multi-view stereo (MVS) network to reconstruct dense
point cloud representation of the infrastructure from multi-
view images. Extensive experiments on benchmark datasets,
including DTU, Tanks and Temples (TNT), and BlendedMVS,
demonstrate the superior performance of our method over
existing approaches. In the register stage, we propose a novel
defect registration method that leverages the geographic infor-
mation system (GIS) to accurately map the detected defects
onto the infrastructure model while preserving their geometric
and visual properties, thereby enabling global defect localization
and more informed maintenance decision-making. The pro-
posed framework can serve as a reference for effective and
efficient infrastructure maintenance as consolidated in real-
world experiments. Codes, datasets, and pretrained models
for each stage will be released at https://github.com/YANG-
SOBER/Det-Recon-Reg. The supplementary video is available at:
https://youtu.be/MVMp7k9qB84
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I. INTRODUCTION

C IVIL infrastructure is highly susceptible to performance
degradation due to factors such as structural aging,

construction deficiencies, design flaws, and environmental
impacts [1], posing significant risks to its functional safety,
operational efficiency, and long-term cost-effectiveness. There-
fore, periodic defect diagnosis and monitoring are critical to
preserving structural integrity, ensuring functional safety, and
optimizing energy efficiency in infrastructure systems. Among
nondestructive testing methods, visual inspection has been
the primary method for identifying critical surface defects,
such as cracks, spalling, and moisture infiltration. However,
traditional manual visual inspection is inherently subjective
and prone to errors, while being labor-intensive and time-
consuming, often leading to outdated inspection results by
the time maintenance is performed. Recent advancements in
the integration of unmanned robotic platforms [2], [3], [4],
[5], [6] with state-of-the-art learning-based visual inspection
techniques [7], [8], [9], [10] have emerged as a promising
alternative to traditional manual inspection methods. This con-
vergence has led to the automation of infrastructure inspection,
facilitating the development of intelligent inspection systems
capable of autonomously detecting and localizing surface
defects, thereby providing a reliable reference that supports
timely and informed maintenance decisions. For instance,
a wall-climbing robot-based inspection system [11] and an
unmanned aerial vehicle (UAV)-based inspection framework
[12] have been developed to segment surface defects and
project them onto 3-D infrastructure models for accurate
spatial registration. The wall-climbing system utilizes a trun-
cated signed distance function map combined with Delaunay
graph-based mapping for surface reconstruction, while the
UAV-based framework employs a patch-based multi-view
stereo (MVS) method to reconstruct the point cloud from
multiple viewpoints. Similarly, existing inspection frameworks
integrate detected surface defects directly into point cloud
models [13] generated by PatchMatch MVS or onto surface
models [14] reconstructed by OpenMVS, highlighting their
increasing potential to improve the accuracy, efficiency, and
scalability of infrastructure inspection.

Despite remarkable achievements in existing inspection
systems, they are limited to providing only the local posi-
tions of defects relative to the reconstructed infrastructure
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model. Furthermore, these systems are constrained to small-
scale environments, such as walls or bridge piers, due to the
scalability limitations of the reconstruction methods employed.
Consequently, large-scale infrastructure inspection, particu-
larly the accurate and efficient localization of detected defects
in global coordinates, remains a complex and unresolved
challenge. To address this issue, we propose the Det-Recon-
Reg framework, which automates large-scale infrastructure
inspection by leveraging UAVs and learning-based techniques.
The framework decomposes the inspection process into three
complementary stages: 1) detect for defect detection; 2) recon-
struct for infrastructure reconstruction; and 3) register for
defect registration.

A. Detect

Unlike existing defect inspection frameworks [11], [12],
[13], [14] that adopt defect segmentation for defect inspection,
we focus on defect detection to identify and enclose surface
defects within bounding boxes, allowing for the efficient
determination of the defect center relative to the image center.
Such relative positioning is crucial for accurately localizing
the defect in global coordinates, facilitating subsequent defect
registration, and improving defect management efficiency.
However, the scarcity of the publicly available defect dataset
has significantly hindered the progress of learning-based defect
detection methods [1]. To address this issue, we propose
CUBIT-Det,1 a high-resolution defect dataset designed to
facilitate defect detection on large-scale infrastructure sur-
faces. The dataset contains high-resolution defect images that
provide rich semantic context for detecting defects in large-
scale scenes, covering three common infrastructure types:
buildings, pavements, and bridges, and focusing on three
critical defect types: cracks, spalling, and moisture. With this
dataset, we benchmark state-of-the-art learning-based defect
detection algorithms and propose the CUBIT-Net1 to strike a
better balance between detection accuracy and efficiency.

B. Reconstruct

Existing defect inspection systems [12], [13], [14], [15],
[16] utilize traditional MVS methods to reconstruct dense
point cloud models of infrastructure from multi-view images,
providing a physical foundation for accurate defect registra-
tion. Nevertheless, these geometry-based approaches rely on
hand-crafted similarity metrics for correspondence matching,
often leading to incomplete reconstructions, especially on low-
textured, reflective surfaces or those with repetitive patterns
under varying illumination. In contrast, learning-based MVS
methods [17], [18], [19], [20], [21], [22] implicitly encode
camera parameters and global semantic information such as
reflective and illumination priors into the network, enabling
robust correspondence matching and significantly enhanc-
ing reconstruction accuracy, completeness, and efficiency.
Moreover, learning-based MVS methods offer superior scala-
bility, allowing inspection frameworks to generalize effectively
across multiscale scenes. Despite these advances, their poten-
tial for infrastructure inspection remains underexplored. To

1CUBIT stands for CUHK Building Information Technology.

bridge this gap, we present a scalable MVS network for more
accurate, complete, and efficient infrastructure reconstruction.
Extensive experiments on benchmark datasets, including DTU
[23], TNT [24], and BlendedMVS [25], demonstrate the
superior performance of our method over existing state-of-
the-art approaches. Real-world deployment further highlights
its efficacy and scalability across multiscale scenes.

C. Register

Accurate defect registration in global coordinates is crucial
for reliable maintenance decision-making by aligning detected
defects with the infrastructure model. Current defect inspection
systems [11], [12], [13], [14] typically employ a segment-
then-project strategy, projecting segmented defects from image
coordinates onto the 3-D infrastructure model. While effec-
tive in small-scale scenes, this approach often suffers from
reduced accuracy due to incomplete defect segmentation and
suboptimal infrastructure reconstruction. Moreover, backpro-
jected defects frequently exhibit geometric distortions due to
perspective effects and occlusion, further compromising the
reliability of maintenance decisions. Furthermore, this method
fails to incorporate geographic information, resulting in local
defect positioning relative to the infrastructure model, thereby
limiting global defect localization. To address these limita-
tions, we propose a novel method that leverages the geographic
information system (GIS) to accurately register defects onto
the infrastructure model while preserving their geometric and
visual properties, thereby enabling global defect localization
and more reliable maintenance planning. Real-world experi-
ments demonstrate the centimeter-level registration accuracy
of our method, underscoring its practical applicability for
infrastructure maintenance.

To further automate the proposed Det-Recon-Reg frame-
work for large-scale infrastructure inspection, we integrate
multi-UAV cooperative coverage path planning [26], [27],
[28] for the collaborative capture of close-range facade and
multi-view aerial images, enabling surface defect detection and
dense infrastructure reconstruction, respectively. All collected
images are GPS-tagged and augmented with real-time kine-
matic data to ensure accurate defect registration. This approach
follows an explore-then-exploit framework [28], where UAVs
first explore the target infrastructure and its surroundings,
dynamically updating a density map to guide the selection of
optimal viewpoints. After exploration, UAVs follow optimized
trajectories, derived from the traveling salesman problem
(TSP) [26], to efficiently capture the required images. This
multi-UAV strategy accelerates data acquisition and signifi-
cantly improves inspection efficiency.

The contributions of this article are as follows.
1) An intelligent framework, Det-Recon-Reg, is proposed

to decompose large-scale infrastructure inspection into
three complementary stages: defect detection, infrastruc-
ture reconstruction, and defect registration.

2) A high-resolution defect dataset, CUBIT-Det, is con-
structed to address data scarcity, and a defect detection
network, CUBIT-Net, is developed to balance accuracy
and efficiency for large-scale scenes.
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Fig. 1. System architecture of the proposed Det-Recon-Reg framework, enabling large-scale infrastructure inspection through three stages. (a) Detect.
(b) Reconstruct, and (c) Register. In real-world application, the framework takes as input close-range facade images (top row) and multi-view aerial images
(bottom row) with GPS tags, autonomously collected via multi-UAV cooperative coverage path planning. Surface defects are then identified by CUBIT-Net
leveraging the domain-specific CUBIT-Det dataset for training to enable defect detection, while dense infrastructure reconstruction is performed using the
proposed MVS network. Detected defects are accurately georeferenced and registered within a GIS framework. Refer to the supplementary video for clarity.

3) A scalable, learning-based MVS method is proposed to
improve the accuracy, completeness, and efficiency of
large-scale infrastructure reconstruction.

4) A GIS-based method is proposed to register defects onto
the infrastructure model, preserving their geometric and
visual properties.

5) Extensive experiments on benchmark datasets and real-
world scenes validate the effectiveness, efficiency, and
scalability of the framework for large-scale infrastructure
inspection.

The remainder of this article is organized as follows.
Section II details the methodology of the proposed inspection
framework. Section III presents benchmark experiments and
ablation studies to evaluate the effectiveness of each frame-
work component. Section IV demonstrates the effectiveness,
efficiency, and scalability of the framework in large-scale real-
world scenes. Section V discusses the limitations. Section VI
concludes the article and outlines future research directions.

II. METHODOLOGY

Framework Overview: Fig. 1 illustrates the system archi-
tecture of the proposed Det-Recon-Reg framework, consisting
of three complementary stages: 1) detect for defect detec-
tion; 2) reconstruct for infrastructure reconstruction; and 3)
register for defect registration. In real-world inspection deploy-
ments, the framework takes as input close-range facade and
multi-view aerial images with GPS tags, collected through
multi-UAV cooperative coverage path planning [26], [27],
[28], to enable surface defect detection and dense recon-
struction of large-scale infrastructure. The defects are then
accurately mapped onto the infrastructure model using the

proposed GIS-based registration method, providing a reliable
global reference for informed maintenance decision-making.

A. Detect

1) Defect Detection Dataset: We leverage defect detection
to identify and enclose surface defects within bounding boxes,
determining the defect center position relative to the image
center. This positioning is crucial for subsequent GIS-based
defect registration, ensuring accurate localization of defects
in global coordinates. However, the limited availability of
publicly available defect datasets has significantly hindered
the advancement of learning-based defect detection methods
[1]. To address this challenge, we propose CUBIT-Det, a high-
resolution defect dataset designed to facilitate defect detection
on large-scale infrastructure surfaces. The dataset contains
5527 high-resolution images with resolutions up to H ×
W = 6000 × 8000, covering three common infrastructure
types: buildings, pavements, and bridges, and focusing on
three key defect types: cracks, spalling, and moisture. As
shown in Fig. 2, these images are captured from multiple
viewpoints using onboard cameras mounted on unmanned
vehicles, with variations in shooting angle, surface texture,
depth range, and illumination conditions, thereby providing
rich semantic context and improving model robustness for
real-world large-scale infrastructure inspection. The dataset
properties are summarized as follows.

1) Infrastructure Type: Fig. 3(a) illustrates the distribu-
tion of infrastructure types in the CUBIT-Det dataset,
which includes three prevalent categories: buildings,
pavements, and bridges, accounting for 65%, 29%, and
6%, respectively. Notably, due to the challenging data
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Fig. 2. Images from our dataset. Cracks on building façade (first row), while
cracks on road surfaces and bridges (second row). Spalling and moisture
damage (third and fourth rows), respectively.

Fig. 3. (a) Infrastructure type. (b) Defect category. (c) Defect dimension.
(d) Defect spatial distribution: each scatter represents the spatial position of
one target defect relative to the bottom-left corner of the image.

TABLE I
COMPARISON WITH EXISTING DEFECT DETECTION DATASETS

collection process, no existing defect detection datasets,
as shown in Table I, provide annotated defect images
specifically for buildings. In contrast, we adopt multi-

UAV cooperative coverage path planning [26], [27], [28]
to autonomously capture close-range images of building
facades, even in GPS-denied environments.

2) Defect Category: As shown in Fig. 3(b), the CUBIT-
Det dataset covers three primary categories of surface
defects: cracks, spalling, and moisture, comprising
82%, 12%, and 6%, respectively. These defect cate-
gories were selected following a thorough review of
established infrastructure inspection guidelines and stan-
dards, including reports from the Hong Kong Housing
Authority, guidelines from the Hong Kong Institute of
Surveyors, and the BSI Standard Publication on Service
Life Planning for Buildings and Constructed Assets.

3) Defect Dimension: As depicted in Fig. 3(c), defects
in the CUBIT-Det dataset are categorized into large,
medium, and small defects, comprising 80%, 15%, and
5% of the total defects, respectively. Thanks to the
high-resolution nature of the dataset, even medium-sized
defects achieve a resolution of H × W = 600 × 800,
which exceeds the resolution of entire images in most
existing defect detection datasets, as shown in Table I.
This indicates that our dataset is rich in spatial and
semantic context information, which improves model
robustness and generalization ability in real-world defect
inspection.

4) Defect Spatial Distribution: Fig. 3(d) shows the spatial
distribution of defects in our dataset. Approximately
20% of defects are concentrated within [−2.5%, 2.5%]
along the central axes (x = 0.5 and y = 0.5), forming
a cross-shaped pattern. This pattern arises from posi-
tioning defects near the image center during close-range
imaging to ensure detailed representation. While exhibit-
ing a cross-shaped pattern, defects are distributed across
the entire image, covering both central and peripheral
regions. This spatial distribution allows models to learn
features invariant to spatial variations, which is crucial
for real-world applications where defects can appear
anywhere in the visual field. By ensuring extensive spa-
tial coverage, our dataset enhances model generalization
and spatial awareness, particularly for defect detection
in high-resolution images.

5) Comparison With Existing Defect Datasets: To highlight
the differences between our dataset and existing defect
detection datasets, we summarize key properties and
present the comparisons in Table I. While CUBIT-Det
may not surpass existing datasets in terms of data vol-
ume, it offers several distinguishing features, including
high-resolution images, diverse infrastructure categories,
and a wide variety of defect types, providing rich spatial
and semantic context. We validate the effectiveness
of CUBIT-Det by evaluating it with approximately 20
distinct models and real-world inspections, ensuring its
robustness and distinguishing it from existing datasets.

2) Defect Detection Method: Following the construction
of the dataset, approximately 20 state-of-the-art real-time
detectors [37], [38], [39], [40], [41], [42], [43], [44] are
trained and benchmarked to evaluate the effectiveness of
the proposed dataset and identify the model that optimally
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Fig. 4. Detailed architecture of the proposed GIPFPP module, with the
structure of the Packet Conv layer highlighted within the orange box.

balances detection accuracy and efficiency, with YOLOv6-n
[44] selected as the baseline due to its superior tradeoff

between these metrics. To further enhance this balance, we
propose the global information packet fusion pyramid pooling
(GIPFPP) module, which replaces the original feature fusion
layer to accelerate feature processing and improve multiscale
fusion. This enhanced method is referred to as CUBIT-Net,
as illustrated in Fig. 1(a). The architecture of the GIPFPP
module demonstrated in Fig. 4, divides the input feature map
along the channel dimension into two branches: the top branch,
which consists of three Packet Conv layers with varying
kernel sizes, followed by three max-pooling layers and two
additional Packet Conv layers, and the bottom branch, which
includes a single Packet Conv layer. The feature maps from
both branches are concatenated along the channel dimension
and processed by a final Packet Conv layer to generate the
output.

The Packet Conv layer, depicted in the lower part of
Fig. 4, consists of three stages: convolution, normalization,
and activation. In the convolution phase, group convolution
divides the input feature map into four groups along the
channel dimension, with kernel sizes of 2i + 1 (3, 5, 7, 9) for
the indigo circle and 2i − 1 (1, 3, 5, 7) for the carrot-orange
circle. Depthwise convolution is applied within each group,
and the resulting feature maps are concatenated back to their
original dimensions. Larger kernels capture global features
from a wide receptive field, while smaller kernels focus
on local features, providing complementary benefits. Despite
the increased parameters of larger kernels, the ’packaging
and depthwise convolution’ strategy effectively reduces both
parameter count and inference latency. Moreover, we employ
group normalization in place of batch normalization within
Packet Conv. This approach re-groups feature maps across
channels at the same spatial positions, alleviating sensitivity to
batch size variations. For nonlinearity, we adopt the Gaussian
error linear unit (GELU) activation function, which provides

smoother gradients and mitigates vanishing gradient issues,
in contrast to the commonly used ReLU. Benchmark results
and ablation studies, presented in Section III-A, demonstrate
the effectiveness and efficiency of CUBIT-Net. The pro-
posed CUBIT-Net, trained on the CUBIT-Det defect detection
dataset, effectively inspects surface defects on the warehouse
facade, as shown in Fig. 1(c).

B. Reconstruct

1) Method Overview: Learning-based MVS methods [17],
[18], [19], [20], [21], [22] incorporate camera parameters and
global semantic information such as reflective and illumination
priors to achieve robust multi-view correspondence matching,
delivering significant improvements in point cloud recon-
struction accuracy, completeness, and efficiency compared to
traditional approaches while offering superior scalability for
generalizing across multiscale scenes. Despite their advance-
ments, the application of learning-based MVS to infrastructure
inspection remains underexplored. To address this limitation,
we propose a scalable learning-based MVS method designed
for more accurate, complete, and efficient reconstruction of
large-scale infrastructure. Our method consists of two sequen-
tial stages: 1) multi-view depth map estimation based on the
proposed MVS network and 2) multi-view depth map fusion
for dense point cloud reconstruction. The network enables
high-resolution depth estimation while maintaining computa-
tional and memory efficiency in a coarse-to-fine manner. The
network takes (N + 1) images as input, including a reference-
view image I0 and N source-view images {Ii}

N
i=1, to estimate

the depth map Dest,0 for I0. For scene reconstruction, each
image is iteratively treated as I0 to estimate the corresponding
depth map. The resulting multi-view depth estimates are then
refined with probabilistic and geometric constraints before
being fused to reconstruct the dense point cloud R.

2) Feature Pyramid Extraction: The MVS network takes
N-view images {Ii}

N
i=0 with associated camera intrinsics {Ki ∈

R3×3}Ni=0 and extrinsics {[Ri ∈ R
3×3; ti ∈ R

3×1]}Ni=0 as input,
processed by a feature pyramid network (FPN) [17], [18], [19],
[20], [21] to extract feature pyramid {fl,i ∈ R

Fl×(H/2l)×(W/2l)}Ni=0
at (L + 1) scales, where l ∈ {0, 1, . . . , L} represents fea-
ture level, Fl indicates channel number at feature level l,
and H and W denote image height and width, respectively.
The FPN parameters are shared across all views to improve
learning efficiency. However, despite the effectiveness of the
FPN in extracting multiscale features, depth estimation near
the boundaries of reflective and textureless surfaces remains
challenging. This is primarily due to the absence of low-level
spatial features, such as edges and textures, which are essential
for accurate depth prediction. As a result, over-smoothing
often occurs in these regions, leading to suboptimal depth
estimation. To overcome this limitation, we propose a bottom-
up pathway (BPA) following the FPN, as shown in Fig. 1(b).
This pathway is designed to enhance the transition of spatial
features between the feature pyramid extraction module and
the ACVA module, improving the robustness of multi-view
correspondence matching. Our ablation study demonstrates
that the BPA effectively improves both the depth estimation
and the reconstruction performance.
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Fig. 5. Illustration of ACVA, including (a) homography warping, (b) cost
volume aggregation, and (c) cost volume regularization with depth estimation.
COP indicates the center of projection.

3) Adaptive Cost Volume Aggregation: Depth sampling is
performed to uniformly discretize the reference-view depth
range [dmin,l, dmax,l] into (Ml + 1) depth plane hypotheses, as
illustrated by the green rectangles in Fig. 5(a). The depth
hypotheses are given by

dm,l = dmin,l + m ·
(dmax,l − dmin,l)

Ml
(1)

where m ∈ {0, 1, . . . ,Ml} and Ml represents the number of
depth intervals between these depth plane hypotheses. While
the depth range for the coarser level is predefined, the depth
range at finer levels is adaptively adjusted based on depth
estimates from the coarser levels, as explained in the following
coarse-to-fine depth estimation paradigm.

The sampled depth hypothesis dm,l defines the homography
between the pixel pl,0 in the reference-view feature map fl,0
and the pixel pl,i in the ith source-view feature map fl,i, as
expressed by the following equation:

pl,i = Kl,i
�
R0→i

�
K−1

l,0 pl,0dm,l
�
+ t0→i

�
(2)

where the scaled camera intrinsic matrices at feature level
l, denoted as Kl,0 and Kl,i, correspond to the reference
view and ith source view, respectively. The relative rotation
matrix R0→i and relative translation vector t0→i between the
reference and ith source view are computed as RiR−1

0 and
t0 − RiR−1

0 ti, respectively. For each depth hypothesis dm,l,
feature correspondences between the reference and ith source
view are established by performing differentiable bilinear
interpolation to warp the ith source-view feature map efl,i,dm,l

[the blue rectangles in Fig. 5(a)] aligned with the reference-
view feature map fl,0 [the yellow rectangle in Fig. 5(a)].
The reference-view feature map fl,0 is replicated (Ml + 1)
times along the depth dimension to obtain the reference-view
feature volume Vl,0 ∈ R

Fl×(Ml+1)×(H/2l)×(W/2l), represented by
the yellow volume in Fig. 5(b). Meanwhile, the warped source-
view feature maps efl,i,dm,l at each depth hypothesis dm,l are
aggregated along the depth dimension to form the source-view
feature volumes {Vl,i ∈ R

Fl×(Ml+1)×(H/2l)×(W/2l)}Ni=1, shown as
the blue volumes in Fig. 5(b).

The multi-view feature volumes {Vl,i}
N
i=0 are aggregated into

the cost volume Cl [the orange volume of Fig. 5(c)] to evaluate
feature matching similarity across multiple views. Heuristic-
based methods [45], [46], [47] assign equal significance to all
multi-view feature volumes, leading to matching ambiguity.

Algorithm 1 Matching Score Computation

In contrast, learning-based methods [48], [49], [50], [51],
[52] adaptively aggregate the cost volume by learning pixel-
wise, patch-wise, or channel-wise significance, but incurring
additional computational costs. Moreover, existing methods
fail to account for pixel discrepancies arising from viewpoint
variations, where a source-view image that is both closer to the
reference view and free from occlusions tends to offer more
accurate photometric and geometric information than a more
distant image affected by partial occlusions [53]. To address
these issues, we propose sparse ACVA, an ACVA method
guided by sparse point reconstruction from structure-from-
motion (SfM). The sparse ACVA is determined as follows:

Cl =M(Vl,0, . . . ,Vl,N)
=M(Bl,0, . . . ,Bl,N)

= AvgPool

 
αlBl,0 �

NX
i=1

S iPN
i=1 S i

Bl,i

!
(3)

where the mapping function M transforms the multi-view
feature volumes {Vl,i}

N
i=0 into the cost volume Cl. To reduce

memory footprint and enhance computational efficiency, each
feature volume is partitioned into K subfeature volumes
{Bl,i ∈ R

K×(Fl/K)×(Ml+1)×(H/2l)×(W/2l)}Ni=0. During the aggrega-
tion process, the significance of the source-view subfeature

volumes {Bl,i}
N
i=1 is computed as

n
S i/

PN
i=1 S i

oN

i=1
, where

{S i}
N
i=1 representing the scene-dependent matching scores

between source-view images {Ii}
N
i=1 and the reference-view

image I0 are computed based on Algorithm 1. The set {pi j ∈

R3×1, j ∈ {0, 1, . . . , ni − 1}}Ni=1 represents the sparse points
triangulated by {Ii}

N
i=1 and I0, where ni denotes the number

of sparse points. The baseline angle corresponding to pi j is
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denoted by θ j. To adapt to the scene variation, S i is initially
computed through a piecewise Gaussian function that priori-
tizes the favoring baseline angle θ0 and then normalized as the
aggregation significance for the source view. The reference-
view aggregation significance is governed by the learnable
parameter αl. The symbol � denotes the Hadamard prod-
uct, which calculates the feature-matching similarity between
the weighted reference-view subfeature volume Bl,0 and the
normalized source-view subfeature volumes {Bl,i}

N
i=1. Finally,

the feature similarities are aggregated using average pooling
across the channel dimension, yielding the final cost volume
Cl ∈ R

K×(Ml+1)×(H/2l)×(W/2l).
4) Cost Volume Regularization and Depth Estimation:

In line with previous studies [17], [18], [19], [20], [21],
a multiscale 3-D U-Net is adopted to regularize the noise-
affected cost volume Cl, generating the estimated probability
volume Pl,est ∈ R

(Ml+1)×(H/2l)×(W/2l) [the violet volume in Fig.
5(c)], corresponding to (Ml + 1) depth hypotheses. Existing
methods typically address the depth estimation through either
depth regression [17] or classification [54]. In regression, depth
is predicted as the probabilistic weighted sum of sampled
depth hypotheses, but this approach is susceptible to learning
ambiguity as multiple weight combinations can produce iden-
tical depth estimations. On the other hand, the classification
approach directly assigns the depth estimate to the hypothesis
with the highest probability, resulting in a discrete depth
prediction. To overcome these limitations, we improve discrete
depth estimation by incorporating a depth residual between
the discrete and target depths, enabling continuous depth
estimation and enhancing the accuracy and completeness of
the subsequent point cloud reconstruction. For level l, the
continuous depth estimation Dest,l is defined as

Dest,l = Dl,discrete + Dl,residual (4)

where Dl,discrete and Dl,residual represent the discrete depth
estimation and depth residual at level l, respectively. The
discrete depth estimation Dl,discrete is determined as

Dl,discrete = arg max
dm,l∈[dmin,l,dmax,l]

Pl,est(dm,l) (5)

where the depth hypothesis corresponding to the maximum
probability is selected as the discrete depth estimation. The
depth residual Dl,residual is defined as

Dl,residual =
dmax,l − dmin,l

Ml
· max Pl,est(dm,l)„ ƒ‚ …

normalized depth residual

(6)

where the depth residual is computed as the product of the
depth interval and the normalized depth residual. The fine-
level depth estimation D0,est is utilized as the output for I0.

5) Loss Function: The normalized depth residual is
obtained by adapting the generalized focal loss [20], [55] to
minimize the discrepancy between the ground-truth probability
volume Pl,gt and the estimated probability volume Pl,est, where
Pl,gt is the ground-truth normalized depth residual between
the discrete depth hypothesis and the ground-truth depth. The
network loss is defined as

L =

LX
l=0

λlLl (7)

Fig. 6. Coarse-to-fine depth estimation paradigm, demonstrating the hierar-
chical depth estimation process across multiple resolution levels.

where L denotes the overall network loss for optimization and
Ll and λl represent the loss and loss weight at feature level l,
respectively. The per-level loss Ll is defined as

Ll =
X

p∈{pvalid}

−βl
ˇ̌
Pl,gt(p) − Pl,est(p)

ˇ̌γl

·
�
(1 − Pl,gt(p)) log(1 − Pl,est(p))

+ Pl,gt(p) log(Pl,est(p))
�

(8)

where {pvalid} represents valid pixel set, while γl and βl denote
the focusing and balancing factors, respectively.

6) Coarse-to-Fine Depth Estimation: As shown in
Fig. 1(b), our MVS method is a three-stage network with three
resolution levels including coarse level (l = 2), middle level
(l = 1), and fine level (l = 0). We hence gradually conduct
the depth estimation from the coarse level to the fine level
to estimate the depth map D0 for the reference image I0 by
following our previous depth estimation strategy.

For the coarse level l = 2, (M2 + 1) parallel depth planes
(the green lines in Fig. 6) are uniformly sampled from the
depth range [dmin,2, dmax,2] measured at the reference view

Dmax,2 = dmax,2 (9)
Dmin,2 = dmin,2 (10)

Dm,2 = dmin,2 + m ·
dmax,2 − dmin,2

M2
, m ∈ {0, 1, . . . ,M2}

(11)

where Dmax,2, Dmin,2, and Dm,2 represent the maximum, min-
imum, and sampled depth plane hypotheses, respectively.
Notably, we perform depth hypothesis sampling to discretize
the 3-D space into (M2 + 1) parallel depth planes along the
depth direction. This does not imply that we assume the
object in the reference image I0 is at the same depth, as each
pixel in I0 has (M2 + 1) depth candidates. Specifically, based
on the depth plane hypotheses, we adaptively construct the
cost volume with sparse ACVA and perform continuous depth
estimation to obtain the depth map Dest,2 (red curve in Fig. 6),
where each pixel is assigned its optimal depth value.

For the middle level l = 1, we refine the depth range by
utilizing the coarse-level depth estimation to derive refined
depth hypotheses. Specifically, we center the depth range of
the middle level at Dest,2 and concurrently reduce the depth
interval I1 and the number of depth hypotheses (M1 + 1) at
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the middle level l = 1. The process can be formulated as
follows:

Dmax,1 = Dest,2 +
(M1 + 1)

2
· I1 (12)

Dmin,1 = Dest,2 −
(M1 + 1)

2
· I1 (13)

I1 = r1 · I2, r1 < 1 (14)
M1 = ρ1 · M2, ρ1 < 1 (15)

Dm,1 = Dmin,1 + m ·
Dmax,1 − Dmin,1

M1
, m ∈ {0, 1, . . . ,M1}

(16)

where Dmax,1, Dmin,1, and Dm,1 represent the maximum,
minimum, and sampled depth hypotheses, respectively. The
reduction factors r1 and ρ1 correspond to the depth interval
and the number of depth hypotheses, respectively. The refined
depth hypotheses Dm,1 at level l = 1 are depicted using red
curves. Next, we construct the cost volume with sparse ACVA
and perform continuous depth estimation to obtain the depth
map Dest,1 (orange curve). For the fine level l = 0, the same
process is repeated to generate the final depth map estimation
Dest,0 (blue curve) for the reference image I0.

7) Depth Map Fusion: Given the multi-view depth esti-
mates, the probabilistic constraint τ and geometric constraint
Nc are applied to reject depth outliers and promote multi-view
depth consistency. The refined depth maps are subsequently
backprojected and fused into the dense point cloud reconstruc-
tion R. As depicted in Fig. 1(c), the proposed MVS method
is deployed to real-world applications for dense infrastructure
reconstruction, providing a reliable physical foundation for
accurate defect registration in global coordinates.

C. Register

1) Method Overview: The key objective of large-
scale infrastructure inspection is the accurate and
efficient identification of global defect locations. The
segment-then-project strategy of existing defect inspection
systems [11], [12], [13], [14] only localizes the defects
relative to the infrastructure model and often suffers from
reduced accuracy due to incomplete defect segmentation
and suboptimal infrastructure reconstruction. Moreover,
backprojected defects frequently exhibit geometric distortions
due to perspective effects and occlusion, further compromising
the reliability of maintenance decisions. To overcome these
challenges, we propose a novel approach that leverages
the GIS for accurate defect registration. Our method aligns
defects with the infrastructure model while preserving both
their geometric and visual properties, enabling global defect
localization and enhancing the reliability of maintenance
decision-making and planning. The GIS-based defect
registration method consists of two stages.

2) Model Georeferencing: As illustrated in Fig. 1(c), the
reconstructed infrastructure model is georeferenced to align
with its geographic footprint within the GIS framework. The
GIS is implemented using the scalable and robust WebGIS
platform, Cesium [56], designed for handling 3-D geospatial
data efficiently. The georeferenced infrastructure model serves
as a critical foundation for enabling accurate global defect

Fig. 7. Geographic projection paradigm for global defect registration.

localization and supports the integration of geographic and
structural information to enhance maintenance planning.

3) Defect Localization: The projection of surface defects
from image coordinates to the georeferenced infrastructure
model follows the geographic projection paradigm, as shown
in Fig. 7. The geographic coordinates of the image center, O,
for the ith image, are first obtained via the RTK positioning
system for centimeter-level accuracy. Next, O is translated to
O′′ along the blue normal vector, using the estimated depth at
the image center, to align with the model surface. Finally, the
global position of the jth defect, i j (denoted by the red star),
is calculated by translating O′′ to the defect’s bounding box
center along the violet vector, with the metric distance derived
from the pixel distance. Moreover, duplicate detections of the
same defect are filtered out through geographic comparison.
Our method enables the automatic identification of global posi-
tions for all detected defects and preserves their geometric and
visual properties for reliable maintenance decision-making.
Real-world experiments validate the centimeter-level regis-
tration accuracy of our method, highlighting its practical
applicability for infrastructure maintenance.

III. BENCHMARK AND ABLATION EXPERIMENTS

This section demonstrates the effectiveness and efficiency of
the proposed defect detection and infrastructure reconstruction
method through extensive experiments on the established
defect detection dataset and standard MVS benchmark
datasets, while the efficacy of the GIS-based defect registration
method is validated in large-scale real-world infrastructure
inspections.

A. Detect

1) Dataset and Evaluation Metrics: The proposed defect
detection dataset is partitioned into three subsets: 72% of
images for training, 8% for validation, and 20% for testing.
The mean average precision (mAP) metric is adopted to
evaluate defect detection accuracy. Specifically, mAP0.5 (%)
measures accuracy with an intersection over union (IoU)
threshold of 0.5, indicating how well predicted bounding boxes
overlap with ground-truth boxes. In contrast, mAP0.5:0.95 (%)
averages detection accuracy across IoU thresholds from 0.5
to 0.95 in 0.05 increments, offering a more comprehensive
assessment of model performance across varying precision
requirements.
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Fig. 8. Detection results on the test set of the CUBIT-Det dataset. Compared to
state-of-the-art methods [42], [43], [44], the CUBIT-Net accurately identifies
tiny defects (see yellow arrows) in complex and low-texture scenarios.

Fig. 9. Benchmark performance comparison of our learning-based (a) defect
detection method and (b) reconstruction method.

2) Implementation Details: A total of 19 state-of-the-art
real-time object detectors [37], [38], [39], [40], [41], [42],
[43], [44], along with the proposed CUBIT-Net, are trained
and evaluated on the CUBIT-Det dataset. To enable real-
time defect detection in autonomous unmanned systems, we
focus on compact and medium-sized networks, including
the nano, tiny, small, and medium variants of the YOLO
series [38], [39], [40], [41], [42], [43], [44], as well as the
ResNet50-based Faster R-CNN [37]. For a fair comparison,
all networks are trained and evaluated with input images of
size H × W = 1024 × 1024. The networks are implemented
in PyTorch and optimized using stochastic gradient descent
(SGD) for 400 epochs, with a batch size of 8, on an NVIDIA
RTX 3090Ti GPU. The cosine learning rate scheduler is
utilized, with an initial learning rate of 0.02.

3) Benchmark Results: The quantitative benchmark results
on the CUBIT-Det test set are summarized in Table II.
Compared to state-of-the-art methods [37], [38], [39], [40],
[41], [42], [43], [44], CUBIT-Net demonstrates superior
mAP0.5:0.95 accuracy while maintaining competitive detection
speed and lightweight parameters, making it suitable for UAV

TABLE II
QUANTITATIVE BENCHMARK RESULTS ON THE CUBIT-DET TEST SET

TABLE III
ABLATION EXPERIMENTS ON MODULES OF THE PROPOSED CUBIT-NET

deployment. As shown in Fig. 8, CUBIT-Net outperforms
state-of-the-art models [42], [43], [44] in complex residential
walls (first to third rows) and low-texture facades (fourth
row), achieving a higher recall rate and detecting finer defects,
as indicated by the yellow arrows. To intuitively assess
model performance, we visualize latency (X-axis), mAP0.5:0.95
(Y-axis), and model parameters (circle size) in Fig. 9(a).
Models closer to the top-left corner indicate superior detection
speed and higher accuracy. A comparison with the smallest
models from various methods [37], [38], [39], [40], [41],
[42], [43], [44] demonstrates that our approach strikes a
superior balance between detection speed, accuracy, and model
compactness.

4) Ablation Study: Table III provides a comprehensive
summary of the ablation experiments conducted to evaluate
the effectiveness and efficiency of the proposed CUBIT-Net.
Incorporating the GIPFPP module with the GELU activation
function improves defect detection accuracy, measured by
mAP0.5 and mAP0.5:0.95, with a negligible impact on detection
speed. The introduction of Packet Conv layers further reduces
the model parameters by 10.6% while maintaining detection
accuracy. Moreover, group normalization enhances the mAP0.5
and mAP0.5:0.95 scores by alleviating the model sensitivity
to batch size. Overall, replacing the original feature fusion
layer with the GIPFPP module achieves a 2.4% increase in
mAP0.5:0.95 and a 10.6% reduction in model parameters.

Further ablation experiments evaluating the effectiveness of
the proposed GIPFPP module in the CUBIT-Net are presented
in Tables IV–VI, focusing on nonlinear activation functions,
convolutional structures, and group normalization settings,
respectively. Table IV compares defect detection performance
with different activation functions, including ReLU, GELU,
SiLU, HardSwish, and Mish. Among these, GELU achieves
the highest accuracy, attributed to its smooth and continuous
output that stabilizes gradient propagation and enhances fea-
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TABLE IV

ABLATION EXPERIMENTS ON THE NONLINEAR ACTIVATION FUNCTION

TABLE V

ABLATION EXPERIMENTS ON THE CONVOLUTIONAL STRUCTURE

TABLE VI

ABLATION EXPERIMENTS ON GROUP NORMALIZATION

ture learning. Consequently, GELU is selected for the GIPFPP
module.

Table V summarizes the impact of varying group numbers
in the Packet Conv module to reduce model size while main-
taining detection accuracy. Increasing the group number yields
diminishing returns, with less significant parameter reductions
and notable accuracy degradation. The setting of four groups
achieves the optimal balance, effectively reducing model
parameters and GFLOPs while improving detection accuracy.
Moreover, incorporating depthwise convolutions within each
group further reduces model parameters and GFLOPs, with
less compromise to detection accuracy.

To overcome the limitations of batch normalization with
varying batch sizes and enhance detection accuracy, batch nor-
malization is replaced with group normalization, integrating
feature information across spatial locations by reorganizing
and normalizing feature maps. As shown in Table VI, the
model achieves optimal mAP0.5:0.95 when the group number is
set to 32, consistent with the findings in the original study [57].

B. Reconstruct

1) Datasets: The DTU dataset [23] comprises 119 object-
centric scenes, with multi-view images captured from fixed
camera positions under seven distinct illumination conditions.
Ground-truth point clouds are provided for quantitative eval-
uation of point cloud reconstruction performance. In line
with standard practice, the dataset is partitioned into 79
scenes for training, 22 for validation, and 18 for testing.
The BlendedMVS dataset [25] features 113 multiscale indoor
and outdoor scenes, encompassing over 17000 images paired

with corresponding depth maps, designed for fine-tuning MVS
models to generalize depth estimation and point cloud recon-
struction in real-world applications. The dataset is split into
106 scenes for fine-tuning and seven scenes for evaluating
depth estimation performance. The Tanks and Temples (TNT)
[24] dataset serves as a public benchmark for assessing point
cloud reconstruction performance. It includes an intermediate
set of eight scenes and an advanced set of six scenes, offering
variations in depth range, illumination, surface texture, and
reflectivity.

2) Evaluation Metrics: The DTU dataset evaluates point
cloud reconstruction performance using reconstruction accu-
racy and completeness, quantified by the mean error distance
(in mm, where lower values indicate better performance). For
a given target scene, the reconstruction accuracy is defined as

er→G = min
g∈G
‖r − g‖2, (17)

Acc =
1
|R|

X
r∈R

[er→G < d] · er→G (18)

where r represents the point from the reconstructed point cloud
R and g denotes the point from the ground-truth point cloud
G. ‖·‖2 indicates the Euclidean distance and er→G represents
the minimum Euclidean distance between the point r and the
nearest point in G. The threshold d defines the maximum
acceptable error for a point to be considered accurately recon-
structed. The Iverson bracket is denoted as [·] and |·| indicates
the cardinality of the set of points. Similarly, the reconstruction
completeness is determined as

eg→R = min
r∈R
‖g − r‖2 (19)

Comp =
1
|G|
X
g∈G

[eg→R < t] · eg→R (20)

where eg→R denotes the minimum Euclidean distance between
the point g and the nearest point in R while t defines the
maximum acceptable error for a point to be considered com-
pletely reconstructed. A tradeoff exists between reconstruction
accuracy and completeness: accuracy is maximized by sparse
but precisely localized point clouds, while completeness is
maximized by dense point clouds that cover the entire space.
To provide a summary measure of reconstruction performance
across multiple scenes, the overall score is computed as

Overall =
1

2Nt

Nt−1X
i=0

(Acci + Compi) (21)

where Nt is the number of scenes.
Similar to the DTU dataset, the TNT dataset uses preci-

sion and recall in terms of mean error percentage (in %,
where higher values indicate better performance) to quantify
point cloud reconstruction accuracy and completeness. The
harmonic mean of precision and recall is defined as the
F-score and the mean F-score across multiple scenes serves as
the overall summary measure of reconstruction performance.
In contrast to the DTU and TNT datasets, the BlendedMVS
dataset evaluates depth estimation performance using the 1-
threshold error (e1), 3-threshold error (e3), and endpoint error
(EPE). The e1 and e3 metrics compute the pixel percentages
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Fig. 10. Reconstruction errors rendering for multiple scenes, exhibiting
variations in depth ranges, surface textures, and illumination conditions from
the advanced set of the TNT benchmark. Darker regions indicate higher
reconstruction errors and the number represents F-score.

where the absolute depth errors, scaled by the depth interval,
exceed thresholds of 1 and 3, respectively, while EPE repre-
sents the mean absolute scaled depth error.

3) Implementation Details: The proposed MVS network is
trained on the DTU training set. Screened Poisson surface
reconstruction and depth rendering are applied to acquire
ground-truth depth maps [17], [18], [19] to enable end-to-end
training. Following standard practice, the depth range at the
coarse level, [dmin,2, dmax,2], is set as [425 mm, 935 mm]. The
number of depth intervals M2, M1, and M0 are set to 47, 31,
and 7, respectively, while the depth intervals I2, I1, and I0 are
set to 4, 2, and 1 times the value of I2. For a fair comparison
with state-of-the-art methods, the number of views N is set to
5, and the image resolution is specified as H × W = 512 ×
640. The network is implemented in PyTorch, with the Adam
optimizer configured using β1 = 0.9 and β2 = 0.999. A batch
size of 2 is used, and training is performed for 60 epochs
on two NVIDIA RTX 3090Ti GPUs. The cosine learning rate
scheduler is applied, with an initial learning rate of 0.001.

4) Benchmark Results: To evaluate reconstruction perfor-
mance, the proposed method is first benchmarked on the DTU
evaluation set (22 scenes) following the standard evaluation
protocol. With an image resolution of H × W = 864 × 1152,
the number of views N is set to 7 for depth map estimation.
The probabilistic constraint (τ = 0.1) is then applied, and the
geometric constraint (Nc = 3) is enforced to refine and fuse
the depth estimates into the point cloud reconstruction. To
enhance the generalization ability for large-scale scenes with
diverse camera trajectories, the trained model is fine-tuned on
the BlendedMVS training set with an image resolution of H
× W = 576 × 768 and N = 7. The fine-tuned model is
subsequently benchmarked on the TNT intermediate set and
the advanced set, with N set to 11. Benchmark results on the
DTU and TNT datasets, as shown in Table VII, demonstrate
that the proposed method outperforms nearly two dozen state-
of-the-art methods in terms of reconstruction performance.
The superiority of the method is illustrated in Fig. 9(b),

TABLE VII

QUANTITATIVE BENCHMARKING RESULTS ON THE DTU AND
TNT DATASETS FOR EVALUATING POINT CLOUD

RECONSTRUCTION PERFORMANCE

TABLE VIII

QUANTITATIVE BENCHMARKING RESULTS ON THE BLENDEDMVS
VALIDATION SET FOR EVALUATING DEPTH

ESTIMATION PERFORMANCE

TABLE IX
ABLATION EXPERIMENTS ON MODULES OF THE MVS NETWORK (N = 5,

W× H = 1152 × 864, τ = 0.3, AND Nc = 3)

where it (bottom-left corner) achieves higher reconstruction
completeness and overall score. Fig. 10 displays the rendered
reconstruction error on complex scenes from the TNT dataset
with varying depth ranges, where the proposed method pro-
duces less error compared to state-of-the-art approaches. To
evaluate depth estimation performance, the proposed method
is benchmarked on the BlendedMVS validation set with an
image resolution of H × W = 576 × 768 and N = 5 for a fair
comparison. The results presented in Table VIII demonstrate
that the method achieves more accurate and complete depth
estimates.

5) Ablation Study: Table IX summarizes the results of
ablation experiments evaluating the effectiveness of individ-
ual modules in the proposed MVS network. In comparison
to the baseline method [18], integrating the proposed BPA
significantly enhances point cloud reconstruction completeness
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TABLE X
ABLATION EXPERIMENTS ON RUNTIME AND MEMORY

by facilitating improved spatial feature transition between
the feature pyramid extraction and cost volume aggregation
modules, thereby strengthening multi-view correspondence
matching. Replacing the heuristic cost volume construction
with sparse ACVA further refines reconstruction accuracy
and completeness by dynamically assigning scene-adaptive
significance to individual viewpoints. Finally, the continuous
depth estimation strategy elevates overall performance to state-
of-the-art levels by mitigating learning ambiguities in depth
estimation. Table X presents the ablation experiments on
runtime and memory. Incorporating ABN reduces memory
usage by 12.58%, while sparse ACVA achieves an additional
24.19% reduction. Regarding runtime, the ABN and sparse
ACVA accelerate inference by 15.65%. Compared to per-
pixel adaptive aggregation (AA) modules [20], [51], sparse
ACVA demonstrates superior efficiency, significantly reducing
memory usage and runtime while achieving a higher mean
F-score, underscoring its superior generalization performance.

C. Register

1) Evaluation Metrics: The defect registration accuracy
is evaluated using the following metrics: 1) the interquartile
range (IQR), which is defined as the difference between the
first and third quartiles; 2) the root-mean-square error (RMSE);
and 3) the mean absolute error (MAE).

2) Localization Accuracy: First, the GIS environment is
established on the scalable WebGIS platform, Cesium [56].
The reconstructed infrastructure model is then georeferenced
to align with its geographic footprint. Detected defects, high-
lighted within the red bounding boxes in Fig. 11(a), are
projected onto the geo-referenced model and globally regis-
tered within the GIS virtual space, as indicated by the green
symbols in Fig. 11(b). Each camera viewpoint is restored
within the GIS environment, matching virtual and real view-
points to compute the defect registration error [as indicated in
Fig. 11(c)], defined as the metric distance between the center
of the detected bounding box and the localized defect position.
Table XI demonstrates the centimeter-level defect registration
accuracy of the proposed GIS-based method in real-world
inspections.

IV. REAL-WORLD EXPERIMENTS

We deploy our proposed inspection framework on various
large-scale scenarios to verify its effectiveness and efficiency.
Here, we take a large-scale high-rise warehouse (L× W ×
H = 36 m × 27 m × 100 m) as a representative instance.

Fig. 11. Defect registration visualizations. (a) Real-world defects identified
within the red bounding boxes. (b) Registered virtual defects, represented by
green symbols, in the GIS-based virtual space, with orange lines highlighting
their positions. (c) Metric offset between the defects in (a) and (b).

TABLE XI
DEFECT REGISTRATION ERROR FOR LARGE-SCALE INFRASTRUCTURE

(COMPUTED OVER 923 CLOSE-RANGE FACADE IMAGES)

A. Multi-UAV Cooperative Coverage Path Planning

As illustrated in Fig. 1, we employ a multi-UAV coverage
path-planning strategy to efficiently collect close-range facade
images for defect detection and multi-view aerial images
for warehouse reconstruction. This approach is based on an
explore-then-exploit framework [28], which enables multiple
UAVs to safely explore both the target warehouse and its
surrounding environment in partially unknown settings while
operating within the limitations of sensor capabilities. The
process begins with the dynamic updating of a density map
as effective viewpoints are acquired. This map subsequently
guides each UAV to its optimal target locations. A spatially
balanced deployment strategy is employed to ensure optimal
sensor coverage across the designated warehouse area. Upon
completing the exploration phase, the UAVs gather critical
surface information about the target warehouse. For each UAV,
specific viewpoints within its operational area are determined.
The efficient trajectory to cover all these viewpoints is com-
puted by solving the TSP [26], transforming the complex
inspection task into a series of manageable TSP instances,
each involving a limited set of viewpoints for computational
efficiency. Each UAV then follows the resulting paths to
capture the required images for both defect detection and
reconstruction. In our real-world experiments, we employ three
DJI Mavic 2 Enterprise UAVs, each equipped with a visual
camera offering a maximum resolution of H × W = 3000
× 4000 pixels and a field of view of 82.6◦. The UAVs
operate autonomously at a speed of 2 m/s, maintaining an
altitude of 30 m above the warehouse roof for multi-view
aerial image collection, with the camera oriented in a nadir
view (vertically downward). For close-range facade image
collection, the UAVs maintain a distance of 10 m from the
facade, with the camera positioned perpendicular to the facade
surface. This multi-UAV image collection process accelerates
data acquisition by more than three times.
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Fig. 12. Point cloud comparison with prevalent industrial reconstruction
solutions including DJI Terra, Photoscan, Pix4D, and COLMAP. COLMAP
fails to reconstruct due to memory overflow. With the same input images, our
learning-based MVS method achieves significantly denser and more complete
reconstruction with fine-grained surface texture preserved.

Fig. 13. Depth estimates for infrastructures with varying depth ranges and
surface textures. Our method delivers more accurate and complete depth
reconstructions compared to existing approaches [18], [19], [63].

TABLE XII
COMPARISON WITH INDUSTRIAL 3-D RECONSTRUCTION SOLUTIONS ON

THE ADVANCED SET OF THE TNT BENCHMARK

B. Effectiveness

With multi-UAV coverage path planning, 923 close-range
images of the warehouse (H × W = 832 × 1152) are
efficiently captured. The proposed CUBIT-Net, trained on
the CUBIT-Det defect detection dataset, is employed to
detect surface defects on the warehouse facade. As shown
in the top part of Fig. 1(c), the method effectively identi-
fies cracks, spalling, and moisture, achieving 82% mAP0.5

TABLE XIII
RECONSTRUCTION RUNTIME ANALYSIS ON REAL-WORLD SCENARIOS

FROM SMALL TO LARGE SCALE (TOP TO BOTTOM ROW)

detection accuracy. Meanwhile, 826 multi-view aerial images
(H × W = 832 × 1152) are captured and processed by
our MVS method for dense infrastructure reconstruction, as
shown in the lower part of Fig. 1(c). Compared to industrial
solutions, our learning-based method produces a significantly
denser and more complete reconstruction, as demonstrated
in Fig. 12, and achieves superior reconstruction accuracy
and completeness on the TNT benchmark, as summarized
in Table XII. Furthermore, additional experiments in large-
scale scenes (Fig. 13) validate that our method delivers more
accurate and complete depth estimates than state-of-the-art
methods [18], [19], [63], particularly in challenging scenes,
such as Library, with texture-less and specular surfaces. For
global defect registration, our GIS-based method achieves
centimeter-level accuracy, as detailed in Section III-C.

C. Efficiency

The CUBIT-Net model is initially converted to the ONNX
format, followed by the creation of a TensorRT inference
engine, and deployed on the NVIDIA Jetson Orin NX edge
device, achieving a detection speed of 22.7 FPS. The pro-
posed MVS network reconstructs the large-scale warehouse
in 44.928 min on a 3090Ti GPU, with 24.378 min for SfM,
6.569 min for view selection, and 13.981 min s for depth
estimation and point cloud reconstruction, making it 8.88 times
more efficient than DJI Terra, which requires 399 min for
the same task. As shown in Table XIII, the efficiency of
the MVS network enables the framework to scale effectively
across multiscale scenes. The GIS-based defect registration
method is completed in 16.426 ms on an i9-10920X CPU,
excluding the time required for uploading defect images and
the infrastructure model.

D. Scalability

For clarity, scene scales are classified into three categories:
1) small-scale scenes, such as individual statues; 2) medium-
scale scenes, such as standalone architectural structures; and 3)
large-scale scenes, encompassing groups of architectural struc-
tures. As shown in Fig. 14, robust scalability is demonstrated
by the proposed MVS method, which adapts effectively to
scenes of all scales while maintaining competitive reconstruc-
tion performance. This scalability ensures that the proposed
inspection framework is suitable for multiscale applications,
with the MVS method leveraged to achieve high-quality recon-
structions regardless of scene complexity or size. Additionally,
the integrated GIS-based defect registration method allows
for accurate localization and systematic registration of defects
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Fig. 14. Point cloud reconstruction on multiscale scenes. (a) Small scale.
(b) Medium scale. (c) Large scale.

across varying scales. By combining these capabilities, a
robust solution is provided by the proposed framework for the
efficient inspection and management of diverse infrastructures,
such as buildings, bridges, pavements, and energy sectors,
ultimately enhancing safety, efficiency, and cost-effectiveness.

V. LIMITATIONS

The limitations of our method are threefold, as described
below. First, the proposed defect dataset covers only the three
most common surface defect types and does not encompass
all possible defect categories. Second, similar to existing
approaches, the performance of the proposed learning-based
MVS method is sensitive to hyperparameters such as the
number of input views, the geometric constraint, and the prob-
abilistic constraint. Finally, the defect localization accuracy of
the GIS-based registration method is limited in GPS-denied
environments such as indoor scenes and underground facilities.

VI. CONCLUSION

In this article, we propose Det-Recon-Reg, an intelligent
framework designed for automated large-scale infrastructure
inspection, addressing the limitations of existing systems that
only provide local defect positions and are constrained to
small-scale scenes. The proposed framework decomposes the
complex inspection process into three stages: defect detec-
tion, infrastructure reconstruction, and defect registration. For
defect detection, we constructed a large-scale, high-resolution
defect dataset to alleviate the challenges of data scarcity
in large-scale deployments. We also developed an effective
detection method that strikes an excellent balance between
accuracy and computational efficiency, making it suitable for
UAV onboard deployment. For infrastructure reconstruction,
we presented a learning-based MVS network that enables more
accurate and complete point cloud reconstruction, serving as
the physical foundation for defect localization. For defect
registration, we introduced a GIS-based defect registration
method, which accurately registers detected defects onto the
reconstructed infrastructure model.

Extensive experiments on benchmark datasets and real-
world scenarios validate the effectiveness, efficiency, and

scalability of the proposed framework. Future work will
focus on three main directions: 1) extending the framework
to larger-scale areas, such as city blocks; 2) developing an
unsupervised learning-based inspection framework to enhance
data efficiency; and 3) advancing underwater image enhance-
ment, detection, and reconstruction techniques to adapt the
framework for underwater structural inspections.
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