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A Semi-Supervised Domain-Adaptive Framework
for Real-World Underwater Image Enhancement
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Abstract— Underwater optical remote sensing is crucial for
geoscience applications but often suffers from image degradation
due to complex underwater environments. While learning-based
methods have advanced underwater image enhancement (UIE),
their efficacy in real-world UIE applications still faces challenges.
This limitation arises from training predominantly on synthetic
underwater images, resulting in a significant interdomain gap
when applied to real-world data. In addition, diverse underwater
conditions introduce intradomain challenges, such as color casts
and haze, further complicating the UIE process. To address
these issues, we propose SSD-UIE, a semisupervised domain-
adaptive framework designed to mitigate both interdomain
and intradomain gaps. Our approach employs a systematic
synthesis pipeline to reduce visual interdomain discrepancies
and introduces a large synthetic-real underwater image dataset
(LSRUID) to facilitate the training of the framework. The
semantic blender is developed to handle semantic interdomain
differences, while the intradomain-aware feature extraction (IFE)
branch and the feature alignment strategy effectively address
intradomain variability. Furthermore, the Dual-Trans Block is
introduced to enhance the UIE performance while maintain-
ing computational efficiency. Extensive experiments demonstrate
that SSD-UIE outperforms state-of-the-art (SOTA) UIE methods
in both qualitative and quantitative evaluations on real-world
underwater images. The codes and dataset will be publicly
available at https://github.com/RockWenJJ/SSD-UIE.git
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I. INTRODUCTION

CLEAR underwater imagery is vital for remote sensing
and geoscience applications, such as seafloor map-

ping and marine monitoring, where autonomous underwater
vehicles (AUVs) are extensively used [1], [2]. However,
light absorption, backscattering, and suspended particles often
degrade image quality, making underwater image enhance-
ment (UIE) essential for accurate data analysis. While
learning-based methods have significantly advanced UIE [3],
[4], [5], [6], [7], [8], they face two key challenges in real-world
applications.

First, the scarcity of paired clear and degraded real under-
water images has led researchers to rely on synthetic image
pairs. However, UIE methods trained solely on synthetic
images struggle to adapt to real underwater scenarios due to
the interdomain gap, encompassing both visual and semantic
differences. Some studies use transfer learning to generate
underwater images from real data [9], but they often fail
to capture the physical properties of real underwater scenes.
Others rely on simplified underwater image formation mod-
els [10], which can introduce significant errors, resulting in
inaccurate synthetic images [11]. Although these methods
improve visual similarity between synthetic and real underwa-
ter images, they fail to address the semantic gap, as synthetic
images often lack critical underwater elements such as fish and
corals. This highlights the need for a framework that addresses
both visual and semantic interdomain gaps.

Second, the complexity of underwater conditions introduces
various effects (as shown in Fig. 1), such as color variations
from wavelength-dependent light absorption and haziness due
to light scattering. This variability, denoted as the intradomain
gap, exists in both synthetic and real underwater images.
Current UIE methods typically address this gap within either
the synthetic or real domain. For example, Berman et al. [12]
mitigate the intradomain gap in synthetic images by classifying
underwater environments based on Jerlov water types [13].
In contrast, Wang et al. [14] proposed an intradomain adapta-
tion (DA) strategy targeting hard and easy underwater images
within the real domain. However, no current method compre-
hensively addresses the intradomain gap across both domains.
Thus, a solution that effectively handles the intradomain gap
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Fig. 1. Real-world enhancement results of our proposed SSD-UIE and other
SOTA methods on self-collected underwater scenes1 with varying illumina-
tion, visibility, and color cast. (From left to right) Raw input, Semi-UIR [3],
SyreaNet [4], and SSD-UIE. Please zoom in for better visualization.

in both synthetic and real domains is essential for advancing
the UIE field.

To address these challenges, we propose SSD-UIE,
a semisupervised UIE framework that incorporates novel
domain-adaptive strategies to overcome both interdomain and
intradomain gaps. For bridging interdomain gaps, SSD-UIE
integrates a physically guided underwater image synthesis
(PUIS) module, which generates high-quality synthetic images
to reduce visual discrepancies, and a semantic blender to
minimize semantic gaps. Using the PUIS method, we also
introduce the large synthetic-real underwater image dataset
(LSRUID) to facilitate the framework’s training. To address
intradomain gaps in both synthetic and real domains, we pro-
pose an intradomain-aware feature extraction (IFE) branch,
combined with a feature alignment strategy to handle
intradomain discrepancies.

Moreover, we propose a novel UIE network with the
introduction of the Dual-Trans Block, which distinguishes
our network from existing methods that typically rely on
CNNs [15], [16], [17] or Transformers [18]. Unlike tradi-
tional networks that either focus on local feature extraction
or struggle with high-computational costs due to long-range
dependencies, the Dual-Trans Block enables efficient feature
extraction while maintaining computational efficiency, further
enhancing the performance of our framework.

Our main contributions are summarized as follows.
1) We propose a novel SSD-UIE framework that integrates

advanced domain-adaptive strategies to address both
interdomain and intradomain challenges in UIE.

2) To bridge the interdomain gap, we introduce a PUIS
module to mitigate visual discrepancies and a semantic
blender to reduce semantic differences between synthetic
and real images. In addition, we develop the LSRUID
dataset using the PUIS module.

3) We propose an IFE branch and a feature alignment
strategy to effectively address intradomain gaps in both
synthetic and real underwater domains.

4) The Dual-Trans Block is introduced to enhance UIE per-
formance while maintaining computational efficiency.

1Refer to the supplementary material for details on the real-world under-
water scene image collection.

5) Extensive experiments demonstrate the superior perfor-
mance of SSD-UIE on real-world UIE tasks compared
to other state-of-the-art (SOTA) methods.

II. RELATED WORK

A. Underwater Image Enhancement

UIE methods are generally divided into traditional
and learning-based approaches. Traditional methods include
model-free techniques [6], [19], which directly adjust pixel
values to improve visual quality, and model-based meth-
ods [20], [21], which rely on the underwater image forma-
tion model. However, these methods often fail when their
assumptions do not accurately reflect specific underwater
environments.

Learning-based methods often rely on synthetic underwater
images due to the difficulty and cost of acquiring high-quality
real underwater image pairs. Some learning-based UIE meth-
ods avoid synthetic images by using adversarial learning [22],
[23], primarily focusing on perceptual enhancement, which
may occasionally lead to inaccurate color restoration. Syn-
thetic data offer the advantage of providing both degraded
and clear images, improving the model’s ability to recover
original colors. For example, Li et al. [15] proposed a
lightweight UWCNN that uses underwater scene priors for
direct image reconstruction without parameter estimation for
different water types [13]. Chen et al. [24] proposed a UIE
method that utilizes a multiscale feature fusion network with
integrated feature extraction, fusion, and attention reconstruc-
tion modules to enhance scene adaptability and visual quality.
Li et al. [17] presented a UIE network that employs medium
transmission-guided multicolor space embedding to mitigate
color casts and low contrast. Cong et al. [25] proposed CECF,
which focuses on color correction by learning separate color
and content codes to enable controlled adjustments of under-
water organisms’ colors based on provided guidance. However,
training solely with synthetic data may limit the model’s
effectiveness on real underwater scenes. To address this, some
approaches combine synthetic and real underwater images
during training. For instance, Huang et al. [3] proposed a
semisupervised UIE framework with contrastive regularization
and a mean-teacher model, while Wang et al. [14] introduced a
UIE framework using a triple-alignment network to minimize
domain differences between synthetic and real images, supple-
mented by rank-based image quality assessments. Nonetheless,
the domain gap between synthetic and real underwater images
may still compromise the UIE performance.

In this work, we present a learning-based UIE framework
using a semisupervised training strategy with both synthetic
and real underwater images, incorporating novel domain-
adaptive technologies.

B. Underwater Image Synthesis

Underwater image synthesis plays a vital role in training
UIE networks due to the challenges of obtaining clear and
degraded underwater image pairs in real-world conditions.
Traditional synthesis methods typically rely on a simplified
underwater image formation model [26]. While approaches
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Fig. 2. Illustrated framework of the proposed SSD-UIE: underwater and in-air images are first collected from underwater and in-air observations, respectively.
The PUIS module then generates realistic underwater images to mitigate the visual interdomain gap. Next, the semantic blender processes these images to
address semantic interdomain discrepancies. The blended outputs, combined with the original images, are fed into the network, where an intra-DA strategy
aligns features across diverse underwater environments. The upper-right section, labeled “feature alignment,” illustrates how features from different domains
are aligned to minimize the intradomain gap. The dashed arrows represent the loss terms that guide the framework’s optimization.

such as [27] and [28] use attenuation coefficients from Jerlov
water types [13], they struggle to capture the complexity of
real underwater environments. Recent efforts have explored
learning-based techniques for more realistic underwater image
synthesis. Generative adversarial networks (GANs) [29] are
commonly used for this purpose due to their strong image
generation capabilities, but they often suffer from mode col-
lapse, reducing image diversity [30]. Ye et al. [31] introduced
a neural rendering technique using estimated light field maps
from real underwater scenes. While this method produces
realistic synthetic images, it may not fully adhere to the
physical principles for formulating underwater images.

In this work, we propose a method to generate realistic
underwater images from in-air images using a revised under-
water image formation model and introduce a comprehensive
UIE dataset with synthetic and real-world underwater images.

C. Underwater DA

DA aims to reduce distributional discrepancies between dif-
ferent domains and has been applied across various tasks [9].
As highlighted in [32], DA is particularly critical in UIE due to
the unique challenges posed by the underwater environment.
Unlike other image restoration tasks such as dehazing or low-
light enhancement, UIE faces two key challenges: the scarcity
of clear reference underwater images and the variability of
underwater conditions. The limited availability of reference
images necessitates reliance on synthetic datasets, which often
exhibit significant interdomain discrepancies. These discrepan-
cies include both visual and semantic gaps. Visual gaps often
appear as color distortions, while semantic gaps arise because
synthetic images typically lack underwater elements such as
marine organisms. Furthermore, intradomain variability arises
from diverse environmental factors, including varying water

quality, depth, and lighting conditions. This variability intro-
duces additional challenges, such as inconsistent color casts
and haziness, which need to be addressed to improve UIE
performance.

Early DA research in UIE primarily focused on mitigat-
ing visual differences between synthetic and real underwater
images, often using different image synthesis techniques
(see Section II-B). More recently, transfer learning has
been applied to further bridge these gaps. For instance,
Jiang et al. [33] proposed a two-step DA framework that
adapts in-air image dehazing methods to real underwater
images. Chen and Pei [5] developed a DA framework that
separates content and style across synthetic, real, and clean
domains. Qiao et al. [34] introduced a knowledge distil-
lation approach, combining semisupervised distillation and
self-domain adversarial distillation to resolve intradomain
differences and enhance UIE performance. However, these
methods typically address either interdomain or intra-DA
independently, without fully exploring both simultaneously.
Recent studies have attempted to tackle both inter- and intra-
DAs. Wang et al. [14] addressed both types of domain
gaps, but their intra-DA focuses only on real domain data,
classifying samples as easy or hard using a ranking method.
Wen et al. [4] also targeted both inter- and intra-DAs but did
not effectively address semantic differences between synthetic
and real domains.

In this work, we propose a novel DA strategy that bridges
both visual and semantic interdomain gaps while effectively
handling intradomain differences in both synthetic and real
underwater images.

III. PROPOSED METHOD

The overall framework of the proposed SSD-UIE is illus-
trated in Fig. 2. Underwater and in-air images are first
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Fig. 3. Illustrated pipeline of our proposed PUIS module, which includes
two components (a) params estimator and (b) underwater synthesizer.

collected from their respective observations. The PUIS module
(see Section III-A) then generates synthetic underwater images
to reduce the visual interdomain gap. Next, both synthetic
and real images are processed by the semantic blender (see
Section III-B) to address semantic interdomain discrepancy.
The blended outputs, along with the original images, are
fed into the network. To handle intradomain gaps, an intra-
DA strategy is proposed to align features across varying
underwater environments. The network architecture is detailed
in Section III-D, and the corresponding loss functions are
described in Section III-E.

A. Physically Guided Underwater Image Synthesis

To reduce the visual interdomain gap between synthetic and
real underwater images, we propose a PUIS module, which
utilizes the revised underwater image formation model [35]
to generate more realistic synthetic images. As illustrated in
Fig. 3, PUIS consists of two components: the params estimator
and the underwater synthesizer.

The params estimator is designed to estimate key parameters
of the revised model [35], including backscattering B̂c, direct
attenuation β̂D

c , and the white point Wc. For details on the
revised formation model, refer to the supplementary material.
This process requires an underwater depth map, which is esti-
mated using SOTA monocular depth estimation methods [36].
The estimated depth map, along with the real underwater
image, enables the derivation of parameters relevant to under-
water scenes, as shown in Fig. 3(a). Using these estimated
parameters, the equation for synthesizing realistic underwater
images is expressed as

Ic(x) = Js(x)Wce−β̂D
c (z)z + B̂c(x) (1)

where Js(x) is the clear in-air image, z is the depth map, and
Ic(x) is the generated synthetic underwater image.

Then, as shown in Fig. 3(b), the proposed underwater
synthesizer first preprocesses the in-air image using white

balance and estimates the depth map [36]. Subsequently, (1) is
applied to generate realistic synthetic underwater images using
the preprocessed in-air image and its corresponding depth map.
This process involves global scaling, direct attenuation, and
backscattering addition, as depicted in Fig. 3(b).

The proposed PUIS method facilitates the development of
the LSRUID, comprising 10 000 real underwater images and
50 000 synthetic image pairs. The real underwater images were
sourced from the Internet and our own collection, while the
in-air images for generating synthetic pairs were obtained
online. Sample images from the LSRUID dataset, as shown in
Fig. 4, demonstrate that our method produces more realistic
synthetic underwater images, significantly reducing the visual
interdomain gap. A detailed comparison of this dataset with
others is presented in Section IV-B.

B. Semantic Inter-DA

While generating more realistic underwater images helps
reduce the visual interdomain gap, a significant semantic gap
still remains. For instance, synthetic underwater images can
simulate water-related effects but often lack underwater objects
such as fish or corals, while real underwater images do not
include terrestrial objects such as cars or bicycles. As a result,
networks trained solely on synthetic data may struggle to
enhance real-world underwater images due to these semantic
discrepancies.

To address this issue, we propose a semantic blender to
incorporate semantic information from one domain into the
other. As shown in Fig. 5, the interdomain semantic blending
process involves three steps: 1) semantic object extraction;
2) C&P; and 3) image harmonization.

1) Semantic Object Extraction: In semantic object extrac-
tion, the goal is to identify and extract key objects in
underwater images from both synthetic and real domains.
Leveraging recent advancements in vision-language models
(VLMs), we detect objects in unannotated underwater images
from both domains. Specifically, we use SAM [37] to detect
instance segments, followed by CLIP [38] for classifying their
categories. A predefined vocabulary (see supplementary mate-
rial) specific to in-air and underwater environments ensures
the relevance of detected segments. We apply a confidence
threshold of 0.9 and limit the extraction to one semantic
object per image, ensuring accurate identification of objects
that convey the semantic content of the image.

2) Copy and Paste: After extracting semantic objects from
each domain, we apply a copy and paste (C&P) procedure
to blend the semantic information across domains. As shown
in Fig. 5, two C&P modules are employed. Each module
takes in an image from one domain (synthetic or real) and
segmented objects from the other domain. For example, in the
left C&P module, segmented real objects are copied and then
randomly resized, flipped, and rotated before being pasted
onto a synthetic underwater image. This creates a composite
image that merges synthetic information with real underwater
semantic objects. In addition, masks are generated to conceal
pixels from the real domain, facilitating the computation of
interdomain loss Linter (see Section III-E).
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Fig. 4. Sample images from our proposed LSRUID and their corresponding histograms. Row 1: real-world underwater images and their histograms. Row 2:
in-air images and their histograms. Row 3: synthetic underwater images and their histograms. The numbers in each histogram indicate the similarity in
histogram distribution between the in-air or synthetic images and the real-world underwater images.

Fig. 5. Pipeline of our proposed semantic blender for inter-DA.

3) Image Harmonization: Although composite images con-
tain semantic information from both domains, disparities may
arise between the original image and the pasted semantic
objects. For example, in Fig. 5, the left composite image shows
a synthetic underwater scene with a greenish tone, while the
segmented whale has a grayish cast. Similarly, in the right
composite image, a grayish underwater scene contrasts with a
greenish segmented truck. These inconsistencies between the
background and the pasted segments can potentially confuse
the network. To resolve this, we apply image harmonization
techniques [39] to ensure seamless blending of semantic
segments. As shown, harmonization adjusts the whale’s tone
to bluish, matching the synthetic background, while the
truck acquires a grayish tone, fitting the real underwater
scene.

After processing with the semantic blender, composite
images are generated by integrating synthetic or real back-
grounds with semantic objects from the opposite domain,
accompanied by masks that exclude real underwater pixels.
These composite images are then fed into the network for
enhancement, while the masks are used to compute the
interdomain loss Linter (see Section III-E).

Fig. 6. t-SNE visualizations of PCA feature vectors for real and synthetic
underwater images. The visualizations reveal that intradomain discrepancies
originate from various water-related effects. (a) Underwater images in the real
domain. (b) Underwater images in the synthetic domain.

C. Intra-DA

Underwater intradomain discrepancies arise from varying
water effects, such as differences in light absorption, scat-
tering, and color distortion. As shown in Fig. 6, t-SNE
visualizations of PCA feature vectors for real and synthetic
underwater images highlight significant intradomain gaps in
both real and synthetic domains.

To address these complex intradomain variations, our intra-
DA strategy focuses on aligning features that effectively
capture these discrepancies. Therefore, we developed an IFE
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Fig. 7. Illustrated pipeline of the IFE branch. The input image is processed
to extract features that integrate both chrominance-based information and
frequency-based information.

branch designed to capture features that reflect water-related
effects, including the IFE-Hist and IFE-Freq subbranches.

For the IFE-Hist subbranch, as shown in Fig. 7, the input
image I is first converted from the traditional RGB color space
to a log-chrominance uv space with measures u and v using
the following equations:

Iu(i) = log IG(i) − log IR(i)

Iv(i) = log IG(i) − log IB(i) (2)

where I represents the pixel value, {R,G,B} denote the RGB
color channels, and i ∈ {1, . . . , N } is the pixel index.

Next, we construct a 2-D histogram h for I from the uv
space, where h(u, v) denotes the number of pixels in I whose
chrominance is close to (u, v), with histogram counts weighted
by each pixel’s luminance Iy(i)

h(u, v) =

∑
i

Iy(i)
[
|Iu(i)− u| ≤

ϵ

2
∧ |Iv(i)− v| ≤

ϵ

2

]
(3)

where Iy(i) = (I 2
R(i) + I 2

G(i) + I 2
B(i))

1/2, the square bracket [·]

denotes an indicator function, and ϵ represents the histogram
bin-width. To enhance the domain discriminative capability
of the histogram feature, we calculate the square root of the
L1-norm of the histogram counts, resulting in the RGB-uv
histogram feature H

H(u, v) =

√
h(u, v)∑

u′,v′ h(u′, v′)
. (4)

The RGB-uv histogram feature H captures chrominance
information sensitive to color casts across varying underwater
environments. The feature is then processed through a multi-
layer perceptron (MLP) to produce the output H̃ .

For the IFE-Freq subbranch, the original RGB image
is transformed into the frequency domain using wavelet
decomposition [40], extracting frequency-domain compo-
nents {LL,LH,HL,HH}, which represent the fundamental
and structural characteristics of underwater scenes. Here, LL
corresponds to the low-frequency component, while LH, HL,
and HH represent the horizontal, vertical, and diagonal high-
frequency components, respectively. The frequency-domain
components {LL,LH,HL,HH} are concatenated into a feature
map F , which is passed through convolutional layers to
produce F̃ .

Fig. 8. Illustrated architecture of the network employed in our framework.
(a) Network architecture. (b) Details of the Dual-Trans Block.

The intradomain-aware feature FIFE is then obtained by
elementwise multiplication of H̃ and F̃ , effectively combin-
ing chrominance- and frequency-based information to capture
intradomain variations in underwater environments. As shown
in Fig. 8(a), FIFE is added to the encoder features Fenc, and the
combined features are aligned using the proposed intradomain
loss Lintra (see Section III-E).

D. Network Architecture

As shown in Fig. 8(a), the proposed network follows a stan-
dard encoder–decoder architecture with encoding and decod-
ing stages. During encoding, the input image is processed
through two branches: the IFE branch (see Section III-C),
which extracts intradomain-aware features FIFE, and the
encoder branch, which captures global semantics and local
details Fenc. These features are combined via elementwise
addition. The decoding stage mirrors the encoder, progres-
sively reconstructing a clear image by integrating features
from both branches. Unlike conventional UIE networks that
use CNN or Transformer blocks [41], [42], both the encoder
and decoder in our framework are built on the proposed Dual-
Trans Block.

While CNNs effectively provide local connectivity through
convolutional operations, they struggle to capture long-range
pixel dependencies. In contrast, Transformers [41] excel at
modeling long-range dependencies via the self-attention (SA)
mechanism. However, the computational complexity of SA
increases quadratically with input spatial resolution, limiting
the applicability of Transformers in real-world UIE. To address
this challenge and leverage the strengths of Transformers
while maintaining computational efficiency, we propose the
Dual-Trans Block. As illustrated in Fig. 8(b), this block
comprises two parallel SA branches: shifted-window mul-
tihead SA (SW-MSA) and global multihead SA (G-MSA).
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Fig. 9. Detailed architecture of G-MSA.

The SW-MSA architecture, based on [42], applies the SA
mechanism within partitioned windows, achieving linear com-
putational complexity. However, its focus on smaller spatial
windows limits its ability to model long-range dependencies
effectively. To overcome this limitation, we incorporate a
parallel G-MSA, as detailed in Fig. 9. Unlike SW-MSA, G-
MSA operates on global features of dimensions C × H × W .
It begins with 1×1 convolutions followed by 3×3 depthwise
convolutions to generate the feature maps Q, K , and V . These
maps are reshaped into 2-D features, and the SA mechanism is
applied to Q and K , producing a global attention matrix of size
C×C . This matrix is then multiplied by V . The computational
cost of G-MSA is linear with respect to the input feature size,
expressed as

�(G-MSA) = 3HWC2
+ 27HWC + 2HWC2. (5)

As illustrated in Fig. 8(b), the outputs of SW-MSA and
G-MSA are first added to their respective inputs using shortcut
connections and then modulated by a learnable parameter α
to balance the importance of global and local features. Given
an input x to the Dual-Trans Block, the final output x̂ of the
block is computed as follows:

f1 = G-MSA(LN(x))+ LN(x)
f2 = SW-MSA(LN(x))+ LN(x)
f3 = α f1 + (1 − α) f2

x̂ = f3 + FFN(LN( f3)) (6)

where LN(·) represents layer normalization and FFN(·)
denotes a feed-forward network.

E. Loss Design

Fig. 2 illustrates that the total loss Ltotal is a combination
of the following losses:

Ltotal = λ1Lsup + λ2Luns + λ3Lintra + λ4Linter (7)

where L{sup,uns,intra,inter} denote the supervised, unsuper-
vised, intradomain, and interdomain losses, respectively, and
λi{i=1,...,4} represent the corresponding balanced weights.

1) Supervised Loss Lsup: The supervised loss Lsup is
designed to guide the network training using synthetic under-
water image pairs. Since these synthetic pairs include both
degraded images and clear reference images, full supervision
is available. The supervised loss Lsup is defined as

Lsup =
∣∣∣∣I − Î

∣∣∣∣+ LSSIM
(

I, Î
)

+ LVGG
(

I, Î
)

(8)

where I represents the clear reference, Î denotes the enhanced
result, LSSIM(·) is the SSIM loss [43], and LVGG(·) refers to
the perceptual loss [44].

2) Unsupervised Loss Luns: For real underwater images,
where ground-truth references are unavailable, we employ an
unsupervised loss Luns to guide the enhancement process.
Since enhanced real-world images should adhere to principles
characteristic of clear natural images, the unsupervised loss
Luns is formulated based on the “gray-world” assumption [45]

Luns =
1
3

∑
c

 1
N

∑
i, j

Î c(i, j)

− 0.5

2

(9)

where c denotes the color channel, N represents the number
of pixels, and (i, j) indicates the pixel position.

3) Intradomain Loss Lintra: To mitigate intradomain dispar-
ities, we align Fintra = Fenc +FIFE across various underwater
environments within either synthetic or real domains. The
intradomain loss Lintra is designed to minimize the covari-
ance distances between features originating from distinct
intradomains, which is expressed as

Lintra =
1
B

∑∣∣∣∣∣∣C(F i
intra

)
− C

(
F j

intra

)∣∣∣∣∣∣2
F

(10)

where C(·) denotes the feature covariance matrix, || · ||
2
F

represents the squared Frobenius norm, B is the batch size,
and i ̸= j indicates the feature index.

4) Interdomain Loss Linter: The interdomain loss Linter
is designed to facilitate the training of composite images
generated by the semantic blender. This loss leverages both the
composite images and their corresponding masks. As detailed
in Section III-B, unmasked pixels originate from the synthetic
domain, enabling full supervision, while masked pixels cor-
respond to the real domain, lacking ground-truth references.
To bridge the synthetic-real domain gap, Linter employs a
triplet contrastive learning approach. The key idea is that
the enhanced color intensity in unsupervised masked regions
should closely resemble the enhanced intensity in supervised
unmasked regions while remaining distinct from the original
intensity of the masked regions. Thus, Linter is defined as

Linter =
1
3

∑
c

(∣∣∣∣AVE
(
M
(

Î c
))

− AVE
(
UM

(
Î c
))∣∣∣∣∣∣∣∣AVE

(
M
(

Î c
))

− AVE
(
M
(

Ĩ c
))∣∣∣∣

)
(11)

where Î represents the enhanced result, Ĩ denotes the original
input, and c refers to the color channel. AVE(·) denotes the
mean average operation, while M(·) and UM(·) represent the
masked and unmasked regions, respectively.
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Fig. 10. Visualization results of t-SNE on different synthesized underwater
datasets and real underwater datasets.

TABLE I
COMPARISON BETWEEN THE LSRUID AND OTHER UIE DATASETS

IV. EXPERIMENTS

A. Implementation Details

Our proposed SSD-UIE is trained using PyTorch on two
NVIDIA Tesla V100 GPUs. The ADAM optimizer with an
initial learning rate of 0.0001 is employed, and the learning
rate is adjusted using cosine annealing until convergence. The
balanced weights from λ1 to λ4 are empirically set as 1,
0.1, 0.5, and 1, respectively. The training process begins by
initially cropping input images to a size of 256 × 256 with
a batch size of 16. Subsequently, we gradually scale up the
image size while reducing the batch size. The network training
undergoes two training stages: 1) the initial stage involves
training exclusively using synthetic underwater images without
any DA strategies for 50 epochs and 2) the second stage
fine-tunes the network using both synthetic and real-world
underwater images with our proposed DA strategies for an
additional 50 epochs.

The training dataset consists of both synthetic and real
underwater images, all sourced from our LSRUID dataset (as
detailed in Section IV-B). For the testing set, we utilize real-
world underwater images from UIEB [10], EUVP [47], and
RUIE [46] datasets. It is important to note that the images used
for testing are not included in the LSRUID dataset’s training
set to avoid data leakage.

TABLE II
QUANTITATIVE COMPARISON OF SYNTHETIC UNDERWATER IMAGES

B. Comparison of UIE Datasets

To facilitate training of the framework, we developed
the LSRUID dataset, comprising 50 000 synthetic under-
water image pairs generated using the PUIS method (see
Section III-A). The in-air images were sourced from [50], [51],
and [52], with depth map estimated via a monocular depth esti-
mation algorithm [36]. In addition, we compiled 10 000 real-
world underwater images, comprising both Internet-sourced
and team-captured samples. The Internet-sourced images were
obtained by searching for high-resolution underwater con-
tent using general and specific keywords (e.g., “underwater
scenery” and “coral reefs”). The team-captured images were
acquired using DJI Action 2 and GoPro Hero 12 cameras at
various locations in Hong Kong and the Philippines under
diverse underwater conditions. For more details on the data
collection, please refer to the supplementary material.

Fig. 4 presents sample images from LSRUID, illustrating
that our synthetic images closely align with real underwater
scenes. The histograms further quantify this alignment, show-
ing that the histogram distributions of the synthetic images
closely match those of the real underwater images, effec-
tively reducing the visual interdomain gap. Table I compares
LSRUID with other UIE datasets, showing it as the most
comprehensive dataset for both real and synthetic underwater
images.

We further validated our PUIS synthesis method through
t-SNE visualizations, which show greater overlap between
synthetic and real underwater images in LSRUID compared
to other datasets (see Fig. 10). This overlap is quantified by
the intersection ratio (IR), calculated based on the overlap of
t-SNE clusters between synthetic and real images

IR =
|R ∩ S|

|R|
× 100% (12)

where R denotes the real image region, S represents the
synthetic image region,

⋂
denotes the intersection opera-

tion, and | · | indicates the area of the respective region.
As shown in Table II, LSRUID achieves an IR of 88.34%,
outperforming other datasets such as SYREA [4] (82.45%) and
LNRUD [31] (62.54%), indicating better alignment with real
images. In addition, we evaluate LSRUID using other metrics:
the Frechet inception distance (FID) [53], the kernel inception
distance (KID) [54], and the Kullback–Leibler divergence
(KLD) [55]. Our proposed LSRUID achieves the lowest FID
of 256.88, indicating that its synthetic images closely match
the feature distribution of real-world images. In addition, the
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Fig. 11. Visual comparison of the performances of our proposed SSD-UIE and other SOTA UIE methods on real-world images of (1) bluish and (2) greenish
scenes in the UIEB dataset [10]. The results from (a) to (l) correspond to (a) raw image, (b) UDCP [21], (c) WWPF [6], (d) UWCNN [10], (e) CECF [25],
(f) GLNet [16], (g) UColor [17], (h) UShapeTrans [18], (i) TUDA [5], (g) Semi-UIR [3], (k) SyreaNet [4], and (l) SSD-UIE (ours). Zoom in for a better
view.

lower KID (51.16) and KLD (9.69) values suggest that the
synthetic images in LSRUID better preserve the distribution
of real images and exhibit less divergence.

In Section IV-E, we provide a quantitative comparison by
training the same network with different synthetic datasets and
evaluating its performance on real underwater images, further
validating the effectiveness of our synthesis method in bridging
the visual interdomain gap.

C. Visual Comparison on Real Underwater Images

We evaluate the UIE performance of our SSD-UIE method
against several traditional and learning-based UIE techniques
on various real underwater image datasets. The compared
methods include traditional approaches such as UDCP [21]
and WWPF [6] and learning-based methods such as
UWCNN [10], CECF [25], GLNet [16], UColor [17], Ushape-
Trans [18], SyreaNet [4], Semi-UIR [3], and TUDA [5].

For fair comparison, all learning-based models were retrained
using our LSRUID dataset with their publicly available codes.

Fig. 11 presents a visual comparison of various UIE
methods on bluish and greenish underwater images from
the UIEB dataset [10]. While UDCP [21] reduces haze,
it struggles with bluish and greenish conditions, resulting
in reduced illumination. WWPF [6] enhances image details
but introduces artifacts, affecting image quality and natu-
ralness. UWCNN [10] tends to darken images, especially
in low-brightness areas, and is less effective at remov-
ing bluish/greenish tones. CECF [25], GLNet [16], and
UColor [17] improve brightness and remove greenish casts but
fall short in addressing bluish casts. UshapeTrans [18] strug-
gles with consistent processing of foreground and background
objects, particularly in scenes with varying depths. TUDA [5]
and Semi-UIR [3] enhance image quality but are less effective
in restoring fine details and correcting bluish/greenish casts.
SyreaNet [4] restores fine details well but often results in
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Fig. 12. Visual comparison of our proposed SSD-UIE and other SOTA UIE methods on real-world images in EUVP [47] (rows 1 and 2) and RUIE [46]
(rows 3 and 4) datasets. Zoom in for a better view.

TABLE III
QUANTITATIVE COMPARISON OF NONREFERENCE METRICS FOR UIE METHODS ACROSS VARIOUS REAL-WORLD UNDERWATER DATASETS

darker images, reducing clarity and visual appeal. In contrast,
our proposed SSD-UIE significantly enhances visual quality,
excels in detail restoration, and effectively eliminates both
bluish and greenish casts.

Fig. 12 shows the enhancement results on the EUVP [47]
and RUIE [46] datasets. The performance of various UIE
methods on these datasets is consistent with the results
observed on the UIEB [10] dataset. The proposed SSD-UIE
outperforms other UIE methods by significantly enhancing
the visual quality of underwater images while also effectively
restoring details and correcting color casts.

D. Quantitative Comparison on Real Underwater Images

To quantitatively assess the performance of our proposed
SSD-UIE method on real-world underwater images, we uti-
lize a range of nonreference metrics that evaluate different
aspects of image quality. These include underwater image

quality measure (UIQM) [56], which evaluates the overall
quality of underwater images by considering factors such as
sharpness, contrast, and brightness; underwater color image
quality evaluation (UCIQE) [57], which specifically assesses
the color quality of underwater images by measuring the
preservation of color fidelity and the reduction of color dis-
tortion; URanker [58], a learning-based metric that ranks the
quality of underwater images based on both global and local
degradation; and TMix [59], another rank learning-based met-
ric that combines high- and low-quality underwater images.
As shown in Table III, our SSD-UIE achieves SOTA results
across various real underwater image datasets, demonstrat-
ing its superior performance in enhancing underwater image
quality.

In addition, a subjective user study was conducted to assess
the enhancement quality of various methods. Ten enhanced
underwater images were randomly selected from each method
across all test datasets. A total of 35 participants rated the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 06,2025 at 14:39:34 UTC from IEEE Xplore.  Restrictions apply. 



WEN et al.: SEMI-SUPERVISED DOMAIN-ADAPTIVE FRAMEWORK FOR REAL-WORLD UIE 4209715

TABLE IV
USER STUDY OF UIE METHODS ON REAL UNDERWATER DATASETS

TABLE V
AVERAGE RGB ANGULAR ERROR FOR DIFFERENT UIE METHODS ON

DIFFERENT SITES IN THE SEA-THRU DATASET [35]

images on a scale of 0–10, with higher scores indicating
better quality. The results, as shown in Table IV, highlight
the superior performance of our proposed method compared
to other UIE methods.

While our SSD-UIE method performs well in nonrefer-
ence metrics and user evaluations, these primarily reflect
visual appeal. To thoroughly evaluate its effectiveness in color
restoration and correcting water-related casts, we use the
average RGB angular error ψ̄ [35], which measures the angu-
lar difference between enhanced and reference color patches
from a color chart. This metric is calculated using images
from the Sea-Thru dataset [35], which includes color charts
from five distinct underwater sites. The results in Table V
demonstrate the superior color recovery of our method across
different sites. Fig. 13 provides visual examples, highlighting
its effectiveness in restoring true colors, especially for distant
objects.

E. Ablation Study

1) Effectiveness of LSRUID: Since our proposed framework
employs semisupervised training using both synthetic and real
underwater images from our LSRUID dataset, we evaluate
their respective impacts separately.

We first replace the synthetic underwater images in
our framework with those from other synthetic underwater
datasets to compare their effectiveness in reducing the visual
interdomain gap. We evaluate the trained networks using the

Fig. 13. Example of the RGB angular error ψ̄ (the lower the better) of
various UIE methods. (a) Raw input. (b) UColor. (c) GLNet. (d) Semi-UIR.
(e) TUDA. (d) SSD-UIE (ours).

TABLE VI
QUANTITATIVE COMPARISON FOR NETWORKS TRAINED WITH DIFFERENT

SYNTHETIC UNDERWATER IMAGES

Fig. 14. Enhancement results when training with different synthetic under-
water datasets.

nonreference metrics on real underwater images from the
UIEB [10], EUVP [47], and RUIE [46] datasets, as well as the
average RGB angular error ψ̄ on the Sea-Thru dataset [35].
As shown in Table VI, the framework trained with synthetic
images from our LSRUID dataset consistently outperforms
those trained with other synthetic datasets across all evaluated
metrics, highlighting the significant impact that domain dif-
ferences have on model performance. The visual examples in
Fig. 14 further demonstrate the effectiveness of our synthesis
method in reducing the visual interdomain gap, making syn-
thetic images more closely resemble real underwater images.

We then substitute the real underwater images in the
LSRUID training set with images from other underwater
datasets while keeping the synthetic images from our LSRUID
dataset. The results presented in Table VII indicate that
networks trained and tested on the same real-world dataset
perform well but show reduced performance when evaluated
on other datasets. In contrast, the real underwater images from
our LSRUID dataset exhibit superior generalization across
various real underwater datasets, attributed to its diverse and
comprehensive content coverage.
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TABLE VII
QUANTITATIVE COMPARISON FOR NETWORKS TRAINED WITH DIFFERENT

REAL-WORLD UNDERWATER IMAGES

TABLE VIII
ABLATION STUDY OF VARIOUS DA STRATEGIES

Fig. 15. Enhancement results with and without semantic inter-DA strategy.

2) Effectiveness of Semantic Inter-DA Strategy: To evaluate
the effectiveness of the semantic inter-DA strategy, it is
important to note that the interdomain loss Linter is specifically
designed to function in conjunction with the semantic blender,
and their effects cannot be tested independently. Therefore,
we assess the impact of the semantic inter-DA strategy by
removing both the semantic blender and Linter. The results,
shown in model Ab1 in Table VIII, indicate that the absence
of the inter-DA strategy primarily affects nonreference metrics,
while the performance in color restoration is only slightly
diminished. Fig. 15 demonstrates that without the inter-DA
strategy, the network struggles to effectively handle foreground
objects in real underwater scenarios, particularly noticeable in
the presence of halos around underwater objects.

3) Effectiveness of Intra-DA Strategy: Given that the intra-
DA strategy introduces the IFE branch (including IFE-Hist
and IFE-Freq) and the intradomain loss Lintra, we assess
the impact of each module individually. The models Ab2 to
Ab6 in Table VIII provide quantitative comparisons for each
component of the intra-DA strategy. The results indicate that
omitting either the IFE branch or Lintra significantly reduces
the network’s color restoration capabilities, highlighting the
importance of each module in dealing with intra-DA gap.
In addition, the t-SNE visualizations in Fig. 16 show that with
our proposed intra-DA strategy, the framework could effec-
tively align the features of underwater images from different
underwater scenarios, leading to a significant reduction in the
intradomain gap.

Fig. 16. t-SNE visualization of underwater images from different environ-
ments before and after intra-DA. (a) Before inter-DA. (b) After inter-DA.

TABLE IX
EXPERIMENTS ON THE EFFECTIVENESS OF DUAL-TRANS BLOCK

TABLE X
PARAMETER COUNTS AND INFERENCE TIME OF VARIOUS

METHODS ACROSS DIFFERENT INPUT SIZES

4) Effectiveness of Dual-Trans Block: To evaluate the effec-
tiveness of our proposed Dual-Trans Block, we conduct a com-
parison by removing either SW-MSA or G-MSA components
and by replacing the Dual-Trans Block with a conventional
CNN block. The results, presented in Table IX, demonstrate
that our Dual-Trans Block outperforms the other ablation
models. In addition, we assess the computational performance
of our framework during inference by measuring the inference
time for different input sizes. As illustrated in Table X, the
inference time of our proposed SSD-UIE scales linearly with
input size. A comparison of SSD-UIE’s inference time with
other SOTA methods is also provided, highlighting its com-
petitive computational efficiency across varying input sizes.

V. CONCLUSION

In this study, we proposed SSD-UIE, a novel semisuper-
vised framework that effectively addresses both interdomain
and intradomain challenges in real-world UIE. To tackle the
interdomain gap, we developed the PUIS module to generate
high-quality synthetic underwater images and alleviate visual
discrepancies between synthetic and real data, complemented
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by the establishment of the comprehensive LSRUID dataset.
In addition, the semantic blender was introduced to address
semantic interdomain differences. For intradomain challenges,
the IFE branch and feature alignment strategy were designed to
adapt to diverse underwater conditions. The Dual-Trans Block
was also introduced, enhancing performance while ensuring
computational efficiency. Extensive experiments demonstrate
that SSD-UIE outperforms SOTA methods, with ablation stud-
ies validating the contribution of each component. Future work
will explore extending the framework to additional underwater
vision tasks, including object detection and 3-D reconstruction,
broadening its applicability in geoscience and remote sensing.
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